This file is indexed.

/usr/share/singular/LIB/noether.lib is in singular-data 4.0.3+ds-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
/////////////////////////////////////////////////////////////////////////////
version="version noether.lib 4.0.0.0 Jun_2013 "; // $Id: 3ac4f74f440223d4410077106d2595129e0647fb $
category="Commutative Algebra";
info="
LIBRARY: noether.lib   Noether normalization of an ideal (not nessecary
                       homogeneous)
AUTHORS: A. Hashemi,  Amir.Hashemi@lip6.fr


OVERVIEW:
A library for computing the Noether normalization of an ideal that DOES NOT
require the computation of the dimension of the ideal.
It checks whether an ideal is in Noether position.  A modular version of
these algorithms is also provided.
The procedures are based on a paper of Amir Hashemi 'Efficient Algorithms for
Computing Noether Normalization' (presented in ASCM 2007)

This library computes also Castelnuovo-Mumford regularity and satiety of an
ideal.  A modular version of these algorithms is also provided.
The procedures are based on a paper of Amir Hashemi 'Computation of
Castelnuovo-Mumford regularity and satiety' (preprint 2008)


PROCEDURES:
 NPos_test(id);  checks whether monomial ideal id is in Noether position
 modNpos_test(id); the same as above using modular methods
 NPos(id);       Noether normalization of ideal id
 modNPos(id);      Noether normalization of ideal id by modular methods
 nsatiety(id); Satiety of ideal id
 modsatiety(id)  Satiety of ideal id by modular methods
 regCM(id);    Castelnuovo-Mumford regularity of ideal id
 modregCM(id); Castelnuovo-Mumford regularity of ideal id by modular methods
";
LIB "elim.lib";
LIB "algebra.lib";
LIB "poly.lib";
LIB "ring.lib";
LIB "presolve.lib";

///////////////////////////////////////////////////////////////////////////////

proc NPos_test (ideal I)
"
USAGE:  NPos_test (I); I monomial ideal
RETURN: A list whose first element is 1, if i is in Noether position,
        0 otherwise. The second element of this list is a list of variables ordered
        such that those variables are listed first, of which a power belongs to the
        initial ideal of i. If i is in Noether position, the method returns furthermore
        the dimension of i.
ASSUME: i is a nonzero monomial ideal.
"
{
//--------------------------- initialisation ---------------------------------
   int  time,ii,j,k,l,d,t,jj;
   intvec v;
   def r0 = basering;
   int n = nvars(r0)-1;
   list L,Y,P1,P2,P3;
   if (I[1]==1)
   {
     print("The ideal is 1");return(1);
   }
   for ( ii = 1; ii <= n+1; ii++ )
   {
     L[ii]=0;
   }
   for ( ii = 1; ii <= size(I); ii++ )
   {
     Y=variables(I[ii]);
     l=rvar(Y[1][1]);
     if (size(Y[1])==1)
     {
       L[l]=1;
       P1=insert(P1,Y[1][1]);
     }
     if (L[l]==0)
     {
       L[l]=-1;
     }
   }
   t=size(P1);
   if (t==0)
   {
     for ( jj = 1; jj <= n+1; jj++ )
     {
       P3=insert(P3,varstr(jj));
     }
   }
   else
   {
     P2=findvars(ideal(P1[1..t]))[3];
     for ( jj = 1; jj <= size(P2[1]); jj++ )
     {
       P3=insert(P3,P2[1][jj]);
     }
   }
   if (L[n+1]==-1)
   {
     return(list(0,P1+P3));
   }
   for ( ii = 1; ii <= n; ii++ )
   {
     if (L[ii]==-1)
     {
       return(list(0,P1+P3));
     }
     if (L[ii]==0 and L[ii+1]==1)
     {
       return(list(0,P1+P3));
     }
   }
   d=n+1-sum(L);
   print("The dimension of the ideal is:");print(d);
   return(list(1,P1+P3));
}
//////////////////////////////////////////
proc modNpos_test (ideal i)
"USAGE: modNpos_test(i); i an ideal
RETURN: 1 if i is in Noether position 0  otherwise.
NOTE:   This test is a probabilistic test, and it computes the initial of the ideal modulo the prime number 2147483647 (the biggest prime less than 2^31).
