/usr/share/singular/LIB/purityfiltration.lib is in singular-data 4.0.3+ds-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 | //////////////////////////////////////////////////////////////////////////
//procedures examples comments
version="version purityfiltration.lib 4.0.0.0 Jun_2013 "; // $Id: d6b6e3acf8119392f5ff8e096b32f5f1a647e0f4 $
category="Noncommutative";
info="
LIBRARY: purityfiltration.lib Algorithms for computing a purity filtration of a given module
AUTHORS: Christian Schilli, christian.schilli@rwth-aachen.de
@* Viktor Levandovskyy, levandov@math.rwth-aachen.de
OVERVIEW:
Purity is a notion with several meanings. In our context it is equidimensionality
@* of a module (that is all M is pure iff any nonzero submodule of N has the same dimension as N).
@* Notably, one should define purity with respect to a given dimension function. In the context
@* of this library the corresponding function is the homological grade number j_A(M) of a module M over
@* an K-algebra A. j_A(M) is the minimal integer k, such that Ext^k_A(M,A) != 0.
REFERENCES: [AQ] Alban Quadrat: Grade filtration of linear functional systems, INRIA Report 7769 (2010), to appear in Acta Applicanda Mathematica.
@* [B93] Jan-Erik Bjoerk: Analytic D-modules and applications, Kluwer Acad. Publ., 1993.
@* [MB10] Mohamed Barakat: Purity Filtration and the Fine Structure of Autonomy. Proc. MTNS, 2010.
PROCEDURES:
projectiveDimension(matrix T,int i); compute a shortest resolution of coker(T) and its projective dimension
purityFiltration(matrix R); compute the purity filtration of coker(R)
purityTriang(matrix R) compute a triangular blockmatrix T, such that coker(R) isomorphic to coker(T)
gradeNumber(matrix R); gives the grade number of the module coker(R)
showgrades(list T); gives all grade numbers of the modules represented by the elements of T
allExtOfLeft(matrix R); computes all right ext-modules ext^i(M,D) of a left module M=coker(R) over the ring D
allExtOfRight(matrix R); computes all left ext-modules ext^i(M,D) of a right module M=coker(R) over the ring D
doubleExt(matrix R, int i); computes the left module ext^i(ext^i(M,D),D) over the ring D, M=coker(R)
allDoubleExt(matrix R); computes all double ext modules ext^i(ext^j(M,D),D) of the left module coker(R) over the ring D
is_pure(matrix R); checks whether the module coker(R) is pure
purelist(list T); checks whether all the modules represented by the elements of T are pure
KEYWORDS: D-module; ext-module; filtration; projective dimension; resolution; purity
";
LIB "nctools.lib";
LIB "matrix.lib";
LIB "poly.lib";
LIB "general.lib";
LIB "control.lib";
LIB "nchomolog.lib";
//------------------- auxiliary procedures --------------------------
proc testPurityfiltrationLib()
{
example projectiveDimension;
example purityFiltration;
example purityTriang;
example gradeNumber;
example showgrades;
example allExtOfLeft;
example allExtOfRight;
example doubleExt;
example allDoubleExt;
example is_pure;
example purelist;
}
static proc iszero (matrix R)
"USAGE: iszero(R); R a matrix
RETURN: int, 1, if R is zero,
@* or 0, if it's not
PURPOSE: checks, if the matrix R is zero or not
"
{
ideal i=R;
i=std(i);
if (i==0)
{
return (1);
}
return (0);
}
proc lsyz (matrix R)
"USAGE: lsyz(R), R a matrix
RETURN: matrix, a left syzygy of R
PURPOSE: computes the left syzygy module of the module, generated by the rows of R, i.e.
@* a matrix X with X*R=0
"
{
matrix L=transpose(syz(transpose(R)));
return(L);
}
proc rsyz (matrix R)
"USAGE: rsyz(R), R a matrix
RETURN: matrix, a rightsyzygy of R
PURPOSE: computes the right syzygy module of the module, generated by the rows of R, i.e.
