/usr/share/singular/LIB/polymake.lib is in singular-data 4.0.3+ds-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 | version="version polymake.lib 4.0.0.0 Jun_2013 ";
category="Tropical Geometry";
info="
LIBRARY: polymake.lib Computations with polytopes and fans,
interface to polymake and TOPCOM
AUTHOR: Thomas Markwig, email: keilen@mathematik.uni-kl.de
WARNING:
Most procedures will not work unless polymake or topcom is installed and
if so, they will only work with the operating system LINUX!
For more detailed information see IMPORTANT NOTE respectively consult the
help string of the procedures.
The conventions used in this library for polytopes and fans, e.g. the
length and labeling of their vertices resp. rays, differs from the conventions
used in polymake and thus from the conventions used in the polymake
extension polymake.so of Singular. We recommend to use the newer polymake.so
whenever possible.
IMPORTANT NOTE:
Even though this is a Singular library for computing polytopes and fans
such as the Newton polytope or the Groebner fan of a polynomial, most of
the hard computations are NOT done by Singular but by the program
@* - polymake by Ewgenij Gawrilow, TU Berlin and Michael Joswig, TU Darmstadt
@* (see http://www.math.tu-berlin.de/polymake/),
@* respectively (only in the procedure triangulations) by the program
@* - topcom by Joerg Rambau, Universitaet Bayreuth (see
@* http://www.uni-bayreuth.de/departments/wirtschaftsmathematik/rambau/TOPCOM);
@* this library should rather be seen as an interface which allows to use a
(very limited) number of options which polymake respectively topcom offers
to compute with polytopes and fans and to make the results available in
Singular for further computations;
moreover, the user familiar with Singular does not have to learn the syntax
of polymake or topcom, if the options offered here are sufficient for his
purposes.
@* Note, though, that the procedures concerned with planar polygons are
independent of both, polymake and topcom.
PROCEDURES USING POLYMAKE:
polymakePolytope() computes the vertices of a polytope using polymake
newtonPolytopeP() computes the Newton polytope of a polynomial
newtonPolytopeLP() computes the lattice points of the Newton polytope
normalFanL() computes the normal fan of a polytope
groebnerFanP() computes the Groebner fan of a polynomial
PROCEDURES USING TOPCOM:
triangulations() computes all triangulations of a marked polytope
secondaryPolytope() computes the secondary polytope of a marked polytope
PROCEDURES USING POLYMAKE AND TOPCOM:
secondaryFan() computes the secondary fan of a marked polytope
PROCEDURES CONERNED WITH PLANAR POLYGONS:
cycleLength() computes the cycleLength of cycle
splitPolygon() splits a marked polygon into vertices, facets, interior points
eta() computes the eta-vector of a triangulation
findOrientedBoundary() computes the boundary of a convex hull
cyclePoints() computes lattice points connected to some lattice point
latticeArea() computes the lattice area of a polygon
picksFormula() computes the ingrediants of Pick's formula for a polygon
ellipticNF() computes the normal form of an elliptic polygon
ellipticNFDB() displays the 16 normal forms of elliptic polygons
KEYWORDS: polytope; fan; secondary fan; secondary polytope; polymake;
Newton polytope; Groebner fan
";
////////////////////////////////////////////////////////////////////////////////
/// Auxilary Static Procedures in this Library
////////////////////////////////////////////////////////////////////////////////
/// - scalarproduct
/// - intmatcoldelete
/// - intmatconcat
/// - sortlist
/// - minInList
/// - stringdelete
/// - abs
/// - commondenominator
/// - maxPosInIntvec
/// - maxPosInIntmat
/// - sortintvec
/// - matrixtointmat
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
LIB "poly.lib";
LIB "linalg.lib";
LIB "random.lib";
////////////////////////////////////////////////////////////////////////////////
static proc mod_init ()
{
LIB "gfanlib.so";
LIB "polymake.so";
}
/////////////////////////////////////////////////////////////////////////////
/// PROCEDURES USING POLYMAKE
/////////////////////////////////////////////////////////////////////////////
proc polymakePolytope (intmat points)
"USAGE: polymakePolytope(points); polytope intmat
ASSUME: each row of points gives the coordinates of a lattice point of a
polytope with their affine coordinates as given by the output of
secondaryPolytope
PURPOSE: the procedure calls polymake to compute the vertices of the polytope
as well as its dimension and information on its facets
RETURN: list, L with four entries
@* L[1] : an integer matrix whose rows are the coordinates of vertices
of the polytope
@* L[2] : the dimension of the polytope
@* L[3] : a list whose ith entry explains to which vertices the
ith vertex of the Newton polytope is connected
-- i.e. L[3][i] is an integer vector and an entry k in
there means that the vertex L[1][i] is connected to the
vertex L[1][k]
@* L[4] : an matrix of type bigintmat whose rows mulitplied by
(1,var(1),...,var(nvar)) give a linear system of equations
describing the affine hull of the polytope,
i.e. the smallest affine space containing the polytope
NOTE: - for its computations the procedure calls the program polymake by
Ewgenij Gawrilow, TU Berlin and Michael Joswig, TU Darmstadt;
it therefore is necessary that this program is installed in order
to use this procedure;
see http://www.math.tu-berlin.de/polymake/
@* - note that in the vertex edge graph we have changed the polymake
convention which starts indexing its vertices by zero while we start
with one !
EXAMPLE: example polymakePolytope; shows an example"
{
// add a first column to polytope as homogenising coordinate
points=intmatAddFirstColumn(points,"points");
polytope polytop=polytopeViaPoints(points);
list graph=vertexAdjacencyGraph(polytop)[2];
int i,j;
for (i=1;i<=size(graph);i++)
{
for (j=1;j<=size(graph[i]);j++)
{
graph[i][j]=graph[i][j]+1;
}
}
return(list(intmatcoldelete(vertices(polytop),1),dimension(polytop),graph,equations(polytop)));
}
example
{
"EXAMPLE:";
echo=2;
// the lattice points of the unit square in the plane
list points=intvec(0,0),intvec(0,1),intvec(1,0),intvec(1,1);
// the secondary polytope of this lattice point configuration is computed
intmat secpoly=secondaryPolytope(points)[1];
list np=polymakePolytope(secpoly);
// the vertices of the secondary polytope are:
np[1];
// its dimension is
np[2];
// np[3] contains information how the vertices are connected to each other,
// e.g. the first vertex (number 0) is connected to the second one
np[3][1];
// the affine hull has the equation
ring r=0,x(1..4),dp;
matrix M[5][1]=1,x(1),x(2),x(3),x(4);
intmat(np[4])*M;
}
/////////////////////////////////////////////////////////////////////////////
proc newtonPolytopeP (poly f)
"USAGE: newtonPolytopeP(f); f poly
RETURN: list, L with four entries
@* L[1] : an integer matrix whose rows are the coordinates of vertices
of the Newton polytope of f
@* L[2] : the dimension of the Newton polytope of f
@* L[3] : a list whose ith entry explains to which vertices the
ith vertex of the Newton polytope is connected
-- i.e. L[3][i] is an integer vector and an entry k in
there means that the vertex L[1][i] is
connected to the vertex L[1][k]
@* L[4] : an matrix of type bigintmat whose rows mulitplied by
(1,var(1),...,var(nvar)) give a linear system of equations
describing the affine hull of the Newton polytope, i.e. the
smallest affine space containing the Newton polytope
NOTE: - if we replace the first column of L[4] by zeros, i.e. if we move
the affine hull to the origin, then we get the equations for the
orthogonal complement of the linearity space of the normal fan dual
to the Newton polytope, i.e. we get the EQUATIONS that
we need as input for polymake when computing the normal fan
@* - the procedure calls for its computation polymake by Ewgenij Gawrilow,
TU Berlin and Michael Joswig, so it only works if polymake is installed;
see http://www.math.tu-berlin.de/polymake/
EXAMPLE: example newtonPolytopeP; shows an example"
{
int i,j;
// compute the list of exponent vectors of the polynomial,
// which are the lattice points
// whose convex hull is the Newton polytope of f
intmat exponents[size(f)][nvars(basering)];
while (f!=0)
{
i++;
exponents[i,1..nvars(basering)]=leadexp(f);
f=f-lead(f);
}
// call polymakePolytope with exponents
return(polymakePolytope(exponents));
}
example
{
"EXAMPLE:";
echo=2;
ring r=0,(x,y,z),dp;
matrix M[4][1]=1,x,y,z;
poly f=y3+x2+xy+2xz+yz+z2+1;
// the Newton polytope of f is
list np=newtonPolytopeP(f);
// the vertices of the Newton polytope are:
np[1];
// its dimension is
np[2];
// np[3] contains information how the vertices are connected to each other,
// e.g. the first vertex (number 0) is connected to the second, third and
// fourth vertex
np[3][1];
//////////////////////////
f=x2-y3;
// the Newton polytope of f is
np=newtonPolytopeP(f);
// the vertices of the Newton polytope are:
np[1];
// its dimension is
np[2];
// the Newton polytope is contained in the affine space given
// by the equations
intmat(np[4])*M;
}
/////////////////////////////////////////////////////////////////////////////
proc newtonPolytopeLP (poly f)
"USAGE: newtonPolytopeLP(f); f poly
RETURN: list, the exponent vectors of the monomials occuring in f,
i.e. the lattice points of the Newton polytope of f
EXAMPLE: example newtonPolytopeLP; shows an example"
{
list np;
int i=1;
while (f!=0)
{
np[i]=leadexp(f);
f=f-lead(f);
i++;
}
return(np);
}
example
{
"EXAMPLE:";
echo=2;
ring r=0,(x,y,z),dp;
poly f=y3+x2+xy+2xz+yz+z2+1;
// the lattice points of the Newton polytope of f are
newtonPolytopeLP(f);
}
/////////////////////////////////////////////////////////////////////////////
proc normalFanL (def vertices, def affinehull,list graph,int er,list #)
"USAGE: normalFanL (vert,aff,graph,rays,[,#]); vert,aff intmat, graph list, rays int, # string
ASSUME: - vert is an integer matrix whose rows are the coordinate of
the vertices of a convex lattice polytope;
@* - aff describes the affine hull of this polytope, i.e.