"
{
  "// WARNING:
// The procedure is probabilistic and  it computes the initial of the ideal modulo the prime number 2147483647";
  int p;
  def br=basering;
  setring br;
  ideal I;
  list #;
  option(redSB);
  p=2147483647;
  #=ringlist(br);
  #[1]=p;
  def oro=ring(#);
  setring oro;
  ideal sbi,lsbi;
  sbi=fetch(br,i);
  lsbi=lead(std(sbi));
  setring br;
  I=fetch(oro,lsbi);
  I=simplify(I,1);
  attrib(I,"isSB",1);
  return(NPos_test(I));
}


///////////////////////////////////////////////////////////////////////////////
proc NPos (ideal i)
"USAGE:  NPos(i); i ideal
RETURN:  A linear map phi such that  phi(i) is in Noether position
"
{
//--------------------------- initialisation ---------------------------------
  int ii,jj,d,time,n,nl;
  intmat ran;
  def r0 = basering;
  ideal K,chcoord;
  n = nvars(r0)-1;
  string s = "ring r1 = ",charstr(r0),",x(0..n),dp;";
  execute(s);
  ideal i,sbi,I,K,chcoord,m,L;
  list #;
  poly P;
  map phi;
  i = fetch(r0,i);
  time=rtimer;
  system("--ticks-per-sec",10);
  i=std(i);
  sbi=sort(lead(i))[1];
  #=NPos_test(sbi);
  if ( #[1]== 1 )
  {
    return ("The ideal is in Noether position and the time of this computation is:",rtimer-time,"/10 sec.");
  }
  else
  {
    L=maxideal(1);
    chcoord=maxideal(1);
    for ( ii = 1; ii<=n+1; ii++ )
    {
      chcoord[rvar(#[2][ii])]=L[ii];
    }
    phi=r1,chcoord;
    sbi=phi(sbi);
    if ( NPos_test(sbi)[1] == 1 )
    {
      setring r0;
      chcoord=fetch(r1,chcoord);
      return (chcoord,"and the time of this computation is:",rtimer-time,"/10 sec.");
    }
  }
  while ( nl < 30 )
  {
    nl=nl+1;
    I=i;
    L=maxideal(1);
    for ( ii = n; ii>=0; ii-- )
    {
      chcoord=select1(maxideal(1),1..ii);
      ran=random(100,1,ii);
      ran=intmat(ran,1,ii+1);
      ran[1,ii+1]=1;
      m=select1(maxideal(1),1..(ii+1));
      for ( jj = 1; jj<=ii+1; jj++ )
      {
        P=P+ran[1,jj]*m[jj];
      }
      chcoord[ii+1]=P;
      L[ii+1]=P;
      P=0;
      phi=r1,chcoord;
      I=phi(I);
      if ( NPos_test(sort(lead(std(I)))[1])[1] == 1 )
      {
        K=x(ii..n);
        setring r0;
        K=fetch(r1,K);
        ideal L=fetch(r1,L);
        return (L,"and the time of this computation is:",rtimer-time,"/10 sec.");
      }
    }
  }
  "// WARNING:
// The procedure has entered in more than 30 loops: in your example
// the method may enter an infinite loop over a finite field!";
  return (-1);
}
///////////////////////////////////////////////////////////////////////////////
proc modNPos (ideal i)
"USAGE:  modNPos(i); i ideal
RETURN:  A linear map phi such that  phi(i) is in Noether position
NOTE:    It uses the procedure  modNPos_test to test Noether position.
"
{
//--------------------------- initialisation ---------------------------------
   int ii,jj,d,time,n,nl;
   intmat ran;
   def r0 = basering;
   ideal K,chcoord;
   n = nvars(r0)-1;
   string s = "ring r1 = ",charstr(r0),",x(0..n),dp;";
   execute(s);
   ideal i,sbi,I,K,chcoord,m,L;
   poly P;
   list #;
   map phi;
   i = fetch(r0,i);
   time=rtimer;
   system("--ticks-per-sec",10);
   #=modNPos_test(i);
   if ( #[1]== 1 )
   {
     return ("The ideal is in Noether position and the time of this computation is:",rtimer-time,"/10 sec.");
   }
   else
   {
     L=maxideal(1);
     chcoord=maxideal(1);
     for ( ii = 1; ii<=n+1; ii++ )
     {
       chcoord[rvar(#[2][ii])]=L[ii];
     }
     phi=r1,chcoord;
     I=phi(i);
     if ( modNPos_test(I)[1] == 1 )
     {
       setring r0;
       chcoord=fetch(r1,chcoord);
       return (chcoord,"and the time of this computation is:",rtimer-time,"/10 sec.");
     }
   }
   while ( nl < 30 )
   {
     nl=nl+1;
     I=i;
     L=maxideal(1);
     for ( ii = n; ii>=0; ii-- )
     {
       chcoord=select1(maxideal(1),1..ii);
       ran=random(100,1,ii);
       ran=intmat(ran,1,ii+1);
       ran[1,ii+1]=1;
       m=select1(maxideal(1),1..(ii+1));
       for ( jj = 1; jj<=ii+1; jj++ )
       {
         P=P+ran[1,jj]*m[jj];
       }
       chcoord[ii+1]=P;
       L[ii+1]=P;
       P=0;
       phi=r1,chcoord;
       I=phi(I);
       if ( modNPos_test(I)[1] == 1 )
       {
         K=x(ii..n);
         setring r0;
         K=fetch(r1,K);
         ideal L=fetch(r1,L);
         return (L,"and the time of this computation is:",rtimer-time,"/10 sec.");
       }
     }
   }
   "// WARNING:
// The procedure has entered in more than 30 loops: in your example
// the method may enter an infinite loop over a finite field!";
   return (-1);
}

////////////////////////////////////////////////////////////////////////////////////
static proc TestLastVarIsInGenericPos (ideal i)
"USAGE:   TestLastVarIsInGenericPos (i); i a monomial ideal,
RETURN:  1 if the last variable is in generic position for i and 0 otherwise.
THEORY:  The last variable is in generic position if the quotient of the ideal
         with respect to this variable is equal to the quotient of the ideal with respect to the maximal ideal.