@* a matrix X with R*X=0
EXAMPLE: example rsyz; shows example
"
{
def save = basering; // with respect to non-commutative rings,
def saveop = opposite(save); // we have to switch to the oppose ring for a rightsyzygy
setring saveop;
matrix Rop = oppose(save,R);
matrix Bop = syz(Rop);
setring save;
matrix B =oppose(saveop,Bop);
kill saveop;
return(B);
}
example
{"EXAMPLE:";echo = 2;
ring D = 0,(x,y,z),dp;
matrix R[3][2]=x,0,0,x,y,-z;
matrix X=rsyz(R);
print(X);
// check
print(R*X);
}
static proc rinv (matrix R)
"USAGE: rinv(R), R a matrix
RETURN: matrix, a right inverse of R
PURPOSE: computes a right inverse matrix of R, if it exists
@* if not, it returns the zero matrix
"
{
return(rightInverse(R));
}
static proc linv (matrix R)
"USAGE: linv(R), R a matrix
RETURN: matrix, a left inverse of R
PURPOSE: computes a left inverse matrix of R, if it exists
@* if not, it returns the zero matrix
"
{
return (leftInverse(R));
}
proc rlift(matrix M, matrix N)
"USAGE: rlift(M,N), M and N matrices, so that the module, generated by the columns of N
@* is a submodule of the one, generated by the columns of M
RETURN: matrix, a right lift of N in M
PURPOSE: computes a right lift matrix X of N in M,
@* i.e. N=M*X
"
{
def save = basering; // with respect to non-commutative rings,
def saveop = opposite(save); // we have to change the ring for a rightlift
setring saveop;
matrix Mop = oppose(save,M);
matrix Nop = oppose(save,N);
matrix Bop = lift(Mop,Nop);
setring save;
matrix B =oppose(saveop,Bop);
kill saveop;
return(B);
}
proc llift(matrix M, matrix N)
"USAGE: llift(M,N), M and N matrices, so that the module, generated by the rows of N
@* is a submodule of the one, generated by the rows of M
RETURN: matrix, a left lift of N in M
PURPOSE: computes a left lift matrix X of N in M,
@* i.e. N=X*M
"
{
matrix X=transpose(lift(transpose(M),transpose(N)));
return(X);
}
static proc concatz(matrix M, matrix N)
"USAGE: concatz(M,N), M and N matrices
RETURN: matrix
PURPOSE: adds the rows of N under the rows of M, i.e. build the matrix (M^Tr,N^Tr)^Tr
"
{
matrix X=transpose(concat(transpose(M),transpose(N)));
return (X);
}
//------------------------- main procedures --------------------------
proc purityFiltration(matrix R)
"USAGE: purityFiltration(S), S matrix with entries of an Auslander regular ring D
RETURN: a list T of two lists, purity filtration of the module M=D^q/D^p(S^t)
PURPOSE: the first list T[1] gives a filtration {M_i} of M,
@* where the i-th entry of T[1] gives the representation matrix of M_(i-1).