the smallest affine space containing it, in the following sense:
denote by n the number of columns of vert, then multiply aff by
(1,x(1),...,x(n)) and set the resulting terms to zero in order to
get the equations for the affine hull;
@* - the ith entry of graph is an integer vector describing to which
vertices the ith vertex is connected, i.e. a k as entry means that
the vertex vert[i] is connected to vert[k];
@* - the integer rays is either one (if the extreme rays should be
computed) or zero (otherwise)
RETURN: list, the ith entry of L[1] contains information about the cone in the
normal fan dual to the ith vertex of the polytope
@* L[1][i][1] = integer matrix representing the inequalities which
describe the cone dual to the ith vertex
@* L[1][i][2] = a list which contains the inequalities represented
by L[i][1] as a list of strings, where we use the
variables x(1),...,x(n)
@* L[1][i][3] = only present if 'er' is set to 1; in that case it is
an interger matrix whose rows are the extreme rays
of the cone
@* L[2] = is an integer matrix whose rows span the linearity space
of the fan, i.e. the linear space which is contained in
each cone
NOTE: - the procedure calls for its computation polymake by Ewgenij Gawrilow,
TU Berlin and Michael Joswig, so it only works if polymake is
installed;
see http://www.math.tu-berlin.de/polymake/
@* - in the optional argument # it is possible to hand over other names
for the variables to be used -- be careful, the format must be correct
and that is not tested, e.g. if you want the variable names to be
u00,u10,u01,u11 then you must hand over the string u11,u10,u01,u11
EXAMPLE: example normalFanL; shows an example"
{
if (typeof(affinehull) != "intmat" && typeof (affinehull) != "bigintmat")
{
ERROR("normalFanL: input affinehull has to be either intmat or bigintmat");
list L;
return (L);
}
list ineq; // stores the inequalities of the cones
int i,j,k;
// we work over the following ring
execute("ring ineqring=0,x(1.."+string(ncols(vertices))+"),lp;");
string greatersign=">";
// create the variable names
if (size(#)>0)
{
if (typeof(#[1])=="string")
{
kill ineqring;
execute("ring ineqring=0,("+#[1]+"),lp;");
}
if (size(#)>1)
{
greatersign="<";
}
}
//////////////////////////////////////////////////////////////////
// Compute first the inequalities of the cones
//////////////////////////////////////////////////////////////////
matrix VAR[1][ncols(vertices)]=maxideal(1);
matrix EXP[ncols(vertices)][1];
poly p,pl,pr;
// consider all vertices of the polytope
for (i=1;i<=nrows(vertices);i++)
{
// first we produce for each vertex in the polytope
// the inequalities describing the dual cone in the normal fan
list pp; // contain strings representing the inequalities
// describing the normal cone
if (typeof (vertices) == "intmat")
{
intmat ie[size(graph[i])][ncols(vertices)]; // contains the inequalities
} // as rows
if (typeof (vertices) == "bigintmat")
{
bigintmat ie[size(graph[i])][ncols(vertices)]; // contains the inequalities
} // as rows
// consider all the vertices to which the ith vertex in the
// polytope is connected by an edge
for (j=1;j<=size(graph[i]);j++)
{
// produce the vector ie_j pointing from the jth vertex to the ith vertex;
// this will be the jth inequality for the cone in the normal fan dual to
// the ith vertex
ie[j,1..ncols(vertices)]=vertices[i,1..ncols(vertices)]-vertices[graph[i][j],1..ncols(vertices)];
EXP=ie[j,1..ncols(vertices)];
// build a linear polynomial with the entries of ie_j as coefficients
p=(VAR*EXP)[1,1];
pl,pr=0,0;
// separate the terms with positive coefficients in p from
// those with negative coefficients
for (k=1;k<=size(p);k++)
{
if (leadcoef(p[k])<0)
{
pr=pr-p[k];
}
else
{
pl=pl+p[k];
}
}
// build the string which represents the jth inequality
// for the cone dual to the ith vertex
// as polynomial inequality of type string, and store this
// in the list pp as jth entry
pp[j]=string(pl)+" "+greatersign+" "+string(pr);
}
// all inequalities for the ith vertex are stored in the list ineq
ineq[i]=list(ie,pp);
kill ie,pp; // kill certain lists
}
// remove the first column of affine hull to compute the linearity space
bigintmat linearity[1][ncols(vertices)];
if (nrows(affinehull)>0)
{
linearity=intmatcoldelete(affinehull,1);
}
//////////////////////////////////////////////////////////////////
// Compute next the extreme rays of the cones
//////////////////////////////////////////////////////////////////
if (er==1)
{
list extremerays; // keeps the result
cone kegel;
bigintmat linearspan=intmatAddFirstColumn(linearity,"rays");
intmat M; // the matrix keeping the inequalities
for (i=1;i<=size(ineq);i++)
{
kegel=coneViaInequalities(intmatAddFirstColumn(ineq[i][1],"rays"),linearspan);
extremerays[i]=intmatcoldelete(rays(kegel),1);
}
for (i=1;i<=size(ineq);i++)
{
ineq[i]=ineq[i]+list(extremerays[i]);
}
}
// get the linearity space
return(list(ineq,linearity));
}
example
{
"EXAMPLE:";
echo=2;
ring r=0,(x,y,z),dp;
matrix M[4][1]=1,x,y,z;
poly f=y3+x2+xy+2xz+yz+z2+1;
// the Newton polytope of f is
list np=newtonPolytopeP(f);
// the Groebner fan of f, i.e. the normal fan of the Newton polytope
list gf=normalFanL(np[1],np[4],np[3],1,"x,y,z");
// the number of cones in the Groebner fan of f is:
size(gf[1]);
// the inequalities of the first cone as matrix are:
print(gf[1][1][1]);
// the inequalities of the first cone as string are:
print(gf[1][1][2]);
// the rows of the following matrix are the extreme rays of the first cone:
print(gf[1][1][3]);
// each cone contains the linearity space spanned by:
print(gf[2]);
}
/////////////////////////////////////////////////////////////////////////////
proc groebnerFanP (poly f)
"USAGE: groebnerFanP(f); f poly
RETURN: list, the ith entry of L[1] contains information about the ith cone
in the Groebner fan dual to the ith vertex in the Newton
polytope of the f
@* L[1][i][1] = integer matrix representing the inequalities
which describe the cone
@* L[1][i][2] = a list which contains the inequalities represented
by L[1][i][1] as a list of strings
@* L[1][i][3] = an interger matrix whose rows are the extreme rays
of the cone
@* L[2] = is an integer matrix whose rows span the linearity space
of the fan, i.e. the linear space which is contained
in each cone
@* L[3] = the Newton polytope of f in the format of the procedure
newtonPolytopeP
@* L[4] = integer matrix where each row represents the exponent
vector of one monomial occuring in the input polynomial
NOTE: - if you have already computed the Newton polytope of f then you might want
to use the procedure normalFanL instead in order to avoid doing costly
computation twice
@* - the procedure calls for its computation polymake by Ewgenij Gawrilow,
TU Berlin and Michael Joswig, so it only works if polymake is installed;
see http://www.math.tu-berlin.de/polymake/
EXAMPLE: example groebnerFanP; shows an example"
{
int i,j;
// compute the list of exponent vectors of the polynomial, which are
// the lattice points whose convex hull is the Newton polytope of f
intmat exponents[size(f)][nvars(basering)];
while (f!=0)
{
i++;
exponents[i,1..nvars(basering)]=leadexp(f);
f=f-lead(f);
}
// call polymakePolytope with exponents
list newtonp=polymakePolytope(exponents);
// get the variables as string
string variablen;
for (i=1;i<=nvars(basering);i++)
{
variablen=variablen+string(var(i))+",";
}
variablen=variablen[1,size(variablen)-1];
// call normalFanL in order to compute the Groebner fan
list gf=normalFanL(newtonp[1],newtonp[4],newtonp[3],1,variablen);
// append newtonp to gf
gf[3]=newtonp;
// append the exponent vectors to gf
gf[4]=exponents;
return(gf);
}
example
{
"EXAMPLE:";
echo=2;
ring r=0,(x,y,z),dp;
matrix M[4][1]=1,x,y,z;
poly f=y3+x2+xy+2xz+yz+z2+1;
// the Newton polytope of f is
list gf=groebnerFanP(f);
// the exponent vectors of f are ordered as follows
gf[4];
// the first cone of the groebner fan has the inequalities
gf[1][1][1];
// as a string they look like
gf[1][1][2];
// and it has the extreme rays
print(gf[1][1][3]);
// the linearity space is spanned by
print(gf[2]);
// the vertices of the Newton polytope are:
gf[3][1];
// its dimension is
gf[3][2];
// np[3] contains information how the vertices are connected to each other,
// e.g. the 1st vertex is connected to the 2nd, 3rd and 4th vertex
gf[3][3][1];
}
///////////////////////////////////////////////////////////////////////////////
/// PROCEDURES USING TOPCOM
///////////////////////////////////////////////////////////////////////////////
proc triangulations (list polygon,list #)
"USAGE: triangulations(polygon[,#]); list polygon, list #
ASSUME: polygon is a list of integer vectors of the same size representing
the affine coordinates of the lattice points
PURPOSE: the procedure considers the marked polytope given as the convex hull of
the lattice points and with these lattice points as markings; it then
computes all possible triangulations of this marked polytope
RETURN: list, each entry corresponds to one triangulation and the ith entry is
itself a list of integer vectors of size three, where each integer
vector defines one triangle in the triangulation by telling which
points of the input are the vertices of the triangle
NOTE:- the procedure calls for its computations the program points2triangs
from the program topcom by Joerg Rambau, Universitaet Bayreuth; it
therefore is necessary that this program is installed in order to use
this procedure; see
@* http://www.uni-bayreuth.de/departments/wirtschaftsmathematik/rambau/TOPCOM
@* - if you only want to have the regular triangulations the procedure should
be called with the string 'regular' as optional argument
