/usr/share/singular/LIB/nchomolog.lib is in singular-data 4.0.3+ds-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 | ////////////////////////////////////////////////////////////////////////////
version="version nchomolog.lib 4.0.0.0 Jun_2013 "; // $Id: 4d7c72c150b707e8f0f10ce0382d235c8015a98e $
category="Noncommutative";
info="
LIBRARY: nchomolog.lib Procedures for Noncommutative Homological Algebra
AUTHORS: Viktor Levandovskyy levandov@math.rwth-aachen.de,
@* Christian Schilli, christian.schilli@rwth-aachen.de,
@* Gerhard Pfister, pfister@mathematik.uni-kl.de
OVERVIEW: In this library we present tools of homological algebra for
finitely presented modules over GR-algebras.
PROCEDURES:
ncExt_R(k,M); computes presentation of Ext^k(M',R), M module, R basering, M'=coker(M)
ncHom(M,N); computes presentation of Hom(M',N'), M,N modules, M'=coker(M), N'=coker(N)
coHom(A,k); computes presentation of Hom(R^k,A), A matrix over basering R
contraHom(A,k); computes presentation of Hom(A,R^k), A matrix over basering R
dmodoublext(M, l); computes presentation of Ext_D^i(Ext_D^i(M,D),D), where D is a basering
is_cenBimodule(M); checks whether a module presented by M is Artin-centralizing
is_cenSubbimodule(M); checks whether a subbimodule M is Artin-centralizing
";
LIB "dmod.lib";
LIB "gkdim.lib";
LIB "involut.lib";
LIB "nctools.lib";
LIB "ncalg.lib";
LIB "central.lib";
// ncExt(k,M,N); Ext^k(M',N'), M,N modules, M'=coker(M), N'=coker(N)
// ncTensorMod(M,N); Tensor product of modules M'=coker(M), N'=coker(N)
// ncTor(k,M,N); Tor_k(M',N'), M,N modules, M'=coker(M), N'=coker(N)
// tensorMaps(M,N); tensor product of matrices
/* LOG:
5.12.2012, VL: cleanup, is_cenSubbimodule and is_cenBimodule are added for assume checks;
added doc for contraHom and coHom; assume check for ncHom etc.
*/
/* TODO:
add noncomm examples to important precedures ncHom,
*/
proc contraHom(matrix M, int s)
"USAGE: contraHom(A,k); A matrix, k int
RETURN: matrix
PURPOSE: compute the matrix of a homomorphism Hom(A,R^k), where R is the basering. Let A be a matrix defining a map F1-->F2 of free R-modules, then the matrix of Hom(F2,R^k)-->Hom(F1,R^k) is computed.
NOTE: if A is matrix of a left (resp. right) R-module homomorphism, then Hom(A,R^k) is a right (resp. left) R-module R-module homomorphism
EXAMPLE: example contraHom; shows an example.
SEE ALSO:
"
{
// also possible: compute with kontrahom from homolog_lib
// and warn that the module changes its side
int n,m=ncols(M),nrows(M);
int a,b,c;
matrix R[s*n][s*m];
for(b=1; b<=m; b++)
{
for(a=1; a<=s; a++)
{
for(c=1; c<=n; c++)
{
R[(a-1)*n+c,(a-1)*m+b] = M[b,c];
}
}
}
return(R);
}
example
{ "EXAMPLE:"; echo = 2;
ring A=0,(x,y,z),dp;
matrix M[3][3]=1,2,3,
4,5,6,
7,8,9;
module cM = contraHom(M,2);
print(cM);
}
proc coHom(matrix M, int s)
"USAGE: coHom(A,k); A matrix, k int
PURPOSE: compute the matrix of a homomorphism Hom(R^k,A), where R is the basering. Let A be a matrix defining a map F1-->F2 of free R-modules, then the matrix of Hom(R^k,F1)-->Hom(R^k,F2) is computed.
NOTE: Both A and Hom(A,R^k) are matrices for either left or right R-module homomorphisms
EXAMPLE: example coHom; shows an example.