@* the second list T[2] gives representations of the factor Modules,
@* i.e. T[2][i] gives the repr. matrix for M_(i-1)/M_i
EXAMPLE: example purityFiltration; shows example
"
{
int i,j;
list re=projectiveDimension(R,0);
list T=re[1];
int di=re[2];
list reres; // Rji=reres[i][j+1], i=1,..,n+1; j=0,..,i
for( i=1; i<=di+1; i++ )
{
list zw;
zw[i+1]=T[i];
for( j=i; j >= 1; j--)
{
zw[j]=rsyz(zw[j+1]);
}
reres[i]=zw;
kill zw;
}
list F; // Fij=F[j][i+1], j=2,..,n+1; i=0,..,j-1
for(i=2;i<=di;i++)
{
list ehm;
matrix I[nrows(T[i-1])][nrows(T[i-1])];
I=I+1;
ehm[i]=I;
kill I;
for (j=1; j<=i-1; j++)
{
ehm[i-j]=rlift(reres[i][i-j+1],ehm[i-j+1]*reres[i-1][i-j+1]);
}
F[i]=ehm;
kill ehm;
}
// list M; // Mi=M[i+1], i=0,...,n+1
// M[1]=R1;
// matrix Ti=lsyz(reres[1][1]);
// matrix P[ncols(Ti)][ncols(Ti)];
// P=P+1;
// for (i=1;i<=di; i++)
// {
// M[i+1]=transpose(modulo(transpose(Ti*P),transpose(reres[i][2])));
// P=F[i+1][1]*P;
// Ti=lsyz(reres[i+1][1]);
// }
// M[di+2]=transpose(modulo(transpose(Ti*P),transpose(reres[di+1][2])));
// list I;
// for (i=1;i<=di+1;i++)
// {
// I[i]=transpose(modulo(transpose(M[i]),transpose(M[i+1])));
// }
list Rs,Rss;
for(i=1; i<=di; i++)
{
list zw;
zw[1]=lsyz(reres[i][1]);
zw[2]=lsyz(zw[1]);
Rss[i]=llift(zw[1],reres[i][2]);
Rs[i]=zw;
kill zw;
}
list Fs;
for(i=2;i<=di;i++)
{
Fs[i]=llift(Rs[i-1][1],Rs[i][1]*F[i][1]);
}
list K,U;
K[1]=transpose(R);
U[1]=Rs[1][1];
for(i=2;i<=di;i++)
{
K[i]=transpose(std(transpose(concatz(Rss[i-1], Rs[i-1][2]))));
U[i]=transpose(std(transpose(concatz(concatz(Fs[i],Rss[i-1]),Rs[i-1][2]))));
}
K[di+1]=transpose(std(transpose(concatz(Rss[di], Rs[di][2]))));
U[di+1]=K[di+1];
list erg=(K,U);
return (erg);
}
example
{"EXAMPLE:";echo = 2;
ring D = 0,(x1,x2,d1,d2),dp;
def S=Weyl();
setring S;
int i;
matrix R[3][3]=0,d2-d1,d2-d1,d2,-d1,-d1-d2,d1,-d1,-2*d1;
print(R);
list T=purityFiltration(transpose(R));
// the purity filtration of coker(M)
print(T[1][1]);
print(T[1][2]);
print(T[1][3]);
// factor modules of the filtration
print(T[2][1]);
print(T[2][2]);
print(T[2][3]);
}
proc purityTriang(matrix R)
"USAGE: purityTriang(S), S matrix with entries of an Auslander regular ring D
RETURN: a matrix T
PURPOSE: compute a triangular block matrix T, such that M=D^p/D^q(S^t) is isomorphic to M'=D^p'/D^q(T^t)
EXAMPLE: example purityTriang; shows example
"
{
int i,j;
list re=projectiveDimension(R,0);
list T=re[1];
int di=re[2];
list reres; // Rji=reres[i][j+1], i=1,..,n+1; j=0,..,i
for( i=1; i<=di+1; i++ )
{
list zw;
zw[i+1]=T[i];
for( j=i; j >= 1; j--)
{
zw[j]=rsyz(zw[j+1]);
}
reres[i]=zw;
kill zw;
}