"
{
//--------------------------- initialisation ---------------------------------
  int n,ret;
  def r0 = basering;
  n = nvars(r0)-1;
  string s = "ring r1 = ",charstr(r0),",x(0..n),dp;";
  execute(s);
  ideal I,i;
  i = fetch(r0,i);
  attrib(i,"isSB",1);
  I=quotient(select(i,n+1),x(n));
  I=I*maxideal(1);
  ret=1;
  if (size(reduce(I,i)) <> 0)
  {
    ret=0;
  }
  return(ret);
}


////////////////////////////////////////////////////////////////////////////////////
proc nsatiety (ideal i)
"USAGE:   nsatiety (i); i ideal,
RETURN:  an integer, the satiety of i.
         (returns -1 if i is not homogeneous)
ASSUME:  i is a homogeneous ideal of the basering R=K[x(0)..x(n)].
THEORY:  The satiety, or saturation index, of a homogeneous ideal i is the
         least integer s such that, for all d>=s, the degree d part of the
         ideals i and isat=sat(i,maxideal(1))[1] coincide.
"
{
//--------------------------- initialisation ---------------------------------
  int e,ii,jj,h,d,time,lastv,nl,ret;
  intmat ran;
  def r0 = basering;
  int n = nvars(r0)-1;
  string s = "ring r1 = ",charstr(r0),",x(0..n),dp;";
  execute(s);
  ideal i,sbi,I,K,chcoord,m,L;
  poly P;
  map phi;
  i = fetch(r0,i);
  time=rtimer;
  system("--ticks-per-sec",100);
  sbi=std(i);
//----- Check ideal homogeneous
  if ( homog(sbi) == 0 )
  {
    dbprint(2,"The ideal is not homogeneous, and time for this test is: " + string(rtimer-time) + "/100sec.");
    return ();
  }
  I=simplify(lead(sbi),1);
  attrib(I,"isSB",1);
  K=select(I,n+1);
  if (size(K) == 0)
  {
    dbprint(2,"sat(i)=0 and the time of this computation: " + string(rtimer-time) + "/100sec.");
    return();
  }
  if (TestLastVarIsInGenericPos(I) == 1 )
  {
    dbprint(2,"sat(i)=" + string(maxdeg1(K)) + " and the time of this computation: " + string(rtimer-time) + "/100sec.");
    return();
  }
  while ( nl < 5 )
  {
    nl=nl+1;
    chcoord=select1(maxideal(1),1..n);
    ran=random(100,1,n);
    ran=intmat(ran,1,n+1);
    ran[1,n+1]=1;
    m=select1(maxideal(1),1..(n+1));
    for ( jj = 1; jj<=n+1; jj++ )
    {
      P=P+ran[1,jj]*m[jj];
    }
    chcoord[n+1]=P;
    P=0;
    phi=r1,chcoord;
    L=std(phi(i));
    I=simplify(lead(L),1);
    attrib(I,"isSB",1);
    K=select(I,n+1);
    if (size(K) == 0)
    {
      dbprint(2,"sat(i)=0 and the time of this computation: " + string(rtimer-time) + "/100sec.");
      return();
    }
    if (TestLastVarIsInGenericPos(I) == 1 )
    {
      dbprint(2,"sat(i)=" + string(maxdeg1(K)) + " and the time of this computation: " + string(rtimer-time) + "/100sec.");
      return();
    }
  }
}


//////////////////////////////////////////////////////////////////////////////
proc modsatiety (ideal i)
"USAGE:   modsatiety(i); i ideal,
RETURN:  an integer, the satiety of i.
         (returns -1 if i is not homogeneous)
ASSUME:  i is a homogeneous ideal of the basering R=K[x(0)..x(n)].
THEORY:  The satiety, or saturation index, of a homogeneous ideal i is the
         least integer s such that, for all d>=s, the degree d part of the
         ideals i and isat=sat(i,maxideal(1))[1] coincide.
NOTE:    This is a probabilistic procedure, and it computes the initial of the ideal modulo the prime number 2147483647 (the biggest prime less than 2^31).
"
{
//--------------------------- initialisation ---------------------------------
  "// WARNING: The characteristic of base field must be zero.