@* - the procedure creates the files /tmp/triangulationsinput and
/tmp/triangulationsoutput;
the former is used as input for points2triangs and the latter is its
output containing the triangulations of corresponding to points in the
format of points2triangs; if you wish to use this for further
computations with topcom, you have to call the procedure with the
string 'keepfiles' as optional argument
@* - note that an integer i in an integer vector representing a triangle
refers to the ith lattice point, i.e. polygon[i]; this convention is
different from TOPCOM's convention, where i would refer to the i-1st
lattice point
EXAMPLE: example triangulations; shows an example"
{
int i,j;
// check for optional arguments
int regular,keepfiles;
if (size(#)>0)
{
for (i=1;i<=size(#);i++)
{
if (typeof(#[i])=="string")
{
if (#[i]=="keepfiles")
{
keepfiles=1;
}
if (#[i]=="regular")
{
regular=1;
}
}
}
}
// prepare the input for points2triangs by writing the input polygon in the
// necessary format
string spi="[";
for (i=1;i<=size(polygon);i++)
{
polygon[i][size(polygon[i])+1]=1;
spi=spi+"["+string(polygon[i])+"]";
if (i<size(polygon))
{
spi=spi+",";
}
}
spi=spi+"]";
write(":w /tmp/triangulationsinput",spi);
// call points2triangs
if (regular==1) // compute only regular triangulations
{
system("sh","cd /tmp; points2triangs --regular < triangulationsinput > triangulationsoutput");
}
else // compute all triangulations
{
system("sh","cd /tmp; points2triangs < triangulationsinput > triangulationsoutput");
}
string p2t=read("/tmp/triangulationsoutput"); // takes result of points2triangs
// delete the tmp-files, if no second argument is given
if (keepfiles==0)
{
system("sh","cd /tmp; rm -f triangulationsinput; rm -f triangulationsoutput");
}
// preprocessing of p2t if points2triangs is version >= 0.15
// brings p2t to the format of version 0.14
string np2t; // takes the triangulations in Singular format
for (i=1;i<=size(p2t)-2;i++)
{
if ((p2t[i]==":") and (p2t[i+1]=="=") and (p2t[i+2]=="["))
{
np2t=np2t+p2t[i]+p2t[i+1];
i=i+3;
while (p2t[i]!=":")
{
i=i+1;
}
}
else
{
if ((p2t[i]=="]") and (p2t[i+1]==";"))
{
np2t=np2t+p2t[i+1];
i=i+1;
}
else
{
np2t=np2t+p2t[i];
}
}
}
if (p2t[size(p2t)-1]=="]")
{
np2t=np2t+p2t[size(p2t)];
}
else
{
if (np2t[size(np2t)]!=";")
{
np2t=np2t+p2t[size(p2t)-1]+p2t[size(p2t)];
}
}
p2t=np2t;
np2t="";
// transform the points2triangs output of version 0.14 into Singular format
for (i=1;i<=size(p2t);i++)
{
if (p2t[i]=="=")
{
np2t=np2t+p2t[i]+"list(";
i++;
}
else
{
if (p2t[i]!=":")
{
if ((p2t[i]=="}") and (p2t[i+1]=="}"))
{
np2t=np2t+"))";
i++;
}
else
{
if (p2t[i]=="{")
{
np2t=np2t+"intvec(";
}
else
{
if (p2t[i]=="}")
{
np2t=np2t+")";
}
else
{
if (p2t[i]=="[")
{
// in Topcom version 17.4 (and maybe also in earlier versions) the list
// of triangulations is indexed starting with index 0, in Singular
// we have to start with index 1
np2t=np2t+p2t[i]+"1+";
}
else
{
np2t=np2t+p2t[i];
}
}
}
}
}
}
}
list T;
execute(np2t);
// depending on the version of Topcom, the list T has or has not an entry T[1]
// if it has none, the entry should be removed
while (typeof(T[1])=="none")
{
T=delete(T,1);
}
// raise each index by one
for (i=1;i<=size(T);i++)
{
for (j=1;j<=size(T[i]);j++)
{
T[i][j]=T[i][j]+1;
}
}
return(T);
}
example
{
"EXAMPLE:";
echo=2;
// the lattice points of the unit square in the plane
list polygon=intvec(0,0),intvec(0,1),intvec(1,0),intvec(1,1);
// the triangulations of this lattice point configuration are computed
list triang=triangulations(polygon);
triang;
}
/////////////////////////////////////////////////////////////////////////////
proc secondaryPolytope (list polygon,list #)
"USAGE: secondaryPolytope(polygon[,#]); list polygon, list #
ASSUME: - polygon is a list of integer vectors of the same size representing
the affine coordinates of lattice points
@* - if the triangulations of the corresponding polygon have already been
computed with the procedure triangulations then these can be given as
a second (optional) argument in order to avoid doing this computation
again
PURPOSE: the procedure considers the marked polytope given as the convex hull of
the lattice points and with these lattice points as markings; it then
computes the lattice points of the secondary polytope given by this
marked polytope which correspond to the triangulations computed by
the procedure triangulations
RETURN: list, say L, such that:
@* L[1] = intmat, each row gives the affine coordinates of a lattice
point in the secondary polytope given by the marked
polytope corresponding to polygon
@* L[2] = the list of corresponding triangulations
NOTE: if the triangluations are not handed over as optional argument the
procedure calls for its computation of these triangulations the program
points2triangs from the program topcom by Joerg Rambau, Universitaet
Bayreuth; it therefore is necessary that this program is installed in
order to use this procedure; see
@* http://www.uni-bayreuth.de/departments/wirtschaftsmathematik/rambau/TOPCOM
EXAMPLE: example secondaryPolytope; shows an example"
{
// compute the triangulations of the point configuration with points2triangs
if (size(#)==0)
{
list triangs=triangulations(polygon);
}
else
{
list triangs=#;
}
int i,j,k,l;
intmat N[2][2]; // is used to compute areas of triangles
intvec vertex; // stores a point in the secondary polytope as
// intermediate result
int eintrag;
int halt;
intmat secpoly[size(triangs)][size(polygon)]; // stores all lattice points
// of the secondary polytope
// consider each triangulation and compute the corresponding point
// in the secondary polytope
for (i=1;i<=size(triangs);i++)
{
// for each triangulation we have to compute the coordinates
// corresponding to each marked point
for (j=1;j<=size(polygon);j++)
{
eintrag=0;
// for each marked point we have to consider all triangles in the
// triangulation which involve this particular point
for (k=1;k<=size(triangs[i]);k++)
{
halt=0;
for (l=1;(l<=3) and (halt==0);l++)
{
if (triangs[i][k][l]==j)
{
halt=1;
N[1,1]=polygon[triangs[i][k][3]][1]-polygon[triangs[i][k][1]][1];
N[1,2]=polygon[triangs[i][k][2]][1]-polygon[triangs[i][k][1]][1];
N[2,1]=polygon[triangs[i][k][3]][2]-polygon[triangs[i][k][1]][2];
N[2,2]=polygon[triangs[i][k][2]][2]-polygon[triangs[i][k][1]][2];
eintrag=eintrag+abs(det(N));
}
}
}
vertex[j]=eintrag;
}
secpoly[i,1..size(polygon)]=vertex;
}
return(list(secpoly,triangs));
}
example
{
"EXAMPLE:";
echo=2;
// the lattice points of the unit square in the plane
list polygon=intvec(0,0),intvec(0,1),intvec(1,0),intvec(1,1);
// the secondary polytope of this lattice point configuration is computed
list secpoly=secondaryPolytope(polygon);
// the points in the secondary polytope
print(secpoly[1]);
// the corresponding triangulations
secpoly[2];
}
///////////////////////////////////////////////////////////////////////////////
/// PROCEDURES USING POLYMAKE AND TOPCOM
///////////////////////////////////////////////////////////////////////////////
proc secondaryFan (list polygon,list #)
"USAGE: secondaryFan(polygon[,#]); list polygon, list #
ASSUME: - polygon is a list of integer vectors of the same size representing
the affine coordinates of lattice points
@* - if the triangulations of the corresponding polygon have already been
computed with the procedure triangulations then these can be given
as a second (optional) argument in order to avoid doing this
computation again
PURPOSE: the procedure considers the marked polytope given as the convex hull of
the lattice points and with these lattice points as markings; it then
computes the lattice points of the secondary polytope given by this
marked polytope which correspond to the triangulations computed by
the procedure triangulations
RETURN: list, the ith entry of L[1] contains information about the ith cone in
the secondary fan of the polygon, i.e. the cone dual to the
ith vertex of the secondary polytope
@* L[1][i][1] = integer matrix representing the inequalities which
describe the cone dual to the ith vertex
@* L[1][i][2] = a list which contains the inequalities represented
by L[1][i][1] as a list of strings, where we use the
variables x(1),...,x(n)
@* L[1][i][3] = only present if 'er' is set to 1; in that case it is
an interger matrix whose rows are the extreme rays
of the cone
@* L[2] = is an integer matrix whose rows span the linearity space
of the fan, i.e. the linear space which is contained in
each cone
@* L[3] = the secondary polytope in the format of the procedure
polymakePolytope
@* L[4] = the list of triangulations corresponding to the vertices
of the secondary polytope
NOTE:- the procedure calls for its computation polymake by Ewgenij Gawrilow,
TU Berlin and Michael Joswig, so it only works if polymake is installed;
see http://www.math.tu-berlin.de/polymake/
@* - in the optional argument # it is possible to hand over other names for
the variables to be used -- be careful, the format must be correct and
that is not tested, e.g. if you want the variable names to be
u00,u10,u01,u11 then you must hand over the string 'u11,u10,u01,u11'
@* - if the triangluations are not handed over as optional argument the
procedure calls for its computation of these triangulations the program
points2triangs from the program topcom by Joerg Rambau, Universitaet
Bayreuth; it therefore is necessary that this program is installed in
order to use this procedure; see
@* http://www.uni-bayreuth.de/departments/wirtschaftsmathematik/rambau/TOPCOM
EXAMPLE: example secondaryFan; shows an example"
{
if (size(#)==0)
{
list triang=triangulations(polygon);
}
else
{
list triang=#[1];
}
list sp=secondaryPolytope(polygon,triang);