"
{
int n,m=ncols(M),nrows(M);
int a,b,c;
matrix R[s*m][s*n];
for(b=1; b<=s; b++)
{
for(a=1; a<=m; a++)
{
for(c=1; c<=n; c++)
{
R[(a-1)*s+b,(c-1)*s+b] = M[a,c];
}
}
}
return(R);
}
example
{ "EXAMPLE:"; echo = 2;
ring A=0,(x,y,z),dp;
matrix M[3][3]=1,2,3,
4,5,6,
7,8,9;
module cM = coHom(M,2);
print(cM);
}
proc ncHom(matrix M, matrix N)
"USAGE: ncHom(M,N); M,N modules
COMPUTE: A presentation of Hom(M',N'), M'=coker(M), N'=coker(N)
ASSUME: M' is a left module, N' is a centralizing bimodule
NOTE: ncHom(M,N) is a right module, hence a right presentation matrix
is returned
EXAMPLE: example ncHom; shows examples
"
{
// assume: M is left module; nothing to check
// assume: N is centralizing bimodule: to check
if ( !is_cenBimodule(N) )
{
ERROR("Second module in not centralizing.");
}
// returns a right presentation matrix (for a right module)
matrix F = contraHom(M,nrows(N));
matrix B = coHom(N,ncols(M));
matrix C = coHom(N,nrows(M));
def Rbase = basering;
def Rop = opposite(Rbase);
setring Rop;
matrix Bop = oppose(Rbase, B);
matrix Cop = oppose(Rbase, C);
matrix Fop = oppose(Rbase, F);
matrix Dop = modulo(Fop, Bop);
matrix Eop = modulo(Dop, Cop);
setring Rbase;
matrix E = oppose(Rop, Eop);
kill Rop;
return(E);
}
example
{ "EXAMPLE:"; echo = 2;
ring A=0,(x,y,z),dp;
matrix M[3][3]=1,2,3,
4,5,6,
7,8,9;
matrix N[2][2]=x,y,
z,0;
module H = ncHom(M,N);
print(H);
}
proc ncHom_alt(matrix M, matrix N)
{
// shorter but potentially slower
matrix F = contraHom(M,nrows(N)); // \varphi^*
matrix B = coHom(N,ncols(M)); // i
matrix C = coHom(N,nrows(M)); // j
matrix D = rightModulo(F,B); // D
matrix E = rightModulo(D,C); // Hom(M,N)
return(E);
}
example
{ "EXAMPLE:"; echo = 2;
ring A=0,(x,y,z),dp;
matrix M[3][3]=1,2,3,
4,5,6,
7,8,9;
matrix N[2][2]=x,y,
z,0;
module H = ncHom_alt(M,N);
print(H);
}
proc ncHom_R(matrix M)
"USAGE: ncHom_R(M); M a module
COMPUTE: A presentation of Hom_R(M',R), M'=coker(M)
ASSUME: M' is a left module
NOTE: ncHom_R(M) is a right module, hence a right presentation matrix is returned
EXAMPLE: example ncHom_R; shows examples
"
{
// assume: M is left module
// returns a right presentation matrix
// for a right module
matrix F = transpose(M);
def Rbase = basering;
def Rop = opposite(Rbase);
setring Rop;
matrix Fop = oppose(Rbase, F);
matrix Dop = modulo(Fop, std(0)); //ker Hom(A^n,A) -> Hom(A^m,A)
matrix Eop = modulo(Dop, std(0)); // its presentation
setring Rbase;
matrix E = oppose(Rop, Eop);
kill Rop;
return(E);
}
example
{ "EXAMPLE:"; echo = 2;
ring A=0,(x,t,dx,dt),dp;
def W = Weyl(); setring W;
matrix M[2][2] =
dt, dx,
t*dx,x*dt;
module H = ncHom_R(M);
print(H);
matrix N[2][1] = x,dx;
H = ncHom_R(N);
print(H);
}
proc is_cenBimodule(module M)
"USAGE: is_cenBimodule(M); M module
COMPUTE: 1, if a module, presented by M can be centralizing in the sense of Artin and 0 otherwise
NOTE: only one condition for centralizing factor module can be checked algorithmically
EXAMPLE: example is_cenBimodule; shows examples
"
{
// define in a ring R, for a module R: cen(M) ={ m in M: mr = rm for all r in R}
// according to the definition, M is a centralizing bimodule <=> M is generated by cen(M)
// if basering R is a G-algebra, then prop 6.4 of BGV indicates it's enough to provide
// commutation of elements of M with the generators x_i of R
// prop 6.4 verbatim generalizes to R = R'/I for a twosided I.