// The procedure is probabilistic and  it computes the
//initial ideals modulo the prime number 2147483647.";
  int e,ii,jj,h,d,time,lastv,nl,ret,s1,d1,siz,j,si,u,k,p;
  intvec v1;
  intmat ran;
  def r0 = basering;
  int n = nvars(r0)-1;
  string s = "ring r1 = ",charstr(r0),",x(0..n),dp;";
  execute(s);
  ideal i,sbi,I,K,chcoord,m,L,sbi1,lsbi1,id1;
  vector V1;
  list #,LL,PL,Gb1,VGb1,Gb2,VGb2,Res1,Res2;
  poly P;
  map phi;
  time=rtimer;
  system("--ticks-per-sec",100);
  i = fetch(r0,i);
//----- Check ideal homogeneous
  if ( homog(i) == 0 )
  {
    "// WARNING: The ideal is not homogeneous.";
    dbprint(2,"Time for this test is: " + string(rtimer-time) + "/100sec.");
    return ();
  }
  option(redSB);
  p=2147483647;
  list r2=ringlist(r1);
  r2[1]=p;
  def oro=ring(r2);
  setring oro;
  ideal sbi=fetch(r1,i);
  sbi=std(sbi);
  setring r1;
  sbi=fetch(oro,sbi);
  kill oro;
  I=simplify(lead(sbi),1);
  attrib(I,"isSB",1);
  K=select(I,n+1);
  if (size(K) == 0)
  {
    dbprint(2,"msat(i)=0 and the time of this computation: " + string(rtimer-time) + "/100sec.");
    return();
  }
  if (TestLastVarIsInGenericPos(I) == 1 )
  {
    dbprint(2,"msat(i)=" + string(maxdeg1(K)) + " and the time of this computation: " + string(rtimer-time) + "/100sec.");
    return();
  }
  while ( nl < 30 )
  {
    nl=nl+1;
    chcoord=select1(maxideal(1),1..n);
    ran=random(100,1,n);
    ran=intmat(ran,1,n+1);
    ran[1,n+1]=1;
    m=select1(maxideal(1),1..(n+1));
    for ( jj = 1; jj<=n+1; jj++ )
    {
      P=P+ran[1,jj]*m[jj];
    }
    chcoord[n+1]=P;
    P=0;
    phi=r1,chcoord;
    sbi=phi(i);
    list r2=ringlist(r1);
    r2[1]=p;
    def oro=ring(r2);
    setring oro;
    ideal sbi=fetch(r1,sbi);
    sbi=std(sbi);
    setring r1;
    sbi=fetch(oro,sbi);
    kill oro;
    lsbi1=lead(sbi);
    attrib(lsbi1,"isSB",1);
    K=select(lsbi1,n+1);
    if (size(K) == 0)
    {
      dbprint(2,"msat(i)=0 and the time of this computation: " + string(rtimer-time) + "/100sec.");
      return();
    }
    if (TestLastVarIsInGenericPos(lsbi1) == 1 )
    {
      dbprint(2,"msat(i)=" + string(maxdeg1(K)) + " and the time of this computation: " + string(rtimer-time) + "/100sec.");
      return();
    }
  }
}

//////////////////////////////////////////////////////////////////////////////
//
proc regCM (ideal i)
"USAGE:  regCM (i); i ideal
RETURN:  the Castelnuovo-Mumford regularity of i.
         (returns -1 if i is not homogeneous)
ASSUME:  i is a homogeneous ideal.
"
{
//--------------------------- initialisation ---------------------------------
  int e,ii,jj,H,h,d,time,nl;
  def r0 = basering;
  int n = nvars(r0)-1;
  string s = "ring r1 = ",charstr(r0),",x(0..n),dp;";
  execute(s);
  ideal i,sbi,I,J,K,L;
  list #;
  poly P;
  map phi;
  i = fetch(r0,i);
  time=rtimer;
  system("--ticks-per-sec",100);
  sbi=std(i);
//----- Check ideal homogeneous
  if ( homog(sbi) == 0 )
  {
    "// The ideal is not homogeneous!";
    return (-1);
  }
  I=simplify(lead(sbi),1);
  attrib(I,"isSB",1);
  d=dim(I);
  if (char(r1) > 0 and d == 0)
  {
    def r2=changechar(0,r1);
    setring r2;
    ideal sbi,I,i,K,T;
    map phi;
    I = fetch(r1,I);
    i=I;
    attrib(I,"isSB",1);
  }
  else
  {
    def r2=changechar(ringlist(r1),r1);
    setring r2;
    ideal sbi,I,i,K,T,ic,Ic;
    map phi;
    I = imap(r1,I);
    Ic=I;
    attrib(I,"isSB",1);
    i = imap(r1,i);
    ic=i;
  }
  K=select(I,n+1);
  if (size(K) == 0)
  {
    h=0;
  }
  else
  {
    if (TestLastVarIsInGenericPos(I) == 1)
    {
      h=maxdeg1(K);
    }
    else
    {
      while ( nl < 30 )
      {
        nl=nl+1;
        phi=r2,randomLast(100);
        T=phi(i);
        I=simplify(lead(std(T)),1);
        attrib(I,"isSB",1);
        K=select(I,n+1);
        if (size(K) == 0)
        {
          h=0;break;
        }