list spp=polymakePolytope(sp[1]);
list sf=normalFanL(spp[1],spp[4],spp[3],1);
return(list(sf[1],sf[2],spp,triang));
}
example
{
"EXAMPLE:";
echo=2;
// the lattice points of the unit square in the plane
list polygon=intvec(0,0),intvec(0,1),intvec(1,0),intvec(1,1);
// the secondary polytope of this lattice point configuration is computed
list secfan=secondaryFan(polygon);
// the number of cones in the secondary fan of the polygon
size(secfan[1]);
// the inequalities of the first cone as matrix are:
print(secfan[1][1][1]);
// the inequalities of the first cone as string are:
print(secfan[1][1][2]);
// the rows of the following matrix are the extreme rays of the first cone:
print(secfan[1][1][3]);
// each cone contains the linearity space spanned by:
print(secfan[2]);
// the points in the secondary polytope
print(secfan[3][1]);
// the corresponding triangulations
secfan[4];
}
////////////////////////////////////////////////////////////////////////////////
/// PROCEDURES CONCERNED WITH PLANAR POLYGONS
////////////////////////////////////////////////////////////////////////////////
proc cycleLength (list boundary,intvec interior)
"USAGE: cycleLength(boundary,interior); list boundary, intvec interior
ASSUME: boundary is a list of integer vectors describing a cycle in some
convex lattice polygon around the lattice point interior ordered
clock wise
RETURN: string, the cycle length of the corresponding cycle in the dual
tropical curve
EXAMPLE: example cycleLength; shows an example"
{
int j;
// create a ring whose variables are indexed by the points in
// boundary resp. by interior
string rst="ring cyclering=0,(u"+string(interior[1])+string(interior[2]);
for (j=1;j<=size(boundary);j++)
{
rst=rst+",u"+string(boundary[j][1])+string(boundary[j][2]);
}
rst=rst+"),lp;";
execute(rst);
// add the first and second point at the end of boundary
boundary[size(boundary)+1]=boundary[1];
boundary[size(boundary)+1]=boundary[2];
poly cl,summand; // takes the cycle length
matrix N1[2][2]; // used to compute the area of a triangle
matrix N2[2][2]; // used to compute the area of a triangle
matrix N3[2][2]; // used to compute the area of a triangle
// for each original point in boundary compute its contribution to the cycle
for (j=2;j<=size(boundary)-1;j++)
{
N1=boundary[j-1]-interior,boundary[j]-interior;
N2=boundary[j]-interior,boundary[j+1]-interior;
N3=boundary[j+1]-interior,boundary[j-1]-interior;
execute("summand=-u"+string(boundary[j][1])+string(boundary[j][2])+"+u"+string(interior[1])+string(interior[2])+";");
summand=summand*(det(N1)+det(N2)+det(N3))/(det(N1)*det(N2));
cl=cl+summand;
}
return(string(cl));
}
example
{
"EXAMPLE:";
echo=2;
// the integer vectors in boundary are lattice points on the boundary
// of a convex lattice polygon in the plane
list boundary=intvec(0,0),intvec(0,1),intvec(0,2),intvec(2,2),
intvec(2,1),intvec(2,0);
// interior is a lattice point in the interior of this lattice polygon
intvec interior=1,1;
// compute the general cycle length of a cycle of the corresponding cycle
// in the dual tropical curve, note that (0,1) and (2,1) do not contribute
cycleLength(boundary,interior);
}
/////////////////////////////////////////////////////////////////////////////
proc splitPolygon (list markings)
"USAGE: splitPolygon (markings); markings list
ASSUME: markings is a list of integer vectors representing lattice points in
the plane which we consider as the marked points of the convex lattice
polytope spanned by them
PURPOSE: split the marked points in the vertices, the points on the facets
which are not vertices, and the interior points
RETURN: list, L consisting of three lists
@* L[1] : represents the vertices the polygon ordered clockwise
@* L[1][i][1] = intvec, the coordinates of the ith vertex
@* L[1][i][2] = int, the position of L[1][i][1] in markings
@* L[2][i] : represents the lattice points on the facet of the
polygon with endpoints L[1][i] and L[1][i+1]
(i considered modulo size(L[1]))
@* L[2][i][j][1] = intvec, the coordinates of the jth
lattice point on that facet
@* L[2][i][j][2] = int, the position of L[2][i][j][1]
in markings
@* L[3] : represents the interior lattice points of the polygon
@* L[3][i][1] = intvec, coordinates of ith interior point
@* L[3][i][2] = int, the position of L[3][i][1] in markings
EXAMPLE: example splitPolygon; shows an example"
{
list vert; // stores the result
// compute the boundary of the polygon in an oriented way
list pb=findOrientedBoundary(markings);
// the vertices are just the second entry of pb
vert[1]=pb[2];
int i,j,k; // indices
list boundary; // stores the points on the facets of the
// polygon which are not vertices
// append to the boundary points as well as to the vertices
// the first vertex a second time
pb[1]=pb[1]+list(pb[1][1]);
pb[2]=pb[2]+list(pb[2][1]);
// for each vertex find all points on the facet of the polygon with this vertex
// and the next vertex as endpoints
int z=2;
for (i=1;i<=size(vert[1]);i++)
{
j=1;
list facet; // stores the points on this facet which are not vertices
// while the next vertex is not reached, store the boundary lattice point
while (pb[1][z]!=pb[2][i+1])
{
facet[j]=pb[1][z];
j++;
z++;
}
// store the points on the ith facet as boundary[i]
boundary[i]=facet;
kill facet;
z++;
}
// store the information on the boundary in vert[2]
vert[2]=boundary;
// find the remaining points in the input which are not on
// the boundary by checking
// for each point in markings if it is contained in pb[1]
list interior=markings;
for (i=size(interior);i>=1;i--)
{
for (j=1;j<=size(pb[1])-1;j++)
{
if (interior[i]==pb[1][j])
{
interior=delete(interior,i);
j=size(pb[1]);
}
}
}
// store the interior points in vert[3]
vert[3]=interior;
// add to each point in vert the index which it gets from
// its position in the input markings;
// do so for ver[1]
for (i=1;i<=size(vert[1]);i++)
{
j=1;
while (markings[j]!=vert[1][i])
{
j++;
}
vert[1][i]=list(vert[1][i],j);
}
// do so for ver[2]
for (i=1;i<=size(vert[2]);i++)
{
for (k=1;k<=size(vert[2][i]);k++)
{
j=1;
while (markings[j]!=vert[2][i][k])
{
j++;
}
vert[2][i][k]=list(vert[2][i][k],j);
}
}
// do so for ver[3]
for (i=1;i<=size(vert[3]);i++)
{
j=1;
while (markings[j]!=vert[3][i])
{
j++;
}
vert[3][i]=list(vert[3][i],j);
}
return(vert);
}
example
{
"EXAMPLE:";
echo=2;
// the lattice polygon spanned by the points (0,0), (3,0) and (0,3)
// with all integer points as markings
list polygon=intvec(1,1),intvec(3,0),intvec(2,0),intvec(1,0),
intvec(0,0),intvec(2,1),intvec(0,1),intvec(1,2),
intvec(0,2),intvec(0,3);
// split the polygon in its vertices, its facets and its interior points
list sp=splitPolygon(polygon);
// the vertices
sp[1];
// the points on facets which are not vertices
sp[2];
// the interior points
sp[3];
}
/////////////////////////////////////////////////////////////////////////////
proc eta (list triang,list polygon)
"USAGE: eta(triang,polygon); triang, polygon list
ASSUME: polygon has the format of the output of splitPolygon, i.e. it is a
list with three entries describing a convex lattice polygon in the
following way:
@* polygon[1] : is a list of lists; for each i the entry polygon[1][i][1]
is a lattice point which is a vertex of the lattice
polygon, and polygon[1][i][2] is an integer assigned to
this lattice point as identifying index
@* polygon[2] : is a list of lists; for each vertex of the polygon,
i.e. for each entry in polygon[1], it contains a list
polygon[2][i], which contains the lattice points on the
facet with endpoints polygon[1][i] and polygon[1][i+1]
- i considered mod size(polygon[1]);
each such lattice point contributes an entry
polygon[2][i][j][1] which is an integer
vector giving the coordinate of the lattice point and an
entry polygon[2][i][j][2] which is the identifying index
@* polygon[3] : is a list of lists, where each entry corresponds to a
lattice point in the interior of the polygon, with
polygon[3][j][1] being the coordinates of the point
and polygon[3][j][2] being the identifying index;
@* triang is a list of integer vectors all of size three describing a
triangulation of the polygon described by polygon; if an entry of
triang is the vector (i,j,k) then the triangle is built by the vertices
with indices i, j and k
RETURN: intvec, the integer vector eta describing that vertex of the Newton
polytope discriminant of the polygone whose dual cone in the
Groebner fan contains the cone of the secondary fan of the
polygon corresponding to the given triangulation
NOTE: for a better description of eta see Gelfand, Kapranov,
Zelevinski: Discriminants, Resultants and multidimensional Determinants.
Chapter 10.
EXAMPLE: example eta; shows an example"
{
int i,j,k,l,m,n; // index variables
list ordpolygon; // stores the lattice points in the order
// used in the triangulation
list triangarea; // stores the areas of the triangulations
intmat N[2][2]; // used to compute triangle areas
// 1) store the lattice points in the order used in the triangulation
// go first through all vertices of the polytope
for (j=1;j<=size(polygon[1]);j++)
{
ordpolygon[polygon[1][j][2]]=polygon[1][j][1];
}
// then consider all inner points
for (j=1;j<=size(polygon[3]);j++)
{
ordpolygon[polygon[3][j][2]]=polygon[3][j][1];
}
// finally consider all lattice points on the boundary which are not vertices
for (j=1;j<=size(polygon[2]);j++)
{
for (i=1;i<=size(polygon[2][j]);i++)
{
ordpolygon[polygon[2][j][i][2]]=polygon[2][j][i][1];
}
}
// 2) compute for each triangle in the triangulation the area of the triangle
for (i=1;i<=size(triang);i++)
{
// Note that the ith lattice point in orderedpolygon has the
// number i-1 in the triangulation!