// is M generates submodule, see the proc is_cenSubbimodule
// let M be a presentation matrix for P=R*/R*M, then [e_i + M]x_j=x_j[e_i+M]
// <=> Mx_j - x_jM in M must hold; thus forall j: Mx_j in M; thus M has to be
// closed from the right, that is to be a two-sided submodule indeed
// the rest of checks are complicated by now, so do the check only
// *the algorithm *//
if (isCommutative() ) { return(int(1));}
int n = nvars(basering);
int ans = 0;
int i,j;
vector P;
module N;
if ( attrib(M,"isSB") != 1)
{
N = std(M);
}
else
{
N = M;
}
// N is std(M) now
for(i=1; i<=ncols(M); i++)
{
P = M[i];
if (P!=0)
{
for(j=1; j<=n; j++)
{
if ( NF(P*var(j) - var(j)*P, N) != 0)
{
return(ans);
}
}
}
}
ans = 1;
return(ans);
}
example
{ "EXAMPLE:"; echo = 2;
def A = makeUsl2(); setring A;
poly p = 4*e*f + h^2-2*h; // generator of the center
matrix M[2][2] = p, p^2-7,0,p*(p+1);
is_cenBimodule(M); // M is centralizing
matrix N[2][2] = p, e*f,h,p*(p+1);
is_cenBimodule(N); // N is not centralizing
}
proc is_cenSubbimodule(module M)
"USAGE: is_cenSubbimodule(M); M module
COMPUTE: 1, if a subbimodule, generated by the columns of M is
centralizing in the sense of Artin and 0 otherwise
EXAMPLE: example is_cenSubbimodule; shows examples
"
{
// note: M in R^m is centralizing subbimodule iff it is generated by vectors,
// each nonconstant component of which is central; 2 check: every entry of the
// matrix M is central
if (isCommutative()) { return(int(1));}
return( inCenter(ideal(matrix(M))) );
}
example
{ "EXAMPLE:"; echo = 2;
def A = makeUsl2(); setring A;
poly p = 4*e*f + h^2-2*h; // generator of the center
matrix M[2][2] = p, p^2-7,0,p*(p+1);
is_cenSubbimodule(M); // M is centralizing subbimodule
matrix N[2][2] = p, e*f,h,p*(p+1);
is_cenSubbimodule(N); // N is not centralizing subbimodule
}
proc ncExt(int i, matrix Ps, matrix Ph)
"USAGE: Ext(i,M,N); i int, M,N matrices
COMPUTE: A presentation of Ext^i(M',N'); for M'=coker(M) and N'=coker(N).
ASSUME: M' is a left module, N' is a centralizing bimodule
NOTE: ncExt(M,N) is a right module, hence a right presentation matrix
is returned
EXAMPLE: example ncExt; shows examples
"
{
if ( !is_cenBimodule(Ph) )
{
ERROR("Second module in not centralizing.");
}
if(i==0) { return(module(ncHom(Ps,Ph))); }
list Phi = mres(Ps,i+1);
module Im = coHom(Ph,ncols(Phi[i+1]));
module f = contraHom(matrix(Phi[i+1]),nrows(Ph));
module Im1 = coHom(Ph,ncols(Phi[i]));
module Im2 = contraHom(matrix(Phi[i]),nrows(Ph));
def Rbase = basering;
def Rop = opposite(Rbase);
setring Rop;
module fop = oppose(Rbase,f);
module Imop = oppose(Rbase,Im);
module Im1op = oppose(Rbase,Im1);
module Im2op = oppose(Rbase,Im2);
module ker_op = modulo(fop,Imop);
module ext_op = modulo(ker_op,Im1op+Im2op);
// ext = prune(ext);
// to be discussed and done prune_from_the_left
setring Rbase;
module ext = oppose(Rop,ext_op);
kill Rop;
return(ext);
}
example
{ "EXAMPLE:"; echo = 2;
ring R = 0,(x,y),dp;
ideal I = x2-y3;
qring S = std(I);
module M = [-x,y],[-y2,x];
module E1 = ncExt(1,M,M);
E1;
}
proc ncExt_R(int i, matrix Ps)
"USAGE: ncExt_R(i, M); i int, M module
COMPUTE: a presentation of Ext^i(M',R); for M'=coker(M).