list F; // Fij=F[j][i+1], j=2,..,n+1; i=0,..,j-1
for(i=2;i<=di;i++)
{
list ehm;
matrix I[nrows(T[i-1])][nrows(T[i-1])];
I=I+1;
ehm[i]=I;
kill I;
for (j=1; j<=i-1; j++)
{
ehm[i-j]=rlift(reres[i][i-j+1],ehm[i-j+1]*reres[i-1][i-j+1]);
}
F[i]=ehm;
kill ehm;
}
list Rs,Rss;
for(i=1; i<=di; i++)
{
list zw;
zw[1]=lsyz(reres[i][1]);
zw[2]=lsyz(zw[1]);
Rss[i]=llift(zw[1],reres[i][2]);
Rs[i]=zw;
kill zw;
}
list Fs;
for(i=2;i<=di;i++)
{
Fs[i]=llift(Rs[i-1][1],Rs[i][1]*F[i][1]);
}
int sp; list spnr;
spnr[1]=ncols(Rs[1][1]);
for (i=2;i<=di;i++)
{
spnr[i]=ncols(Fs[i]);
}
spnr[di+1]=ncols(Rss[di]);
sp=sum(spnr);
matrix E[nrows(Rs[1][1])][nrows(Rs[1][1])]; E=E-1;
list Z; int sumh;
Z[1]=concat(Rs[1][1],E);
sumh=ncols(Rs[1][1]);
kill E;
for(i=2;i<=di;i++)
{
matrix A;
matrix B[1][sumh];
matrix E[nrows(Fs[i])][nrows(Fs[i])]; E=E-1;
A=Fs[i];
if (i>2)
{
if (iszero(Rss[i-1])==0)
{
A=concatz(A,Rss[i-1]);
}
}
if (iszero(Rs[i-1][2])==0)
{
A=concatz(A,Rs[i-1][2]);
}
A=concat(B,A,E);
Z[i]=A;
sumh=sumh+spnr[i];
kill A,B,E;
}
matrix hi,his;
matrix N[1][sumh];
if (iszero(Rss[di])==0)
{
hi=concat(N,Rss[di]);
}
if (iszero(Rs[di][2])==0)
{
his=concat(N,Rs[di][2]);
if (iszero(hi)==1)
{
hi=his;
}
if (iszero(hi)==0)
{
hi=concatz(hi,his);
}
}
kill his;
matrix ges=Z[1];
for (i=2;i<=di;i++)
{
ges = concatz(ges,Z[i]);
}
if (iszero(hi)==0)
{
ges=concatz(ges,hi);
}
return (ges);
}
example
{"EXAMPLE:";echo = 2;
ring D = 0,(x1,x2,d1,d2),dp;
def S=Weyl();
setring S;
int i;
matrix R[3][3]=0,d2-d1,d2-d1,d2,-d1,-d1-d2,d1,-d1,-2*d1;
print(R);
matrix T=purityTriang(transpose(R));
// a triangular blockmatrix representing the module coker(R)
print(T);
}
proc gradeNumber(matrix R)
"USAGE: gradeNumber(R), R matrix, representing M=D^p/D^q(R^t) over a ring D
RETURN: int, grade number of M
PURPOSE: computes the grade number of M, i.e. the first i, with ext^i(M,D) !=0
@* returns -1 if M=0
EXAMPLE: example gradeNumber; shows examples
"
{
matrix M=transpose(R);
if (is_zero(transpose(M))==1)
{
return (-1);
}
list ext = allExtOfLeft(transpose(M));
int i=1;
matrix L=ext[i];
while (is_zero(transpose(L))==1)
{
i=i+1;
L=ext[i];
}
return (i-1);
}
example
{"EXAMPLE:";echo = 2;
// trivial example
ring D=0,(x,y,z),dp;
matrix R[2][1]=1,x;
gradeNumber(R);
// R has left inverse, so M=D/D^2R=0
gradeNumber(transpose(R));
print(ncExt_R(0,R));
// so, ext^0(coker(R),D) =! 0)
//
// a little bit more complex
matrix R1[3][1]=x,-y,z;
gradeNumber(transpose(R1));
print(ncExt_R(0,transpose(R1)));
print(ncExt_R(1,transpose(R1)));
print(ncExt_R(2,transpose(R1)));
// ext^i are zero for i=0,1,2
matrix ext3=ncExt_R(3,transpose(R1));
print(ext3);
// not zero