N=ordpolygon[triang[i][1]]-ordpolygon[triang[i][2]],ordpolygon[triang[i][1]]-ordpolygon[triang[i][3]];
triangarea[i]=abs(det(N));
}
intvec ETA; // stores the eta_ij
int etaij; // stores the part of eta_ij during computations
// which comes from triangle areas
int seitenlaenge; // stores the part of eta_ij during computations
// which comes from boundary facets
list seiten; // stores the lattice points on facets of the polygon
intvec v; // used to compute a facet length
// 3) store first in seiten[i] all lattice points on the facet
// connecting the ith vertex,
// i.e. polygon[1][i], with the i+1st vertex, i.e. polygon[1][i+1],
// where we replace i+1
// 1 if i=size(polygon[1]);
// then append the last entry of seiten once more at the very
// beginning of seiten, so
// that the index is shifted by one
for (i=1;i<=size(polygon[1]);i++)
{
if (i<size(polygon[1]))
{
seiten[i]=list(polygon[1][i])+polygon[2][i]+list(polygon[1][i+1]);
}
else
{
seiten[i]=list(polygon[1][i])+polygon[2][i]+list(polygon[1][1]);
}
}
seiten=insert(seiten,seiten[size(seiten)],0);
// 4) compute the eta_ij for all vertices of the polygon
for (j=1;j<=size(polygon[1]);j++)
{
// the vertex itself contributes a 1
etaij=1;
// check for each triangle in the triangulation ...
for (k=1;k<=size(triang);k++)
{
// ... if the vertex is actually a vertex of the triangle ...
if ((polygon[1][j][2]==triang[k][1]) or (polygon[1][j][2]==triang[k][2]) or (polygon[1][j][2]==triang[k][3]))
{
// ... if so, add the area of the triangle to etaij
etaij=etaij+triangarea[k];
// then check if that triangle has a facet which is contained
// in one of the
// two facets of the polygon which are adjecent to the given vertex ...
// these two facets are seiten[j] and seiten[j+1]
for (n=j;n<=j+1;n++)
{
// check for each lattice point in the facet of the polygon ...
for (l=1;l<=size(seiten[n]);l++)
{
// ... and for each lattice point in the triangle ...
for (m=1;m<=size(triang[k]);m++)
{
// ... if they coincide and are not the vertex itself ...
if ((seiten[n][l][2]==triang[k][m]) and (seiten[n][l][2]!=polygon[1][j][2]))
{
// if so, then compute the vector pointing from this
// lattice point to the vertex
v=polygon[1][j][1]-seiten[n][l][1];
// and the lattice length of this vector has to be
// subtracted from etaij
etaij=etaij-abs(gcd(v[1],v[2]));
}
}
}
}
}
}
// store etaij in the list
ETA[polygon[1][j][2]]=etaij;
}
// 5) compute the eta_ij for all lattice points on the facets
// of the polygon which are not vertices, these are the
// lattice points in polygon[2][1] to polygon[2][size(polygon[1])]
for (i=1;i<=size(polygon[2]);i++)
{
for (j=1;j<=size(polygon[2][i]);j++)
{
// initialise etaij
etaij=0;
// initialise seitenlaenge
seitenlaenge=0;
// check for each triangle in the triangulation ...
for (k=1;k<=size(triang);k++)
{
// ... if the vertex is actually a vertex of the triangle ...
if ((polygon[2][i][j][2]==triang[k][1]) or (polygon[2][i][j][2]==triang[k][2]) or (polygon[2][i][j][2]==triang[k][3]))
{
// ... if so, add the area of the triangle to etaij
etaij=etaij+triangarea[k];
// then check if that triangle has a facet which is contained in the
// facet of the polygon which contains the lattice point in question,
// this is the facet seiten[i+1];
// check for each lattice point in the facet of the polygon ...
for (l=1;l<=size(seiten[i+1]);l++)
{
// ... and for each lattice point in the triangle ...
for (m=1;m<=size(triang[k]);m++)
{
// ... if they coincide and are not the vertex itself ...
if ((seiten[i+1][l][2]==triang[k][m]) and (seiten[i+1][l][2]!=polygon[2][i][j][2]))
{
// if so, then compute the vector pointing from
// this lattice point to the vertex
v=polygon[2][i][j][1]-seiten[i+1][l][1];
// and the lattice length of this vector contributes
// to seitenlaenge
seitenlaenge=seitenlaenge+abs(gcd(v[1],v[2]));
}
}
}
}
}
// if the lattice point was a vertex of any triangle
// in the triangulation ...
if (etaij!=0)
{
// then eta_ij is the sum of the triangle areas minus seitenlaenge
ETA[polygon[2][i][j][2]]=etaij-seitenlaenge;
}
else
{
// otherwise it is just zero
ETA[polygon[2][i][j][2]]=0;
}
}
}
// 4) compute the eta_ij for all inner lattice points of the polygon
for (j=1;j<=size(polygon[3]);j++)
{
// initialise etaij
etaij=0;
// check for each triangle in the triangulation ...
for (k=1;k<=size(triang);k++)
{
// ... if the vertex is actually a vertex of the triangle ...
if ((polygon[3][j][2]==triang[k][1]) or (polygon[3][j][2]==triang[k][2]) or (polygon[3][j][2]==triang[k][3]))
{
// ... if so, add the area of the triangle to etaij
etaij=etaij+triangarea[k];
}
}
// store etaij in ETA
ETA[polygon[3][j][2]]=etaij;
}
return(ETA);
}
example
{
"EXAMPLE:";
echo=2;
// the lattice polygon spanned by the points (0,0), (3,0) and (0,3)
// with all integer points as markings
list polygon=intvec(1,1),intvec(3,0),intvec(2,0),intvec(1,0),
intvec(0,0),intvec(2,1),intvec(0,1),intvec(1,2),
intvec(0,2),intvec(0,3);
// split the polygon in its vertices, its facets and its interior points
list sp=splitPolygon(polygon);
// define a triangulation by connecting the only interior point
// with the vertices
list triang=intvec(1,2,5),intvec(1,5,10),intvec(1,5,10);
// compute the eta-vector of this triangulation
eta(triang,sp);
}
/////////////////////////////////////////////////////////////////////////////
proc findOrientedBoundary (list polygon)
"USAGE: findOrientedBoundary(polygon); polygon list
ASSUME: polygon is a list of integer vectors defining integer lattice points
in the plane
RETURN: list l with the following interpretation
@* l[1] = list of integer vectors such that the polygonal path
defined by these is the boundary of the convex hull of
the lattice points in polygon
@* l[2] = list, the redundant points in l[1] have been removed
EXAMPLE: example findOrientedBoundary; shows an example"
{
// Order the vertices such that passing from one to the next we travel along
// the boundary of the convex hull of the vertices clock wise
int d,k,i,j;
intmat D[2][2];
/////////////////////////////////////
// Treat first the pathological cases that the polygon is not two-dimensional:
/////////////////////////////////////
// if the polygon is empty or only one point or a line segment of two points
if (size(polygon)<=2)
{
return(list(polygon,polygon));
}
// check is the polygon is only a line segment given by more than two points;
// for this first compute sum of the absolute values of the determinants
// of the matrices whose
// rows are the vectors pointing from the first to the second point
// and from the
// the first point to the ith point for i=3,...,size(polygon);
// if this sum is zero
// then the polygon is a line segment and we have to find its end points
d=0;
for (i=3;i<=size(polygon);i++)
{
D=polygon[2]-polygon[1],polygon[i]-polygon[1];
d=d+abs(det(D));
}
if (d==0) // then polygon is a line segment
{
intmat laenge[size(polygon)][size(polygon)];
intvec mp;
// for this collect first all vectors pointing from one lattice
// point to the next,
// compute their pairwise angles and their lengths
for (i=1;i<=size(polygon)-1;i++)
{
for (j=i+1;j<=size(polygon);j++)
{
mp=polygon[i]-polygon[j];
laenge[i,j]=abs(gcd(mp[1],mp[2]));
}
}
mp=maxPosInIntmat(laenge);
list endpoints=polygon[mp[1]],polygon[mp[2]];
intvec abstand;
for (i=1;i<=size(polygon);i++)
{
abstand[i]=0;
if (i<mp[1])
{
abstand[i]=laenge[i,mp[1]];
}
if (i>mp[1])
{
abstand[i]=laenge[mp[1],i];
}
}
polygon=sortlistbyintvec(polygon,abstand);
return(list(polygon,endpoints));
}
///////////////////////////////////////////////////////////////
list orderedvertices; // stores the vertices in an ordered way
list minimisedorderedvertices; // stores the vertices in an ordered way;
// redundant ones removed
list comparevertices; // stores vertices which should be compared to
// the testvertex
orderedvertices[1]=polygon[1]; // set the starting vertex
minimisedorderedvertices[1]=polygon[1]; // set the starting vertex
intvec testvertex=polygon[1]; //vertex to which the others have to be compared
intvec startvertex=polygon[1]; // keep the starting vertex to test,
// when the end is reached
int endtest; // is set to one, when the end is reached
int startvertexfound;// is 1, once for some testvertex a candidate
// for the next vertex has been found
polygon=delete(polygon,1); // delete the testvertex
intvec v,w;
int l=1; // counts the vertices
// the basic idea is that a vertex can be
// the next one on the boundary if all other vertices
// lie to the right of the vector v pointing
// from the testvertex to this one; this can be tested
// by checking if the determinant of the 2x2-matrix
// with first column v and second column the vector w,
// pointing from the testvertex to the new vertex,
// is non-positive; if this is the case for all
// new vertices, then the one in consideration is
// a possible choice for the next vertex on the boundary
// and it is stored in naechste; we can then order
// the candidates according to their distance from
// the testvertex; then they occur on the boundary in that order!