RETURN: right module Ext, a presentation of Ext^i(M',R)
EXAMPLE: example ncExt_R; shows an example
"{
if (i==0)
{
return(ncHom_R(Ps)); // the rest is not needed
}
list Phi = nres(Ps,i+1); // left resolution
module f = transpose(matrix(Phi[i+1])); // transp. because of Hom_R
module Im2 = transpose(matrix(Phi[i]));
def Rbase = basering;
def Rop = opposite(Rbase);
setring Rop;
module fop = oppose(Rbase,f);
module Im2op = oppose(Rbase,Im2);
module ker_op = modulo(fop,std(0));
module ext_op = modulo(ker_op,Im2op);
// ext = prune(ext);
// to be discussed and done prune_from_the_left
// necessary: compute SB!
// "Computing SB of Ext";
// option(redSB);
// option(redTail);
// ext_op = std(ext_op);
// int dimop = GKdim(ext_op);
// printf("Ext has dimension %s",dimop);
// if (dimop==0)
// {
// printf("of K-dimension %s",vdim(ext_op));
// }
setring Rbase;
module ext = oppose(Rop,ext_op); // a right module!
kill Rop;
return(ext);
}
example
{ "EXAMPLE:"; echo = 2;
ring R = 0,(x,y),dp;
poly F = x2-y2;
def A = annfs(F); setring A; // A is the 2nd Weyl algebra
matrix M[1][size(LD)] = LD; // ideal
print(M);
print(ncExt_R(1,M)); // hence the Ext^1 is zero
module E = ncExt_R(2,M); // define the right module E
print(E); // E is in the opposite algebra
def Aop = opposite(A); setring Aop;
module Eop = oppose(A,E);
module T1 = ncExt_R(2,Eop);
setring A;
module T1 = oppose(Aop,T1);
print(T1); // this is a left module Ext^2(Ext^2(M,A),A)
print(M); // it is known that M holonomic implies Ext^2(Ext^2(M,A),A) iso to M
}
proc nctors(matrix M)
{
// ext^1_A(adj(M),A)
def save = basering;
matrix MM = M; // left
def sop = opposite(save);
setring sop;
matrix MM = oppose(save,MM); // right
MM = transpose(MM); // transposed
list Phi = nres(MM,2); // i=1
module f = transpose(matrix(Phi[2])); // transp. because of Hom_R
module Im2 = transpose(matrix(Phi[1]));
setring save;
module fop = oppose(sop,f);
module Im2op = oppose(sop,Im2);
module ker_op = modulo(fop,std(0));
module ext_op = modulo(ker_op,Im2op);
// matrix E = ncExt_R(1,MM);
// setring save;
// matrix E = oppose(sop,E);
return(ext_op);
}
proc altExt_R(int i, matrix Ps, map Invo)
// TODO!!!!!!!!
// matrix Ph
// work thru Involutions;
{
if(i==0)
{ // return the formal adjoint
matrix Ret = transpose(Ps);
matrix Retop = involution(Ret, Invo);
// "Computing prune of Hom";
// Retop = prune(Retop);
// Retop = std(Retop);
return(Retop);
}
list Phi = mres(Ps,i+1);
// module Im = coHom(Ph,ncols(Phi[i+1]));
module f = transpose(matrix(Phi[i+1]));
f = involution(f, Invo);
//= contraHom(matrix(Phi[i+1]),nrows(Ph));
// module Im1 = coHom(Ph,ncols(Phi[i]));
module Im2 = transpose(matrix(Phi[i]));
Im2 = involution(Im2, Invo);
//contraHom(matrix(Phi[i]),nrows(Ph));
module ker_op = modulo(f,std(0));
module ext_op = modulo(ker_op,Im2);
// ext = prune(ext);
// to be discussed and done prune_from_the_left
// optionally: compute SB!