is_zero(ext3);
}
proc allExtOfLeft(matrix Ps)
"USAGE: allExtOfLeft(M),
RETURN: list, entries are ext-modules
ASSUME: M presents a left module of finite left projective dimension n
PURPOSE: For a left module presented by M over the basering D,
@* compute a list T, whose entry T[i+1] is a matrix, presenting the right module Ext^i_D(M,D) for i=0..n
EXAMPLE: example allExtOfLeft; shows example
"
{
// old doc: ... T[i] gives the repr. matrix of ext^(i-1)(M,D), i=1,.., n+1
list ext, Phi;
ext[1]=ncHom_R(Ps);
Phi = mres(Ps,0);
int di = size(Phi);
Phi[di+1]= transpose(lsyz(transpose(Phi[di])));
int i;
def Rbase = basering;
for(i=1;i<=di;i++)
{
module f = transpose(matrix(Phi[i+1]));
module Im2 = transpose(matrix(Phi[i]));
def Rop = opposite(Rbase);
setring Rop;
module fop = oppose(Rbase,f);
module Im2op = oppose(Rbase,Im2);
module ker_op = modulo(fop,std(0));
module ext_op = modulo(ker_op,Im2op);
setring Rbase;
ext[i+1] = oppose(Rop,ext_op); // a right module!
kill f, Im2, Rop;
}
return(ext);
}
example
{"EXAMPLE:";echo = 2;
ring D = 0,(x,y,z),dp;
matrix R[6][4]=
0,-2*x,z-2*y-x,-1,
0,z-2*x,2*y-3*x,1,
z,-6*x,-2*y-5*x,-1,
0,y-x,y-x,0,
y,-x,-y-x,0,
x,-x,-2*x,0;
// coker(R) consider the left module M=D^6/D^4R
list T=allExtOfLeft(transpose(R));
print(T[1]);
print(T[2]);
print(T[3]);
print(T[4]);
// right modules coker(T[i].)!!
}
proc allExtOfRight(matrix Ps)
"USAGE: allExtOfRight(R), R matrix representing the right Module M=D^q/RD^p over a ring D
@* M module with finite right projective dimension n
RETURN: list, entries are ext-modules
PURPOSE: computes a list T, which entries are representations of the left modules ext^i(M,D)
@* T[i] gives the repr. matrix of ext^(i-1)(M,D), i=1,..,n+1
EXAMPLE: example allExtOfRight; shows example
"
{
// matrix Ps=transpose(Y);
list ext, Phi;
def Rbase = basering;
def Rop = opposite(Rbase);
setring Rop;
matrix Psop=oppose(Rbase,Ps);
matrix ext1_op = ncHom_R(Psop);
setring Rbase;
ext[1]=oppose(Rop,ext1_op);
kill Rop;
list zw = rightreso(transpose(Ps)); // right resolution
int di = size(zw);
zw[di+1]=lsyz(zw[di]);
Phi = zw;
kill zw;
int i;
for(i=1;i<=di;i++)
{
module f = Phi[i+1];
module Im2 = Phi[i];
module ker = modulo(f,std(0));
ext[i+1] = modulo(ker,Im2); // a left module!
kill f, Im2, ker;
}
return(ext);
}
example
{"EXAMPLE:";echo = 2;
ring D = 0,(x,y,z),dp;
matrix R[6][4]=
0,-2*x,z-2*y-x,-1,
0,z-2*x,2*y-3*x,1,
z,-6*x,-2*y-5*x,-1,
0,y-x,y-x,0,
y,-x,-y-x,0,
x,-x,-2*x,0;
// coker(R) considered as right module
projectiveDimension(R,1)[2];
list T=allExtOfRight(R);
print(T[1]);
print(T[2]);
// left modules coker(.T[i])!!