while (endtest==0)
{
list naechste; // stores the possible choices for the next vertex
k=1;
for (i=1;i<=size(polygon);i++)
{
d=0; // stores the value of the determinant of (v,w)
v=polygon[i]-testvertex; // points from the testvertex to the ith vertex
comparevertices=delete(polygon,i); // we needn't compare v to itself
// we should compare v to the startvertex-testvertex;
// in the first calling of the loop
// this is irrelevant since the difference will be zero;
// however, later on it will
// be vital, since we delete the vertices
// which we have already tested from the list
// of all vertices, and when all vertices
// on the boundary have been found we would
// therefore find a vertex in the interior
// as candidate; but always testing against
// the starting vertex, this cannot happen
comparevertices[size(comparevertices)+1]=startvertex;
for (j=1;(j<=size(comparevertices)) and (d<=0);j++)
{
w=comparevertices[j]-testvertex; // points form the testvertex
// to the jth vertex
D=v,w;
d=det(D);
}
if (d<=0) // if all determinants are non-positive,
{ // then the ith vertex is a candidate
naechste[k]=list(polygon[i],i,scalarproduct(v,v));// we store the vertex,
//its position, and its
k++; // distance from the testvertex
}
}
if (size(naechste)>0) // then a candidate for the next vertex has been found
{
startvertexfound=1; // at least once a candidate has been found
naechste=sortlist(naechste,3); // we order the candidates according
// to their distance from testvertex;
for (j=1;j<=size(naechste);j++) // then we store them in this
{ // order in orderedvertices
l++;
orderedvertices[l]=naechste[j][1];
}
testvertex=naechste[size(naechste)][1]; // we store the last one as
// next testvertex;
// store the next corner of NSD
minimisedorderedvertices[size(minimisedorderedvertices)+1]=testvertex;
naechste=sortlist(naechste,2); // then we reorder the vertices
// according to their position
for (j=size(naechste);j>=1;j--) // and we delete them from the vertices
{
polygon=delete(polygon,naechste[j][2]);
}
}
else // that means either that the vertex was inside the polygon,
{ // or that we have reached the last vertex on the boundary
// of the polytope
if (startvertexfound==0) // the vertex was in the interior;
{ // we delete it and start all over again
orderedvertices[1]=polygon[1];
minimisedorderedvertices[1]=polygon[1];
testvertex=polygon[1];
startvertex=polygon[1];
polygon=delete(polygon,1);
}
else // we have reached the last vertex on the boundary of
{ // the polytope and can stop
endtest=1;
}
}
kill naechste;
}
// test if the first vertex in minimisedorderedvertices
// is on the same line with the second and
// the last, i.e. if we started our search in the
// middle of a face; if so, delete it
v=minimisedorderedvertices[2]-minimisedorderedvertices[1];
w=minimisedorderedvertices[size(minimisedorderedvertices)]-minimisedorderedvertices[1];
D=v,w;
if (det(D)==0)
{
minimisedorderedvertices=delete(minimisedorderedvertices,1);
}
// test if the first vertex in minimisedorderedvertices
// is on the same line with the two
// last ones, i.e. if we started our search at the end of a face;
// if so, delete it
v=minimisedorderedvertices[size(minimisedorderedvertices)-1]-minimisedorderedvertices[1];
w=minimisedorderedvertices[size(minimisedorderedvertices)]-minimisedorderedvertices[1];
D=v,w;
if (det(D)==0)
{
minimisedorderedvertices=delete(minimisedorderedvertices,size(minimisedorderedvertices));
}
return(list(orderedvertices,minimisedorderedvertices));
}
example
{
"EXAMPLE:";
echo=2;
// the following lattice points in the plane define a polygon
list polygon=intvec(0,0),intvec(3,1),intvec(1,0),intvec(2,0),
intvec(1,1),intvec(3,2),intvec(1,2),intvec(2,3),
intvec(2,4);
// we compute its boundary
list boundarypolygon=findOrientedBoundary(polygon);
// the points on the boundary ordered clockwise are boundarypolygon[1]
boundarypolygon[1];
// the vertices of the boundary are boundarypolygon[2]
boundarypolygon[2];
}
/////////////////////////////////////////////////////////////////////////////
proc cyclePoints (list triang,list points,int pt)
"USAGE: cyclePoints(triang,points,pt) triang,points list, pt int
ASSUME: - points is a list of integer vectors describing the lattice
points of a marked polygon;
@* - triang is a list of integer vectors describing a triangulation
of the marked polygon in the sense that an integer vector of
the form (i,j,k) describes the triangle formed by polygon[i],
polygon[j] and polygon[k];
@* - pt is an integer between 1 and size(points), singling out a
lattice point among the marked points
PURPOSE: consider the convex lattice polygon, say P, spanned by all lattice
points in points which in the triangulation triang are connected
to the point points[pt]; the procedure computes all marked points
in points which lie on the boundary of that polygon, ordered
clockwise
RETURN: list, of integer vectors which are the coordinates of the lattice
points on the boundary of the above mentioned polygon P, if
this polygon is not the empty set (that would be the case if
points[pt] is not a vertex of any triangle in the
triangulation); otherwise return the empty list
EXAMPLE: example cyclePoints; shows an example"
{
int i,j; // indices
list v; // saves the indices of lattice points connected to the
// interior point in the triangulation
// save all points in triangulations containing pt in v
for (i=1;i<=size(triang);i++)
{
if ((triang[i][1]==pt) or (triang[i][2]==pt) or (triang[i][3]==pt))
{
j++;
v[3*j-2]=triang[i][1];
v[3*j-1]=triang[i][2];
v[3*j]=triang[i][3];
}
}
if (size(v)==0)
{
return(list());
}
// remove pt itself and redundancies in v
for (i=size(v);i>=1;i--)
{
j=1;
while ((j<i) and (v[i]!=v[j]))
{
j++;
}
if ((j<i) or (v[i]==pt))
{
v=delete(v,i);
}
}
// save in pts the coordinates of the points with indices in v
list pts;
for (i=1;i<=size(v);i++)
{
pts[i]=points[v[i]];
}
// consider the convex polytope spanned by the points in pts,
// find the points on the
// boundary and order them clockwise
return(findOrientedBoundary(pts)[1]);
}
example
{
"EXAMPLE:";
echo=2;
// the lattice polygon spanned by the points (0,0), (3,0) and (0,3)
// with all integer points as markings
list points=intvec(1,1),intvec(3,0),intvec(2,0),intvec(1,0),
intvec(0,0),intvec(2,1),intvec(0,1),intvec(1,2),
intvec(0,2),intvec(0,3);
// define a triangulation
list triang=intvec(1,2,5),intvec(1,5,7),intvec(1,7,9),intvec(8,9,10),
intvec(1,8,9),intvec(1,2,8);
// compute the points connected to (1,1) in triang
cyclePoints(triang,points,1);
}
/////////////////////////////////////////////////////////////////////////////
proc latticeArea (list polygon)
"USAGE: latticeArea(polygon); polygon list
ASSUME: polygon is a list of integer vectors in the plane
RETURN: int, the lattice area of the convex hull of the lattice points in
polygon, i.e. twice the Euclidean area
EXAMPLE: example polygonlatticeArea; shows an example"
{
list pg=findOrientedBoundary(polygon)[2];
int area;
intmat M[2][2];
for (int i=2;i<=size(pg)-1;i++)
{
M[1,1..2]=pg[i]-pg[1];
M[2,1..2]=pg[i+1]-pg[1];
area=area+abs(det(M));
}
return(area);
}
example
{
"EXAMPLE:";
echo=2;
// define a polygon with lattice area 5
list polygon=intvec(1,2),intvec(1,0),intvec(2,0),intvec(1,1),
intvec(2,1),intvec(0,0);
latticeArea(polygon);
}
/////////////////////////////////////////////////////////////////////////////
proc picksFormula (list polygon)
"USAGE: picksFormula(polygon); polygon list
ASSUME: polygon is a list of integer vectors in the plane and consider their
convex hull C
RETURN: list, L of three integersthe
@* L[1] : the lattice area of C, i.e. twice the Euclidean area
@* L[2] : the number of lattice points on the boundary of C
@* L[3] : the number of interior lattice points of C
NOTE: the integers in L are related by Pick's formula, namely: L[1]=L[2]+2*L[3]-2
EXAMPLE: example picksFormula; shows an example"
{
list pg=findOrientedBoundary(polygon)[2];
int area,bdpts,i;
intmat M[2][2];
// compute the lattice area of the polygon, i.e. twice the Euclidean area
for (i=2;i<=size(pg)-1;i++)
{
M[1,1..2]=pg[i]-pg[1];
M[2,1..2]=pg[i+1]-pg[1];
area=area+abs(det(M));
}
// compute the number of lattice points on the boundary
intvec edge;
pg[size(pg)+1]=pg[1];
for (i=1;i<=size(pg)-1;i++)
{
edge=pg[i]-pg[i+1];
bdpts=bdpts+abs(gcd(edge[1],edge[2]));
}
// Pick's formula says that the lattice area A, the number g of interior
// points and
// the number b of boundary points are connected by the formula: A=b+2g-2
return(list(area,bdpts,(area-bdpts+2) div 2));
}
example
{
"EXAMPLE:";
echo=2;
// define a polygon with lattice area 5
list polygon=intvec(1,2),intvec(1,0),intvec(2,0),intvec(1,1),
intvec(2,1),intvec(0,0);
list pick=picksFormula(polygon);
// the lattice area of the polygon is:
pick[1];
// the number of lattice points on the boundary is:
pick[2];
// the number of interior lattice points is:
pick[3];
// the number's are related by Pick's formula:
pick[1]-pick[2]-2*pick[3]+2;
}
/////////////////////////////////////////////////////////////////////////////
proc ellipticNF (list polygon)
"USAGE: ellipticNF(polygon); polygon list
ASSUME: polygon is a list of integer vectors in the plane such that their
convex hull C has precisely one interior lattice point; i.e. C is the
Newton polygon of an elliptic curve
PURPOSE: compute the normal form of the polygon with respect to the unimodular
affine transformations T=A*x+v; there are sixteen different normal forms
(see e.g. Bjorn Poonen, Fernando Rodriguez-Villegas: Lattice Polygons
and the number 12. Amer. Math. Monthly 107 (2000), no. 3,
238--250.)