// "Computing prune of Ext";
ext_op = std(ext_op);
int dimop = GKdim(ext_op);
printf("Ext has dimension %s",dimop);
if (dimop==0)
{
printf("of K-dimension %s",vdim(ext_op));
}
module ext = involution(ext_op, Invo); // what about transpose?
return(ext);
}
example
{ "EXAMPLE:"; echo = 2;
ring R = 0,(x,y),dp;
ideal I = x2-y3;
qring S = std(I);
module M = [-x,y],[-y2,x];
module E1 = ncExt(2,M,M);
E1;
}
proc tensorMaps(matrix M, matrix N)
{
int r = ncols(M);
int s = nrows(M);
int p = ncols(N);
int q = nrows(N);
int a,b,c,d;
matrix R[s*q][r*p];
for(b=1;b<=p;b++)
{
for(d=1;d<=q;d++)
{
for(a=1;a<=r;a++)
{
for(c=1;c<=s;c++)
{
R[(c-1)*q+d,(a-1)*p+b]=M[c,a]*N[d,b];
}
}
}
}
return(R);
}
proc ncTensorMod(matrix Phi, matrix Psi)
{
int s=nrows(Phi);
int q=nrows(Psi);
matrix A=tensorMaps(unitmat(s),Psi); //I_s tensor Psi
matrix B=tensorMaps(Phi,unitmat(q)); //Phi tensor I_q
matrix R=concat(A,B); //sum of A and B
return(R);
}
proc ncTor(int i, matrix Ps, matrix Ph)
{
if(i==0) { return(module(ncTensorMod(Ps,Ph))); }
// the tensor product
list Phi = mres(Ph,i+1); // a resolution of Ph
module Im = tensorMaps(unitmat(nrows(Phi[i])),Ps);
module f = tensorMaps(matrix(Phi[i]),unitmat(nrows(Ps)));
module Im1 = tensorMaps(unitmat(ncols(Phi[i])),Ps);
module Im2 = tensorMaps(matrix(Phi[i+1]),unitmat(nrows(Ps)));
module ker = modulo(f,Im);
module tor = modulo(ker,Im1+Im2);
// tor = prune(tor);
return(tor);
}
static proc Hochschild()
{
ring A = 0,(x,y),dp;
ideal I = x2-y3;
qring B = std(I);
module M = [-x,y],[-y2,x];
ring C = 0,(x,y,z,w),dp; // x->z, y->w
ideal I = x2-y3,z3-w2;
qring Be = std(I); //the enveloping algebra
matrix AA[1][2] = x-z,y-w; //the presentation of the algebra B as Be-module
module MM = imap(B,M);
module E = ncExt(1,AA,MM);
print(E); //the presentation of the H^1(A,M)
ring A = 0,(x,y),dp;
ideal I = x2-y3;
qring B = std(I);
ring C = 0,(x,y,z,w),dp;
ideal I = x2-y3,z3-w2;
qring Be = std(I); //the enveloping algebra
matrix AA[1][2] = x-z,y-w; //the presentation of B as Be-module
matrix AAA[1][2] = z,w; // equivalent? pres. of B
print(ncExt(1,AA,AA)); //the presentation of the H^1(A,A)
print(ncExt(1,AAA,AAA));
}
static proc Lie()
{
// consider U(sl2)* U(sl2)^opp;
LIB "ncalg.lib";
ring A = 0,(e,f,h,H,F,E),Dp; // any degree ordering
int N = 6; // nvars(A);
matrix @D[N][N];
@D[1,2] = -h;
@D[1,3] = 2*e;
@D[2,3] = -2*f;
@D[4,5] = 2*F;
@D[4,6] = -2*E;
@D[5,6] = H;
def AA = nc_algebra(1,@D); setring AA;
ideal Q = E,F,H;
poly Z = 4*e*f+h^2-2*h; // center
poly Zo = 4*F*E+H^2+2*H; // center opposed
ideal Qe = Z,Zo;
//qring B = twostd(Qe);
//ideal T = e-E,f-F,h-H;
//ideal T2 = e-H,f-F,h-E;
//Q = twostd(Q); // U is U(sl2) as left U(sl2)* U(sl2)^opp -- module
matrix M[1][3] = E,F,H;
module X0 = ncExt(0,M,M);
print(X0);
module X1 = ncExt(1,M,M);
print(X1);
module X2 = ncExt(2,M,M); // equal to Tor^Z_1(K,K)
print(X2);
// compute Tor^Z_1(K,K)
ring r = 0,(z),dp;
ideal i = z;
matrix I[1][1]=z;
Tor(1,I,I);
}
proc AllExts(module N, list #)
// computes and shows everything
// assumes we are in the opposite
// and N is dual of some M
// if # is given, map Invo and Ext_Invo are used
{
int UseInvo = 0;
int sl = size(#);
if (sl >0)
{
ideal I = ideal(#[1]);
map Invo = basering, I;
UseInvo = 1;
"Using the involution";
}
int nv = nvars(basering);
int i,d;
module E;
list EE;
print("--- module:"); print(matrix(N));
for (i=1; i<=nv; i++)
{
if (UseInvo)
{
E = altExt_R(i,N,Invo);
}
else
{
E = ncExt_R(i,N);
}
printf("--- Ext %s",i);
print(matrix(E));
EE[i] = E;
}
return(E);
}
proc dmodualtest(module M, int n)
{
// computes the "dual" of the "dual" of a d-mod M
// where n is the half-number of vars of Weyl algebra
// assumed to be basering
// returns the difference between M and Ext^n_D(Ext^n_D(M,D),D)
def save = basering;
setring save;
module Md = ncExt_R(n,M); // right module
// would be nice to use "prune"!