        if (TestLastVarIsInGenericPos(I) == 1 )
        {
          h=maxdeg1(K);break;
        }
      }
      i=T;
    }
  }
  for ( ii = n; ii>=n-d+1; ii-- )
  {
    i=subst(i,x(ii),0);
    s = "ring mr = ",charstr(r1),",x(0..ii-1),dp;";
    execute(s);
    ideal i,sbi,I,J,K,L,T;
    poly P;
    map phi;
    i=imap(r2,i);
    I=simplify(lead(std(i)),1);
    attrib(I,"isSB",1);
    K=select(I,ii);
    if (size(K) == 0)
    {
      H=0;
    }
    else
    {
      if (TestLastVarIsInGenericPos(I) == 1)
      {
        H=maxdeg1(K);
      }
      else
      {
        while ( nl < 30 )
        {
          nl=nl+1;
          phi=mr,randomLast(100);
          T=phi(i);
          I=simplify(lead(std(T)),1);
          attrib(I,"isSB",1);
          K=select(I,ii);
          if (size(K) == 0)
          {
            H=0;break;
          }
          if (TestLastVarIsInGenericPos(I) == 1 )
          {
            H=maxdeg1(K);break;
          }
        }
        setring r2;
        i=imap(mr,T);
        kill mr;
      }
    }
    if (H > h)
    {
      h=H;
    }
  }
  if (nl < 30)
  {
    dbprint(2,"reg(i)=" + string(h) + " and the time of this computation: " + string(rtimer-time) + " sec./100");
    return();
  }
  else
  {
    I=Ic;
    attrib(I,"isSB",1);
    i=ic;
    K=subst(select(I,n+1),x(n),1);
    K=K*maxideal(maxdeg1(I));
    if (size(reduce(K,I)) <> 0)
    {
      nl=0;
      while ( nl < 30 )
      {
        nl=nl+1;
        phi=r1,randomLast(100);
        sbi=phi(i);
        I=simplify(lead(std(sbi)),1);
        attrib(I,"isSB",1);
        K=subst(select(I,n+1),x(n),1);
        K=K*maxideal(maxdeg1(I));
        if (size(reduce(K,I)) == 0)
        {
          break;
        }
      }
    }
    h=maxdeg1(simplify(reduce(quotient(I,maxideal(1)),I),2))+1;
    for ( ii = n; ii> n-d+1; ii-- )
    {
      sbi=subst(sbi,x(ii),0);
      s = "ring mr = ",charstr(r0),",x(0..ii-1),dp;";
      execute(s);
      ideal sbi,I,L,K,T;
      map phi;
      sbi=imap(r1,sbi);
      I=simplify(lead(std(sbi)),1);
      attrib(I,"isSB",1);
      K=subst(select(I,ii),x(ii-1),1);
      K=K*maxideal(maxdeg1(I));
      if (size(reduce(K,I)) <> 0)
      {
        nl=0;
        while ( nl < 30 )
        {
          nl=nl+1;
          L=randomLast(100);
          phi=mr,L;
          T=phi(sbi);
          I=simplify(lead(std(T)),1);
          attrib(I,"isSB",1);
          K=subst(select(I,ii),x(ii-1),1);
          K=K*maxideal(maxdeg1(I));
          if (size(reduce(K,I)) == 0)
          {
            sbi=T;
            break;
          }
        }
      }
      H=maxdeg1(simplify(reduce(quotient(I,maxideal(1)),I),2))+1;
      if (H > h)
      {
        h=H;
      }
      setring r1;
      sbi=fetch(mr,sbi);
      kill mr;
    }
    sbi=subst(sbi,x(n-d+1),0);
    s = "ring mr = ",charstr(r0),",x(0..n-d),dp;";
    execute(s);
    ideal sbi,I,L,K,T;
    map phi;
    sbi=imap(r1,sbi);
    I=simplify(lead(std(sbi)),1);
    attrib(I,"isSB",1);
    H=maxdeg1(simplify(reduce(quotient(I,maxideal(1)),I),2))+1;
    if (H > h)
    {
      h=H;
    }
    dbprint(2,"reg(i)=" + string(h) + " and the time of this computation: " + string(rtimer-time) + " sec./100");
    return();
  }
}

//////////////////////////////////////////////////////////////////////////////
//
proc modregCM(ideal i)
"USAGE:  modregCM(i); i ideal
RETURN:  an integer, the Castelnuovo-Mumford regularity of i.
         (returns -1 if i is not homogeneous)
ASSUME:  i is a homogeneous ideal and the characteristic of base field is zero..
NOTE:    This is a probabilistic procedure, and it computes the initial of the ideal modulo the prime number 2147483647 (the biggest prime less than 2^31).
"
{
//--------------------------- initialisation ---------------------------------
  "// WARNING: The characteristic of base field must be zero.