RETURN: list, L such that
@* L[1] : list whose entries are the vertices of the normal form of
the polygon
@* L[2] : the matrix A of the unimodular transformation
@* L[3] : the translation vector v of the unimodular transformation
@* L[4] : list such that the ith entry is the image of polygon[i]
under the unimodular transformation T
EXAMPLE: example ellipticNF; shows an example"
{
int i; // index
intvec edge; // stores the vector of an edge
intvec boundary; // stores lattice lengths of the edges of the Newton cycle
// find the vertices of the Newton cycle and order it clockwise
list pg=findOrientedBoundary(polygon)[2];
// check if there is precisely one interior point in the Newton polygon
if (picksFormula(pg)[3]!=1)
{
ERROR("The polygon has not precisely one interior point!");
}
// insert the first vertex at the end once again
pg[size(pg)+1]=pg[1];
// compute the number of lattice points on each edge
for (i=1;i<=size(pg)-1;i++)
{
edge=pg[i]-pg[i+1];
boundary[i]=1+abs(gcd(edge[1],edge[2]));
}
// store the values of boundary once more adding the first two at the end
intvec tboundary=boundary,boundary[1],boundary[2];
// sort boundary in an asecending way
intvec sbd=sortintvec(boundary);
// find the first edge having the maximal number of lattice points
int max=maxPosInIntvec(boundary);
// some computations have to be done over the rationals
ring transformationring=0,x,lp;
intvec trans; // stores the vector by which we have to translate the polygon
intmat A[2][2]; // stores the matrix by which we have to transform the polygon
matrix M[3][3]; // stores the projective coordinates of the points
// which are to be transformed
matrix N[3][3]; // stores the projective coordinates of the points to
// which M is to be transformed
intmat T[3][3]; // stores the unimodular affine transformation in
// projective form
// add the second point of pg once again at the end
pg=insert(pg,pg[2],size(pg));
// if there is only one edge which has the maximal number of lattice points,
// then M should be:
M=pg[max],1,pg[max+1],1,pg[max+2],1;
// consider the 16 different cases which can occur:
// Case 1:
if (sbd==intvec(2,2,2))
{
N=0,1,1,1,2,1,2,0,1;
}
// Case 2:
if (sbd==intvec(2,2,3))
{
N=2,0,1,0,0,1,1,2,1;
}
// Case 3:
if (sbd==intvec(2,3,4))
{
// here the orientation of the Newton polygon is important !
if (tboundary[max+1]==3)
{
N=3,0,1,0,0,1,0,2,1;
}
else
{
N=0,0,1,3,0,1,0,2,1;
}
}
// Case 4:
if (sbd==intvec(3,3,5))
{
N=4,0,1,0,0,1,0,2,1;
}
// Case 5:
if (sbd==intvec(4,4,4))
{
N=3,0,1,0,0,1,0,3,1;
}
// Case 6+7:
if (sbd==intvec(2,2,2,2))
{
// there are two different polygons which has four edges all of length 2,
// but only one of them has two edges whose direction vectors form a matrix
// of determinant 3
A=pg[1]-pg[2],pg[3]-pg[2];
while ((max<4) and (det(A)!=3))
{
max++;
A=pg[max]-pg[max+1],pg[max+2]-pg[max+1];
}
// Case 6:
if (det(A)==3)
{
M=pg[max],1,pg[max+1],1,pg[max+2],1;
N=1,0,1,0,2,1,2,1,1;
}
// Case 7:
else
{
N=2,1,1,1,0,1,0,1,1;
}
}
// Case 8:
if (sbd==intvec(2,2,2,3))
{
// the orientation of the polygon is important
A=pg[max]-pg[max+1],pg[max+2]-pg[max+1];
if (det(A)==2)
{
N=2,0,1,0,0,1,0,1,1;
}
else
{
N=0,0,1,2,0,1,1,2,1;
}
}
// Case 9:
if (sbd==intvec(2,2,3,3))
{
// if max==1, then the 5th entry in tboundary is the same as the first
if (max==1)
{
max=5;
}
// if boundary=3,2,2,3 then set max=4
if (tboundary[max+1]!=3)
{
max=4;
}
M=pg[max],1,pg[max+1],1,pg[max+2],1;
// the orientation of the polygon matters
A=pg[max-1]-pg[max],pg[max+1]-pg[max];
if (det(A)==4)
{
N=2,0,1,0,0,1,0,2,1;
}
else
{
N=0,2,1,0,0,1,2,0,1;
}
}
// Case 10:
if (sbd==intvec(2,2,3,4))
{
// the orientation of the polygon matters
if (tboundary[max+1]==3)
{
N=3,0,1,0,0,1,0,2,1;
}
else
{
N=0,0,1,3,0,1,2,1,1;
}
}
// Case 11:
if (sbd==intvec(2,3,3,4))
{
N=3,0,1,0,0,1,0,2,1;
}
// Case 12:
if (sbd==intvec(3,3,3,3))
{
N=2,0,1,0,0,1,0,2,1;
}
// Case 13:
if (sbd==intvec(2,2,2,2,2))
{
// compute the angles of the polygon vertices
intvec dt;
for (i=1;i<=5;i++)
{
A=pg[i]-pg[i+1],pg[i+2]-pg[i+1];
dt[i]=det(A);
}
dt[6]=dt[1];
// find the vertex to be mapped to (0,1)
max=1;
while ((dt[max]!=2) or (dt[max+1]!=2))
{
max++;
}
M=pg[max],1,pg[max+1],1,pg[max+2],1;
N=0,1,1,1,2,1,2,1,1;
}
// Case 14:
if (sbd==intvec(2,2,2,2,3))
{
N=2,0,1,0,0,1,0,1,1;
}
// Case 15:
if (sbd==intvec(2,2,2,3,3))
{
// find the vertix to be mapped to (2,0)
if (tboundary[max+1]!=3)
{
max=5;
M=pg[max],1,pg[max+1],1,pg[max+2],1;
}
N=2,0,1,0,0,1,0,2,1;
}
// Case 16:
if (sbd==intvec(2,2,2,2,2,2))
{
N=2,0,1,1,0,1,0,1,1;
}
// we have to transpose the matrices M and N
M=transpose(M);
N=transpose(N);
// compute the unimodular affine transformation, which is of the form
// A11 A12 | T1
// A21 A22 | T2
// 0 0 | 1
T=matrixtointmat(N*inverse(M));
// the upper-left 2x2-block is A
A=T[1..2,1..2];
// the upper-right 2x1-block is the translation vector
trans=T[1,3],T[2,3];
// transform now the lattice points of the polygon with respect to A and T
list nf;
for (i=1;i<=size(polygon);i++)
{
intmat V[2][1]=polygon[i];
V=A*V;
nf[i]=intvec(V[1,1]+trans[1],V[2,1]+trans[2]);
kill V;
}
return(list(findOrientedBoundary(nf)[2],A,trans,nf));
}
example
{
"EXAMPLE:";
echo=2;
ring r=0,(x,y),dp;
// the Newton polygon of the following polynomial
// has precisely one interior point
poly f=x22y11+x19y10+x17y9+x16y9+x12y7+x9y6+x7y5+x2y3;
list polygon=newtonPolytopeLP(f);
// its lattice points are
polygon;
// find its normal form
list nf=ellipticNF(polygon);
// the vertices of the normal form are
nf[1];
// it has been transformed by the unimodular affine transformation A*x+v
// with matrix A
nf[2];
// and translation vector v
nf[3];
// the 3rd lattice point ...
polygon[3];
// ... has been transformed to
nf[4][3];
}
/////////////////////////////////////////////////////////////////////////////
proc ellipticNFDB (int n,list #)
"USAGE: ellipticNFDB(n[,#]); n int, # list
ASSUME: n is an integer between 1 and 16
PURPOSE: this is a database storing the 16 normal forms of planar polygons with
precisely one interior point up to unimodular affine transformations
@* (see e.g. Bjorn Poonen, Fernando Rodriguez-Villegas: Lattice Polygons
and the number 12. Amer. Math. Monthly 107 (2000), no. 3,
238--250.)