}
static proc rightreso(matrix T)
"USAGE: rightreso(T), T matrix representing the right module M=D*/TD*
RETURN: list L, a right resolution of M
PURPOSE: computes a right resolution of M, using mres
@* the i-th entry of L gives the (i-1)th right syzygy module of M
"
{
int j;
matrix M=transpose(T);
list res;
def save = basering; // with respect to non-commutative rings,
def saveop = opposite(save); // we have to change the ring for a rightresolution
setring saveop;
matrix Mop=oppose(save,M);
list aufl=mres(Mop,0);
list resop=aufl;
kill aufl;
for (j=1; j<=size(resop); j++)
{
matrix zw=resop[j];
setring save;
res[j]=transpose(oppose(saveop,zw));
setring saveop;
kill zw;
}
setring save;
kill saveop;
return(res);
}
proc showgrades(list T)
"USAGE: showgrades(T), T list, which includes representation matrices of modules
RETURN: list, gradenumbers of the entries in T
PURPOSE: computes a list L with L[i]=gradenumber(M), M=D^p/D^qT[i]
EXAMPLE: example showgrades; shows example
"
{
list grades;
int gr=size(T);
int i;
for (i=1;i<=gr;i++)
{
grades[i]=gradeNumber(transpose(T[i]));
}
return (grades);
}
example
{"EXAMPLE:";echo = 2;
ring D = 0,(x,y,z),dp;
matrix R[6][4]=
0,-2*x,z-2*y-x,-1,
0,z-2*x,2*y-3*x,1,
z,-6*x,-2*y-5*x,-1,
0,y-x,y-x,0,
y,-x,-y-x,0,
x,-x,-2*x,0;
list T=purityFiltration(transpose(R))[2];
showgrades(T);
// T[i] are i-1 pure (i=1,3,4) or zero (i=2)
}
proc doubleExt(matrix R, int i)
"USAGE: doubleExt(R,i), R matrix representing the left Module M=D^p/D^q(R^t) over a ring D
@* int i, less or equal the left projective dimension of M
RETURN: matrix P, representing the double ext module
PURPOSE: computes a matrix P, which represents the left module ext^i(ext^i(M,D))
EXAMPLE: example doubleExt; shows example
"
{
return (allExtOfRight( allExtOfLeft(R)[i+1] )[i+1]);
}
example
{"EXAMPLE:";echo = 2;
ring D = 0,(x,y,z),dp;
matrix R[7][3]=
0 ,0,1,
1 ,-4*x+z,-z,
-1,8*x-2*z,z,
1 ,0 ,0,
0 ,x-y,0,
0 ,x-y,y,
0 ,0 ,x;
// coker(R) is 2-pure, so all doubleExt are zero
print(doubleExt(transpose(R),0));
print(doubleExt(transpose(R),1));
print(doubleExt(transpose(R),3));
// except of the second
print(doubleExt(transpose(R),2));
}
proc allDoubleExt(matrix R)
"USAGE: allDoubleExt(R), R matrix representing the left Module M=D^p/D^q(R^t) over a ring D
RETURN: list T, double indexed, which include all double-ext modules
PURPOSE: computes all double ext-modules
@* T[i][j] gives a representation matrix of ext^(j-1)(ext(i-1)(M,D))
EXAMPLE: example allDoubleExt; shows example
"
{
list ext=allExtOfLeft(transpose(R));
list extext;
int i;
for(i=1;i<=size(ext);i++)
{
extext[i]=allExtOfRight(ext[i]);
}
kill ext;
return (extext);
}
example
{"EXAMPLE:";echo = 2;
ring D = 0,(x1,x2,x3,d1,d2,d3),dp;
def S=Weyl();
setring S;
matrix R[6][4]=
0,-2*d1,d3-2*d2-d1,-1,
0,d3-2*d1,2*d2-3*d1,1,
d3,-6*d1,-2*d2-5*d1,-1,
0,d2-d1,d2-d1,0,
d2,-d1,-d2-d1,0,
d1,-d1,-2*d1,0;
list T=allDoubleExt(transpose(R));
// left projective dimension of M=coker(R) is 3
// ext^i(ext^0(M,D)), i=0,1,2,3
print(T[1][1]);
print(T[1][2]);
print(T[1][3]);
print(T[1][4]);
// ext^i(ext^1(M,D)), i=0,1,2,3
print(T[2][1]);
print(T[2][2]);
print(T[2][3]);
print(T[2][4]);
// ext^i(ext^2(M,D)), i=0,1,2,3 (all zero)
print(T[3][1]);
print(T[3][2]);
print(T[3][3]);
print(T[3][4]);
// ext^i(ext^3(M,D)), i=0,1,2,3 (all zero)
print(T[4][1]);
print(T[4][2]);
print(T[4][3]);
print(T[4][4]);
}
proc is_pure(matrix R)
"USAGE: is_pure(R), R representing the module M=D^p/D^q(R^t)
RETURN: int, 0 or 1
PURPOSE: checks pureness of M.