// This procedure is probabilistic and  it computes the initial
//ideals modulo the prime number 2147483647";
  int e,ii,jj,H,h,d,time,p,nl;
  def r0 = basering;
  int n = nvars(r0)-1;
  string s = "ring r1 = ",charstr(r0),",x(0..n),dp;";
  execute(s);
  ideal i,sbi,I,J,K,L,lsbi1,lsbi2;
  list #;
  poly P;
  map phi;
  i = fetch(r0,i);
  time=rtimer;
  system("--ticks-per-sec",100);
//----- Check ideal homogeneous
  if ( homog(i) == 0 )
  {
    "// The ideal is not homogeneous!";
    return (-1);
  }
  option(redSB);
  p=2147483647;
  #=ringlist(r1);
  #[1]=p;
  def oro=ring(#);
  setring oro;
  ideal sbi,lsbi;
  sbi=fetch(r1,i);
  lsbi=lead(std(sbi));
  setring r1;
  lsbi1=fetch(oro,lsbi);
  lsbi1=simplify(lsbi1,1);
  attrib(lsbi1,"isSB",1);
  kill oro;
  I=lsbi1;
  d=dim(I);
  K=select(I,n+1);
  if (size(K) == 0)
  {
    h=0;
  }
  else
  {
    if (TestLastVarIsInGenericPos(I) == 1)
    {
      h=maxdeg1(K);
    }
    else
    {
      while ( nl < 30 )
      {
        nl=nl+1;
        phi=r1,randomLast(100);
        sbi=phi(i);
        #=ringlist(r1);
        #[1]=p;
        def oro=ring(#);
        setring oro;
        ideal sbi,lsbi;
        sbi=fetch(r1,sbi);
        lsbi=lead(std(sbi));
        setring r1;
        lsbi1=fetch(oro,lsbi);
        lsbi1=simplify(lsbi1,1);
        attrib(lsbi1,"isSB",1);
        kill oro;
        I=lsbi1;
        K=select(I,n+1);
        if (size(K) == 0)
        {
          h=0;break;
        }
        if (TestLastVarIsInGenericPos(I) == 1 )
        {
          h=maxdeg1(K);break;
        }
      }
      i=sbi;
    }
  }
  for ( ii = n; ii>=n-d+1; ii-- )
  {
    i=subst(i,x(ii),0);
    s = "ring mr = ","0",",x(0..ii-1),dp;";
    execute(s);
    ideal i,sbi,I,J,K,L,lsbi1;
    poly P;
    list #;
    map phi;
    i=imap(r1,i);
    #=ringlist(mr);
    #[1]=p;
    def oro=ring(#);
    setring oro;
    ideal sbi,lsbi;
    sbi=fetch(mr,i);
    lsbi=lead(std(sbi));
    setring mr;
    lsbi1=fetch(oro,lsbi);
    lsbi1=simplify(lsbi1,1);
    attrib(lsbi1,"isSB",1);
    kill oro;
    I=lsbi1;
    K=select(I,ii);
    if (size(K) == 0)
    {
      H=0;
    }
    else
    {
      if (TestLastVarIsInGenericPos(I) == 1)
      {
        H=maxdeg1(K);
      }
      else
      {
        nl=0;
        while ( nl < 30 )
        {
          nl=nl+1;
          phi=mr,randomLast(100);
          sbi=phi(i);
          #=ringlist(mr);
          #[1]=p;
          def oro=ring(#);
          setring oro;
          ideal sbi,lsbi;
          sbi=fetch(mr,sbi);
          lsbi=lead(std(sbi));
          setring mr;
          lsbi1=fetch(oro,lsbi);
          lsbi1=simplify(lsbi1,1);
          kill oro;
          I=lsbi1;
          attrib(I,"isSB",1);
          K=select(I,ii);
          if (size(K) == 0)
          {
            H=0;break;
          }
          if (TestLastVarIsInGenericPos(I) == 1 )
          {
            H=maxdeg1(K);break;
          }
        }
        setring r1;
        i=imap(mr,sbi);
        kill mr;
      }
    }
    if (H > h)
    {
      h=H;
    }
  }
  dbprint(2,"mreg(i)=" + string(h) + " and the time of this computation: " + string(rtimer-time) + "sec./100");
  return();
}
/*
//////////////////////////////////////////////////////////////