RETURN: list, L such that
@* L[1] : list whose entries are the vertices of the nth normal form
@* L[2] : list whose entries are all the lattice points of the
nth normal form
@* L[3] : only present if the optional parameter # is present, and
then it is a polynomial in the variables (x,y) whose
Newton polygon is the nth normal form
NOTE: the optional parameter is only allowed if the basering has the
variables x and y
EXAMPLE: example ellipticNFDB; shows an example"
{
if ((n<1) or (n>16))
{
ERROR("n is not between 1 and 16.");
}
if (size(#)>0)
{
if ((defined(x)==0) or (defined(y)==0))
{
ERROR("The variables x and y are not defined.");
}
}
if ((defined(x)==0) or (defined(y)==0))
{
ring nfring=0,(x,y),dp;
}
// store the normal forms as polynomials
list nf=x2+y+xy2,x2+x+1+xy2,x3+x2+x+1+y2+y,x4+x3+x2+x+1+y2+y+x2y,x3+x2+x+1+x2y+y+xy2+y2+y3,
x2+x+x2y+y2,x2y+x+y+xy2,x2+x+1+y+xy2,x2+x+1+y+xy2+y2,x3+x2+x+1+x2y+y+y2,x3+x2+x+1+x2y+y+xy2+y2,
x2+x+1+x2y+y+x2y2+xy2+y2,x+1+x2y+y+xy2,x2+x+1+x2y+y+xy2,x2+x+1+x2y+y+xy2+y2,x2+x+x2y+y+xy2+y2;
list pg=newtonPolytopeLP(nf[n]);
if (size(#)==0)
{
return(list(findOrientedBoundary(pg)[2],pg));
}
else
{
return(list(findOrientedBoundary(pg)[2],pg,nf[n]));
}
}
example
{
"EXAMPLE:";
echo=2;
list nf=ellipticNFDB(5);
// the vertices of the 5th normal form are
nf[1];
// its lattice points are
nf[2];
}
/////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////
/// AUXILARY PROCEDURES, WHICH ARE DECLARED STATIC
/////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////
/// - scalarproduct
/// - intmatcoldelete
/// - intmatconcat
/// - sortlist
/// - minInList
/// - stringdelete
/// - abs
/// - commondenominator
/// - maxPosInIntvec
/// - maxPosInIntmat
/// - sortintvec
/// - matrixtointmat
/////////////////////////////////////////////////////////////////////////////////
static proc scalarproduct (intvec w,intvec v)
"USAGE: scalarproduct(w,v); w,v intvec
ASSUME: w and v are integer vectors of the same length
RETURN: int, the scalarproduct of v and w
NOTE: the procedure is called by findOrientedBoundary"
{
int sp;
for (int i=1;i<=size(w);i++)
{
sp=sp+v[i]*w[i];
}
return(sp);
}
static proc intmatcoldelete (def w,int i)
"USAGE: intmatcoldelete(w,i); w intmat, i int
RETURN: intmat, the integer matrix w with the ith comlumn deleted
NOTE: the procedure is called by intmatsort and normalFanL"
{
if (typeof(w)=="intmat")
{
if ((i<1) or (i>ncols(w)) or (ncols(w)==1))
{
return(w);
}
if (i==1)
{
intmat M[nrows(w)][ncols(w)-1]=w[1..nrows(w),2..ncols(w)];
return(M);
}
if (i==ncols(w))
{
intmat M[nrows(w)][ncols(w)-1]=w[1..nrows(w),1..ncols(w)-1];
return(M);
}
else
{
intmat M[nrows(w)][i-1]=w[1..nrows(w),1..i-1];
intmat N[nrows(w)][ncols(w)-i]=w[1..nrows(w),i+1..ncols(w)];
return(intmatconcat(M,N));
}
}
if (typeof(w)=="bigintmat")
{
if ((i<1) or (i>ncols(w)) or (ncols(w)==1))
{
return(w);
}
if (i==1)
{
bigintmat M[nrows(w)][ncols(w)-1]=w[1..nrows(w),2..ncols(w)];
return(M);
}
if (i==ncols(w))
{
bigintmat M[nrows(w)][ncols(w)-1]=w[1..nrows(w),1..ncols(w)-1];
return(M);
}
else
{
bigintmat MN[nrows(w)][ncols(w)-1];
MN[1..nrows(w),1..i-1]=w[1..nrows(w),1..i-1];
MN[1..nrows(w),i..ncols(w)-1]=w[1..nrows(w),i+1..ncols(w)];
return(MN);
}
} else
{
ERROR("intmatcoldelete: input matrix has to be of type intmat or bigintmat");
intmat M; return(M);
}
}
static proc intmatconcat (intmat M,intmat N)
"USAGE: intmatconcat(M,N); M,N intmat
RETURN: intmat, M and N concatenated
NOTE: the procedure is called by intmatcoldelete and sortintmat"
{
if (nrows(M)>=nrows(N))
{
int m=nrows(M);
}
else
{
int m=nrows(N);
}
intmat P[m][ncols(M)+ncols(N)];
P[1..nrows(M),1..ncols(M)]=M[1..nrows(M),1..ncols(M)];
P[1..nrows(N),ncols(M)+1..ncols(M)+ncols(N)]=N[1..nrows(N),1..ncols(N)];
return(P);
}
static proc sortlist (list v,int pos)
"USAGE: sortlist(v,pos); v list, pos int
RETURN: list, the list L ordered in an ascending way according to the pos-th entries
NOTE: called by tropicalCurve"
{
if(size(v)==1)
{
return(v);
}
list w=minInList(v,pos);
v=delete(v,w[2]);
v=sortlist(v,pos);
v=list(w[1])+v;
return(v);
}
static proc minInList (list v,int pos)
"USAGE: minInList(v,pos); v list, pos int
RETURN: list, (v[i],i) such that v[i][pos] is minimal
NOTE: called by sortlist"
{
int min=v[1][pos];
int minpos=1;
for (int i=2;i<=size(v);i++)
{
if (v[i][pos]<min)
{
min=v[i][pos];
minpos=i;
}
}
return(list(v[minpos],minpos));
}
static proc stringdelete (string w,int i)
"USAGE: stringdelete(w,i); w string, i int
RETURN: string, the string w with the ith component deleted
NOTE: the procedure is called by texnumber and choosegfanvector"
{
if ((i>size(w)) or (i<=0))
{
return(w);
}
if ((size(w)==1) and (i==1))
{
return("");
}
if (i==1)
{
return(w[2..size(w)]);
}
if (i==size(w))
{
return(w[1..size(w)-1]);
}
else
{
string erg=w[1..i-1],w[i+1..size(w)];
return(erg);
}
}
static proc abs (def n)
"USAGE: abs(n); n poly or int
RETURN: poly or int, the absolute value of n"
{
if (n>=0)
{
return(n);
}
else
{
return(-n);
}
}
static proc commondenominator (matrix M)
"USAGE: commondenominator(M); M matrix
ASSUME: the base ring has characteristic zero
RETURN: int, the lowest common multiple of the denominators of the leading coefficients
of the entries in M
NOTE: the procedure is called from polymakeToIntmat"
{
int i,j;
int kgV=1;
// successively build the lowest common multiple of the denominators of the leading coefficients
// of the entries in M
for (i=1;i<=nrows(M);i++)
{
for (j=1;j<=ncols(M);j++)
{
kgV=lcm(kgV,int(denominator(leadcoef(M[i,j]))));
}
}
return(kgV);
}
static proc maxPosInIntvec (intvec v)
"USAGE: maxPosInIntvec(v); v intvec
RETURN: int, the first position of a maximal entry in v
NOTE: called by sortintmat"
{
int max=v[1];
int maxpos=1;
for (int i=2;i<=size(v);i++)
{
if (v[i]>max)
{
max=v[i];
maxpos=i;
}
}
return(maxpos);
}
static proc maxPosInIntmat (intmat v)
"USAGE: maxPosInIntmat(v); v intmat
ASSUME: v has a unique maximal entry
RETURN: intvec, the position (i,j) of the maximal entry in v
NOTE: called by findOrientedBoundary"
{
int max=v[1,1];
intvec maxpos=1,1;
int i,j;
for (i=1;i<=nrows(v);i++)
{
for (j=1;j<=ncols(v);j++)
{
if (v[i,j]>max)
{
max=v[i,j];
maxpos=i,j;
}
}
}
return(maxpos);
}
static proc sortintvec (intvec w)
"USAGE: sortintvec(v); v intvec
RETURN: intvec, the entries of v are ordered in an ascending way
NOTE: called from ellipticNF"
{
int j,k,stop;
intvec v=w[1];
for (j=2;j<=size(w);j++)
{
k=1;
stop=0;
while ((k<=size(v)) and (stop==0))
{
if (v[k]<w[j])
{
k++;
}
else
{
stop=1;
}
}
if (k==size(v)+1)
{
v=v,w[j];
}
else
{
if (k==1)
{
v=w[j],v;
}
else
{
v=v[1..k-1],w[j],v[k..size(v)];
}
}
}
return(v);
}
static proc sortlistbyintvec (list L,intvec w)
"USAGE: sortlistbyintvec(L,w); L list, w intvec
RETURN: list, the entries of L are ordered such that the corresponding reordering of
w would order w in an ascending way
NOTE: called from ellipticNF"
{
int j,k,stop;
intvec v=w[1];
list LL=L[1];
for (j=2;j<=size(w);j++)
{
k=1;
stop=0;
while ((k<=size(v)) and (stop==0))
{
if (v[k]<w[j])
{
k++;
}
else
{
stop=1;
}
}
if (k==size(v)+1)
{
v=v,w[j];
LL=insert(LL,L[j],size(LL));
}
else
{
if (k==1)
{
v=w[j],v;
LL=insert(LL,L[j]);
}
else
{
v=v[1..k-1],w[j],v[k..size(v)];
LL=insert(LL,L[j],k-1);
}
}
}
return(LL);
}
static proc matrixtointmat (matrix MM)
"USAGE: matrixtointmat(v); MM matrix
ASSUME: MM is a matrix with only integers as entries
RETURN: intmat, the matrix MM has been transformed to type intmat
NOTE: called from ellipticNF"
{
intmat M[nrows(MM)][ncols(MM)]=M;
int i,j;
for (i=1;i<=nrows(M);i++)
{
for (j=1;j<=ncols(M);j++)
{
execute("M["+string(i)+","+string(j)+"]="+string(MM[i,j])+";");
}
}
return(M);
}
//////////////////////////////////////////////////////////////////////////////
static proc polygonToCoordinates (list points)
"USAGE: polygonToCoordinates(points); points list
ASSUME: points is a list of integer vectors each of size two describing the
marked points of a convex lattice polygon like the output of
polygonDB
RETURN: list, the first entry is a string representing the coordinates
corresponding to the latticpoints seperated by commata
the second entry is a list where the ith entry is a string
representing the coordinate of corresponding to the ith
lattice point the third entry is the latex format of the
first entry
NOTE: the procedure is called by fan"
{
string coord;
list coords;
string latex;
for (int i=1;i<=size(points);i++)
{
coords[i]="u"+string(points[i][1])+string(points[i][2]);
coord=coord+coords[i]+",";
latex=latex+"u_{"+string(points[i][1])+string(points[i][2])+"},";
}
coord=coord[1,size(coord)-1];
latex=latex[1,size(latex)-1];
return(list(coord,coords,latex));
}
static proc intmatAddFirstColumn (def M,string art)
"USAGE: intmatAddFirstColumn(M,art); M intmat, art string
ASSUME: - M is an integer matrix where a first column of 0's or 1's should be added
@* - art is one of the following strings:
@* + 'rays' : indicating that a first column of 0's should be added
@* + 'points' : indicating that a first column of 1's should be added
RETURN: intmat, a first column has been added to the matrix"
{
if (typeof (M) == "intmat")
{
intmat N[nrows(M)][ncols(M)+1];
int i,j;
for (i=1;i<=nrows(M);i++)
{
if (art=="rays")
{
N[i,1]=0;
}
else
{
N[i,1]=1;
}
for (j=1;j<=ncols(M);j++)
{
N[i,j+1]=M[i,j];
}
}
return(N);
}
if (typeof (M) == "bigintmat")
{
bigintmat N[nrows(M)][ncols(M)+1];
int i,j;
for (i=1;i<=nrows(M);i++)
{
if (art=="rays")
{
N[i,1]=0;
}
else
{
N[i,1]=1;
}
for (j=1;j<=ncols(M);j++)
{
N[i,j+1]=M[i,j];
}
}
return(N);
}
else
{
ERROR ("intmatAddFirstColumn: input matrix has to be either intmat or bigintmat");
intmat N;
return (N);
}
}
|