@* returns 1, if M is pure, or 0, if it's not
@* remark: if M is zero, is_pure returns 1
EXAMPLE: example is_pure; shows example
"
{
matrix M=transpose(R);
int gr=gradeNumber(transpose(M));
int di=projectiveDimension(transpose(M),0)[2];
int i=0;
while(i<=di)
{
if (i!=gr)
{
if ( is_zero( doubleExt(transpose(M),i) ) == 0 )
{
return (0);
}
}
i=i+1;
}
return (1);
}
example
{"EXAMPLE:";echo = 2;
ring D = 0,(x,y,z),dp;
matrix R[3][2]=y,-z,x,0,0,x;
list T=purityFiltration(transpose(R));
print(transpose(std(transpose(T[2][2]))));
// so the purity filtration of coker(R) is trivial,
// i.e. coker(R) is already pure
is_pure(transpose(R));
// we can also have non-pure modules:
matrix R2[6][4]=
0,-2*x,z-2*y-x,-1,
0,z-2*x,2*y-3*x,1,
z,-6*x,-2*y-5*x,-1,
0,y-x,y-x,0,
y,-x,-y-x,0,
x,-x,-2*x,0;
is_pure(transpose(R2));
}
proc purelist(list T)
"USAGE: purelist(T), T list, in which the i-th entry R=T[i] represents M=D^p/D^q(R^t)
RETURN: list M, entries of M are 0 or 1
PURPOSE: if T[i] is pure, M[i] is 1, else M[i] is 0
EXAMPLE: example purelist; shows example
"
{
int i;
list erg;
for(i=1;i<=size(T);i++)
{
erg[i]=is_pure(transpose(T[i]));
}
return (erg);
}
example
{"EXAMPLE:";echo = 2;
ring D = 0,(x,y,z),dp;
matrix R[6][4]=
0,-2*x,z-2*y-x,-1,
0,z-2*x,2*y-3*x,1,
z,-6*x,-2*y-5*x,-1,
0,y-x,y-x,0,
y,-x,-y-x,0,
x,-x,-2*x,0;
is_pure(transpose(R));
// R is not pure, so we do the purity filtration
list T=purityFiltration(transpose(R));
// all Elements of T[2] are either zero or pure
purelist(T[2]);
}
proc projectiveDimension(matrix T, list #)
"USAGE: projectiveDimension(R,i,j), R matrix representing the Modul M=coker(R)
@* int i, with i=0 or i=1, j a natural number
RETURN: list T, a projective resolution of M and its projective dimension
PURPOSE: if i=0 (and by default), T[1] gives a shortest left resolution of M=D^p/D^q(R^t) and T[2] the left projective dimension of M
@* if i=1, T[1] gives a shortest right resolution of M=D^p/RD^q and T[2] the right projective dimension of M
@* in both cases T[1][j] is the (j-1)-th syzygy module of M
NOTE: The algorithm is due to A. Quadrat, D. Robertz, Computation of bases of free modules over the Weyl algebras, J.Symb.Comp. 42, 2007.