// NO! prune performs left sided operations!!!
// Md = prune(Md);
// print(Md);
def saveop = opposite(save);
setring saveop;
module Mdop = oppose(save,Md); // left module
// here we're eligible to use prune
Mdop = prune(Mdop);
module Mopd = ncExt_R(n,Mdop); // right module
setring save;
module M2 = oppose(saveop,Mopd); // left module
M2 = prune(M2); // eligible since M2 is a left mod
M2 = groebner(M2);
ideal tst = M2 - M;
tst = groebner(tst);
return(tst);
}
example
{ "EXAMPLE:"; echo = 2;
ring R = 0,(x,y),dp;
poly F = x3-y2;
def A = annfs(F);
setring A;
dmodualtest(LD,2);
}
proc dmodoublext(module M, list #)
"USAGE: dmodoublext(M [,i]); M module, i optional int
COMPUTE: a presentation of Ext^i(Ext^i(M,D),D) for basering D
RETURN: left module
NOTE: by default, i is set to the integer part of the half of number of variables of D
@* for holonomic modules over Weyl algebra, the double ext is known to be holonomic left module
EXAMPLE: example dmodoublext; shows an example
"
{
// assume: basering is a Weyl algebra?
def save = basering;
setring save;
// if a list is nonempty and contains an integer N, n = N; otherwise n = nvars/2
int n;
if (size(#) > 0)
{
// if (typeof(#) == "int")
// {
n = int(#[1]);
// }
// else
// {
// ERROR("the optional argument expected to have type int");
// }
}
else
{
n = nvars(save); n = n div 2;
}
// returns Ext^i_D(Ext^i_D(M,D),D), that is
// computes the "dual" of the "dual" of a d-mod M (for n = nvars/2)
module Md = ncExt_R(n,M); // right module
// no prune yet!
def saveop = opposite(save);
setring saveop;
module Mdop = oppose(save,Md); // left module
// here we're eligible to use prune
Mdop = prune(Mdop);
module Mopd = ncExt_R(n,Mdop); // right module
setring save;
module M2 = oppose(saveop,Mopd); // left module
kill saveop;
M2 = prune(M2); // eligible since M2 is a left mod
def M3;
if (nrows(M2)==1)
{
M3 = ideal(M2);
}
else
{
M3 = M2;
}
M3 = groebner(M3);
return(M3);
}
example
{ "EXAMPLE:"; echo = 2;
ring R = 0,(x,y),dp;
poly F = x3-y2;
def A = annfs(F);
setring A;
dmodoublext(LD);
LD;
// fancier example:
setring A;
ideal I = Dx*(x2-y3),Dy*(x2-y3);
I = groebner(I);
print(dmodoublext(I,1));
print(dmodoublext(I,2));
}
static proc part_Ext_R(matrix M)
{
// if i==0
matrix Ret = transpose(Ps);
def Rbase = basering;
def Rop = opposite(Rbase);
setring Rop;
module Retop = oppose(Rbase,Ret);
module Hm = modulo(Retop,std(0)); // right kernel of transposed
// "Computing prune of Hom";
// Retop = prune(Retop);
// Retop = std(Retop);
setring Rbase;
Ret = oppose(Rop, Hm);
kill Rop;
return(Ret);
// some checkz:
// setring Rbase;
// ker_op is the right Kernel of f^t:
// module ker = oppose(Rop,ker_op);
// print(f*ker);
// module ext = oppose(Rop,ext_op);
}
|