example
{ "EXAMPLE:"; echo = 2;
ring r=0,(X,Y,a,b),dp;
poly f=X^8+a*Y^4-Y;
poly g=Y^8+b*X^4-X;
poly h=diff(f,X)*diff(g,Y)-diff(f,Y)*diff(g,X);
ideal i=f,g,h;
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0,(x,y,z,a,b),dp;
ideal i=2*y^2*(y^2+x^2)+(b^2-3*a^2)*y^2-2*b*y^2*(x+y)+2*a^2*b*(y+x)-a^2*x^2+a^2*(a^2-b^2),4*y^3+4*y*(y^2+x^2)-2*b*y^2-4*b*y*(y+x)+2*(b^2-3*a^2)*y+2*a^2*b,4*x*y^2-2*b*y^2-2*a^2*x+2*a^2*b;
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0,(t,a,b,c,d),dp;
ideal i=b4-a3d, ab3-a3c, bc4-ac3d-bcd3+ad4, c6-bc3d2-c3d3+bd5, ac5-b2c3d-ac2d3+b2d4, a2c4-a3d3+b3d3-a2cd3, b3c3-a3d3, ab2c3-a3cd2+b3cd2-ab2d3, a2bc3-a3c2d+b3c2d-a2bd3, a3c3-a3bd2, a4c2-a3b2d;
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0,(a,b,c,d,e),dp;
ideal i=6*b4*c3+21*b4*c2*d+15b4cd2+9b4d3-8b2c2e-28b2cde+36b2d2e-144b2c-648b2d-120, 9b4c4+30b4c3d+39b4c2d2+18b4cd3-24b2c3e-16b2c2de+16b2cd2e+24b2d3e-432b2c2-720b2cd-432b2d2+16c2e2-32cde2+16d2e2+576ce-576de-240c+5184,-15b2c3e+15b2c2de-81b2c2+216b2cd-162b2d2+40c2e2-80cde2+40d2e2+1008ce-1008de+5184, -4b2c2+4b2cd-3b2d2+22ce-22de+261;
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0,(c,b,d,p,q),dp;
ideal i=2*(b-1)^2+2*(q-p*q+p^2)+c^2*(q-1)^2-2*b*q+2*c*d*(1-q)*(q-p)+2*b*p*q*d*(d-c)+b^2*d^2*(1-2*p)+2*b*d^2*(p-q)+2*b*d*c*(p-1)+2*b*p*q*(c+1)+(b^2-2*b)*p^2*d^2+2*b^2*p^2+4*b*(1-b)*p+d^2*(p-q)^2,d*(2*p+1)*(q-p)+c*(p+2)*(1-q)+b*(b-2)*d+b*(1-2*b)*p*d+b*c*(q+p-p*q-1)+b*(b+1)*p^2*d, -b^2*(p-1)^2+2*p*(p-q)-2*(q-1),b^2+4*(p-q*q)+3*c^2*(q-1)*(q-1)-3*d^2*(p-q)^2+3*b^2*d^2*(p-1)^2+b^2*p*(p-2)+6*b*d*c*(p+q+q*p-1);
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0,(a,b,c,d,e,f),dp;
ideal i=2adef+3be2f-cef2,4ad2f+5bdef+cdf2,2abdf+3b2ef-bcf2,4a2df+5abef+acf2,4ad2e+3bde2+7cdef, 2acde+3bce2-c2ef, 4abde+3b2e2-4acdf+2bcef-c2f2, 4a2de+3abe2+7acef, 4acd2+5bcde+c2df, 4abd2+3b2de+7bcdf, 16a2d2-9b2e2+32acdf-18bcef+7c2f2, 2abcd+3b2ce-bc2f, 4a2cd+5abce+ac2f, 4a2bd+3ab2e+7abcf, abc2f-cdef2, ab2cf-bdef2, 2a2bcf+3be2f2-cef3, ab3f-3bdf3, 2a2b2f-4adf3+3bef3-cf4, a3bf+4aef3, 3ac3e-cde3, 3b2c2e-bc3f+2cd2ef, abc2e-cde2f, 6a2c2e-4ade3-3be4+ce3f, 3b3ce-b2c2f+2bd2ef, 2a2bce+3be3f-ce2f2, 3a3ce+4ae3f, 4bc3d+cd3e, 4ac3d-3bc3e-2cd2e2+c4f, 8b2c2d-4ad4-3bd3e-cd3f, 4b3cd+3bd3f, 4ab3d+3b4e-b3cf-6bd2f2, 4a4d+3a3be+a3cf-8ae2f2;
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0,(x,y,z,t,u,v,w),dp;
ideal i=2tw+2wy-wz,2uw2-10vw2+20w3-7tu+35tv-70tw, 6tw2+2w2y-2w2z-21t2-7ty+7tz, 2v3-4uvw-5v2w+6uw2+7vw2-15w3-42vy, 6tw+9wy+2vz-3wz-21x, 9uw3-45vw3+135w4+14tv2-70tuw+196tvw-602tw2-14v2z+28uwz+14vwz-28w2z+147ux-735vx+2205wx-294ty+98tz+294yz-98z2, 36tw3+6w3y-9w3z-168t2w-14v2x+28uwx+14vwx-28w2x-28twy+42twz+588tx+392xy-245xz, 2uvw-6v2w-uw2+13vw2-5w3-28tw+14wy, u2w-3uvw+5uw2-28tw+14wy, tuw+tvw-11tw2-2vwy+8w2y+uwz-3vwz+5w2z-21wx, 5tuw-17tvw+33tw2-7uwy+22vwy-39w2y-2uwz+6vwz-10w2z+63wx, 20t2w-12uwx+30vwx-15w2x-10twy-8twz+4wyz, 4t2w-6uwx+12vwx-6w2x+2twy-2wy2-2twz+wyz, 8twx+8wxy-4wxz;
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0,(a,b,c,d,x,w,u,v),dp;
ideal i=a+b+c+d,u+v+w+x, 3ab+3ac+3bc+3ad+3bd+3cd+2,bu+cu+du+av+cv+dv+aw+bw+dw+ax+bx+cx,bcu+bdu+cdu+acv+adv+cdv+abw+adw+bdw+abx+acx+bcx,abc+abd+acd+bcd,bcdu+acdv+abdw+abcx;