EXAMPLE: example projectiveDimension; shows examples
"
{
int i = 0; // default
if (size(#) >0)
{
i = int(#[1]);
if ( (i!=0) and (i!=1) )
{
printf("Unaccepted second argument. Use 0 to get a left resolution, 1 for a right one.");
}
}
if (i==0)
{
return(prodim(T));
}
int j;
matrix M=T;
list res;
def save = basering; // with respect to non-commutative rings,
def saveop = opposite(save); // we have to change the ring for a rightresolution
setring saveop;
matrix Mop=oppose(save,M);
list aufl=prodim(Mop);
int k=aufl[2];
list resop=aufl[1];
kill aufl;
for (j=1; j<=size(resop); j++)
{
matrix zw=resop[j];
setring save;
res[j]=transpose(oppose(saveop,zw));
setring saveop;
kill zw;
}
setring save;
list Y;
Y[1]=res;
Y[2]=k;
kill saveop;
kill res;
return(Y);
}
example
{"EXAMPLE:";echo = 2;
// commutative example
ring D = 0,(x,y,z),dp;
matrix R[6][4]=
0,-2*x,z-2*y-x,-1,
0,z-2*x,2*y-3*x,1,
z,-6*x,-2*y-5*x,-1,
0,y-x,y-x,0,
y,-x,-y-x,0,
x,-x,-2*x,0;
// compute a left resolution of M=D^4/D^6*R
list T=projectiveDimension(transpose(R),0);
// so we have the left projective dimension
T[2];
//we could also compute a right resolution of M=D^6/RD^4
list T1=projectiveDimension(R,1);
// and we have right projective dimension
T1[2];
// check, that a syzygy matrix of R has left inverse:
print(leftInverse(syz(R)));
// so lpd(M) must be 1.
// Non-commutative example
ring D1 = 0,(x1,x2,x3,d1,d2,d3),dp;
def S=Weyl(); setring S;
matrix R[3][3]=
1/2*x2*d1, x2*d2+1, x2*d3+1/2*d1,
-1/2*x2*d2-3/2,0,1/2*d2,
-d1-1/2*x2*d3,-d2,-1/2*d3;
list T=projectiveDimension(R,0);
// left projective dimension of coker(R) is
T[2];
list T1=projectiveDimension(R,1);
// both modules have the same projective dimension, but different resolutions, because D is non-commutative
print(T[1][1]);
// not the same as
print(transpose(T1[1][1]));
}
static proc prodim(matrix M)
"USAGE: prodim(R), R matrix representing the Modul M=coker(R)
RETURN: list T, a left projective resolution of M and its left projective dimension
PURPOSE: T[1] gives a shortest left resolution of M and T[2] the left projective dimension of M
@* it is T[1][j] the (j-1)-th syzygy module of M
"
{
matrix T=transpose(M);
list R,zw;
R[1]=T;
if (rinv(R[1])==0)
{
R[2]=transpose(std(transpose(lsyz(R[1]))));
}
else
{
matrix S[1][ncols(T)];
R[1]=S;
zw[1]=R;
zw[2]=0;
return (zw);
}
if (iszero(R[2])==1)
{
zw[1]=R;
zw[2]=1;
return (zw);
}
int i=1;
matrix N;
while (iszero(R[i+1])==0)
{
i=i+1;
N=rinv(R[i]);
if (iszero(N)==0)
{
if (i==2)
{
R[i-1]=concat(R[i-1],N);
matrix K[1][nrows(R[1])];
R[2]=K;
zw[1]=R;
zw[2]=i-1;
return (zw);
}
if (i>2)
{
R[i-1]=concat(R[i-1],N);
matrix K[ncols(N)][1];
R[i-2]=concatz(R[i-2],K);
R[i]=0;
zw[1]=R;
zw[2]=i-1;
return(zw);
}
}
R[i+1]=transpose(std(transpose(lsyz(R[i]))));
}
zw[1]=R;
zw[2]=i;
return (zw);
}
|