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0,(b,x,y,z,s,t,u,v,w),dp;
ideal i=su+bv, tu+bw,tv+sw,sx+by,tx+bz,ty+sz,vx+uy,wx+uz,wy+vz;
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0,(t,a,b,c,d,e,f,g,h),dp;
ideal i=a+c+d-e-h,2df+2cg+2eh-2h2-h-1,3df2+3cg2-3eh2+3h3+3h2-e+4h, 6bdg-6eh2+6h3-3eh+6h2-e+4h, 4df3+4cg3+4eh3-4h4-6h3+4eh-10h2-h-1, 8bdfg+8eh3-8h4+4eh2-12h3+4eh-14h2-3h-1, 12bdg2+12eh3-12h4+12eh2-18h3+8eh-14h2-h-1, -24eh3+24h4-24eh2+36h3-8eh+26h2+7h+1;
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0,(a,b,c,d,e,f,g,h,k,l),dp;
ideal i=f2h-1,ek2-1,g2l-1, 2ef2g2hk2+f2g2h2k2+2ef2g2k2l+2f2g2hk2l+f2g2k2l2+ck2, 2e2fg2hk2+2efg2h2k2+2e2fg2k2l+4efg2hk2l+2fg2h2k2l+2efg2k2l2+2fg2hk2l2+2bfh, 2e2f2ghk2+2ef2gh2k2+2e2f2gk2l+4ef2ghk2l+2f2gh2k2l+2ef2gk2l2+2f2ghk2l2+2dgl, e2f2g2k2+2ef2g2hk2+2ef2g2k2l+2f2g2hk2l+f2g2k2l2+bf2, 2e2f2g2hk+2ef2g2h2k+2e2f2g2kl+4ef2g2hkl+2f2g2h2kl+2ef2g2kl2+2f2g2hkl2+2cek, e2f2g2k2+2ef2g2hk2+f2g2h2k2+2ef2g2k2l+2f2g2hk2l+dg2, -e2f2g2hk2-ef2g2h2k2-e2f2g2k2l-2ef2g2hk2l-f2g2h2k2l-ef2g2k2l2-f2g2hk2l2+a2;
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0,(b,c,d,e,f,g,h,j,k,l),dp;
ideal i=-k9+9k8l-36k7l2+84k6l3-126k5l4+126k4l5-84k3l6+36k2l7-9kl8+l9, -bk8+8bk7l+k8l-28bk6l2-8k7l2+56bk5l3+28k6l3-70bk4l4-56k5l4+56bk3l5+70k4l5-28bk2l6-56k3l6+8bkl7+28k2l7-bl8-8kl8+l9, ck7-7ck6l-k7l+21ck5l2+7k6l2-35ck4l3-21k5l3+35ck3l4+35k4l4-21ck2l5-35k3l5+7ckl6+21k2l6-cl7-7kl7+l8, -dk6+6dk5l+k6l-15dk4l2-6k5l2+20dk3l3+15k4l3-15dk2l4-20k3l4+6dkl5+15k2l5-dl6-6kl6+l7, ek5-5ek4l-k5l+10ek3l2+5k4l2-10ek2l3-10k3l3+5ekl4+10k2l4-el5-5kl5+l6, -fk4+4fk3l+k4l-6fk2l2-4k3l2+4fkl3+6k2l3-fl4-4kl4+l5, gk3-3gk2l-k3l+3gkl2+3k2l2-gl3-3kl3+l4, -hk2+2hkl+k2l-hl2-2kl2+l3, jk-jl-kl+l2;
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0,x(0..10),dp;
ideal i=x(1)*x(0),x(1)*x(2),x(2)*x(3),x(3)*x(4),x(4)*x(5),x(5)*x(6),x(6)*x(7),x(7)*x(8),x(8)*x(9),x(9)*x(10),x(10)*x(0);
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0,(a,b,c,d,e,f,g,h,j,k,l,m,n,o,p,q,s),dp;
ideal i=ag,gj+am+np+q,bl,nq,bg+bk+al+lo+lp+b+c,ag+ak+jl+bm+bn+go+ko+gp+kp+lq+a+d+f+h+o+p,gj+jk+am+an+mo+no+mp+np+gq+kq+e+j+q+s-1,jm+jn+mq+nq,jn+mq+2nq,gj+am+2an+no+np+2gq+kq+q+s,2ag+ak+bn+go+gp+lq+a+d,bg+al, an+gq, 2jm+jn+mq, gj+jk+am+mo+2mp+np+e+2j+q, jl+bm+gp+kp+a+f+o+2p,lp+b,jn+mq,gp+a;
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0,(a,b,c,d,e,f,g,h,v,w,k,l,m,n,o,p,q,s,t,u),dp;
ideal i=af+bg+ch+dv+ew-1/2, a2f+b2g+c2h+d2v+e2w-1/3,tdw+agk+ahl+bhm+avn+bvo+cvp+awq+bwu+cws-1/6, a3f+b3g+c3h+d3v+e3w-1/4, tdew+abgk+achl+bchm+advn+bdvo+cdvp+aewq+bewu+cews-1/8, td2w+a2gk+a2hl+b2hm+a2vn+b2vo+c2vp+a2wq+b2wu+c2ws-1/12, ahkm+tawn+tbwo+avko+tcwp+avlp+bvmp+awku+awls+bwms-1/24, a4f+b4g+c4h+d4v+e4w-1/5, tde2w+ab2gk+ac2hl+bc2hm+ad2vn+bd2vo+cd2vp+ae2wq+be2wu+ce2ws-1/10, td2ew+a2bgk+a2chl+b2chm+a2dvn+b2dvo+c2dvp+a2ewq+b2ewu+c2ews-1/15,achkm+taewn+tbewo+advko+tcewp+advlp+bdvmp+aewku+aewls+bewms-1/30,t2d2w+a2gk2+a2hl2+2abhlm+b2hm2+a2vn2+2abvno+b2vo2+2acvnp+2bcvop+c2vp2+2tadwq+a2wq2+2tbdwu+2abwqu+b2wu2+2tcdws+2acwqs+2bcwus+c2ws2-1/20,td3w+a3gk+a3hl+b3hm+a3vn+b3vo+c3vp+a3wq+b3wu+c3ws-1/20,abhkm+tadwn+tbdwo+abvko+tcdwp+acvlp+bcvmp+abwku+acwls+bcwms-1/40,a2hkm+ta2wn+tb2wo+a2vko+tc2wp+a2vlp+b2vmp+a2wku+a2wls+b2wms-1/60,tawko+tawlp+tbwmp+avkmp+awkms-1/20;
}
*/