/usr/share/singular/LIB/qhmoduli.lib is in singular-data 4.0.3+ds-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 | /////////////////////////////////////////////////////////////////////////////
version="version qhmoduli.lib 4.0.0.0 Jun_2013 "; // $Id: bebbc37438a50e1faca24d907fdd18672a015f47 $
category="Singularities";
info="
LIBRARY: qhmoduli.lib Moduli Spaces of Semi-Quasihomogeneous Singularities
AUTHOR: Thomas Bayer, email: bayert@in.tum.de
PROCEDURES:
ArnoldAction(f, [G, w]) Induced action of G_f on T_.
ModEqn(f) Equations of the moduli space for principal part f
QuotientEquations(G,A,I) Equations of Variety(I)/G w.r.t. action 'A'
StabEqn(f) Equations of the stabilizer of f.
StabEqnId(I, w) Equations of the stabilizer of the qhom. ideal I.
StabOrder(f) Order of the stabilizer of f.
UpperMonomials(f, [w]) Upper basis of the Milnor algebra of f.
Max(data) maximal integer contained in 'data'
Min(data) minimal integer contained in 'data'
";
// NOTE: This library has been written in the frame of the diploma thesis
// 'Computing moduli spaces of semiquasihomogeneous singularities and an
// implementation in Singular', Arbeitsgruppe Algebraische Geometrie,
// Fachbereich Mathematik, University Kaiserslautern,
// Advisor: Prof. Gert-Martin Greuel
LIB "rinvar.lib";
///////////////////////////////////////////////////////////////////////////////
proc ModEqn(poly f, list #)
"USAGE: ModEqn(f [, opt]); poly f; int opt;
PURPOSE: compute equations of the moduli space of semiquasihomogenos hypersurface singularity with principal part f w.r.t. right equivalence
ASSUME: f quasihomogeneous polynomial with an isolated singularity at 0
RETURN: polynomial ring, possibly a simple extension of the ground field of
the basering, containing the ideal 'modid'
- 'modid' is the ideal of the moduli space if opt is even (> 0).
otherwise it contains generators of the coordinate ring R of the
moduli space (note : Spec(R) is the moduli space)
OPTIONS: 1 compute equations of the mod. space,
2 use a primary decomposition,
4 compute E_f0, i.e., the image of G_f0,
to combine options, add their value, default: opt =7
EXAMPLE: example ModEqn; shows an example
"
{
int sizeOfAction, i, dimT, nonLinearQ, milnorNr, dbPrt;
int imageQ, opt;
intvec wt;
ideal B;
list Gf, tIndex, sList;
string ringSTR;
dbPrt = printlevel-voice+2;
if(size(#) > 0) { opt = #[1]; }
else { opt = 7; }
if(opt div 4 > 0) { imageQ = 1; opt = opt - 4;}
else { imageQ = 0; }
wt = weight(f);
milnorNr = vdim(std(jacob(f)));
if(milnorNr == -1) {
ERROR("the polynomial " + string(f) + " has a nonisolated singularity at 0");
} // singularity not isolated
// 1st step : compute a basis of T_
B = UpperMonomials(f, wt);
dimT = size(B);
dbprint(dbPrt, "moduli equations of f = " + string(f) + ", f has Milnor number = " + string(milnorNr));
dbprint(dbPrt, " upper basis = " + string(B));
if(size(B) > 1) {
// 2nd step : compute the stabilizer G_f of f
dbprint(dbPrt, " compute equations of the stabilizer of f, called G_f");
Gf = StabEqn(f);
dbprint(dbPrt, " order of the stabilizer = " + string(StabOrder(Gf)));
// 3rd step : compute the induced action of G_f on T_ by means of a theorem of Arnold
dbprint(dbPrt, " compute the induced action");
def RME1 = ArnoldAction(f, Gf, B);
setring(RME1);
export(RME1);
dbprint(dbPrt, " G_f = " + string(stabid));
dbprint(dbPrt, " action of G_f : " + string(actionid));
// 4th step : linearize the action of G_f
sizeOfAction = size(actionid);
def RME2 = LinearizeAction(stabid, actionid, nvars(Gf[1]));
setring RME2;
export(RME2);
kill RME1;
if(size(actionid) == sizeOfAction) { nonLinearQ = 0;}
else {
nonLinearQ = 1;
dbprint(dbPrt, " linearized action = " + string(actionid));
dbprint(dbPrt, " embedding of T_ = " + string(embedid));
}
if(!imageQ) { // do not compute the image of Gf
// 5th step : set E_f = G_f,
dbprint(dbPrt, " compute equations of the quotient T_/G_f");
def RME3 = basering;
}
else {
// 5th step : compute the ideal and the action of E_f
dbprint(dbPrt, " compute E_f");
def RME3 = ImageGroup(groupid, actionid);
setring(RME3);
ideal embedid = imap(RME2, embedid);
dbprint(dbPrt, " E_f = (" + string(groupid) + ")");
dbprint(dbPrt, " action of E'f = " + string(actionid));
dbprint(dbPrt, " compute equations of the quotient T_/E_f");
}
export(RME3);
kill RME2;
// 6th step : compute the equations of the quotient T_/E_f
ideal G = groupid; ideal variety = embedid;
kill groupid,embedid;
def RME4 = QuotientEquations(G, actionid, variety, opt);
setring RME4;
string @mPoly = string(minpoly);
kill RME3;
export(RME4);
// simplify the ideal and create a new ring with propably less variables
if(opt == 1 || opt == 3) { // equations computed ?
sList = SimplifyIdeal(id, 0, "Y");
ideal newid = sList[1];
dbprint(dbPrt, " number of equations = " + string(size(sList[1])));
dbprint(dbPrt, " number of variables = " + string(size(sList[3])));
ringSTR = "ring RME5 = (" + charstr(basering) + "), (Y(1.." + string(size(sList[3])) + ")),dp;";
execute(ringSTR);
execute("minpoly = number(" + @mPoly + ");");
ideal modid = imap(RME4, newid);
}
else {
def RME5 = RME4;
setring(RME5);
ideal modid = imap(RME4, id);
}
export(modid);
kill RME4;
}
else {
def RME5 = basering;
ideal modid = maxideal(1);
if(size(B) == 1) { // 1-dimensional
modid[size(modid)] = 0;
modid = simplify(modid,2);
}
export(modid);
}
dbprint(dbPrt, "
// 'ModEqn' created a new ring.
// To see the ring, type (if the name of the ring is R):
show(R);
// To access the ideal of the moduli space of semiquasihomogeneous singularities
// with principal part f, type
def R = ModEqn(f); setring R; modid;
// 'modid' is the ideal of the moduli space.
// if 'opt' = 0 or even, then 'modid' contains algebra generators of S s.t.
// spec(S) = moduli space of f.
");
return(RME5);
}
example
{"EXAMPLE:"; echo = 2;
ring B = 0,(x,y), ls;
poly f = -x4 + xy5;
def R = ModEqn(f);
setring R;
modid;
}
///////////////////////////////////////////////////////////////////////////////
proc QuotientEquations(ideal G, ideal Gaction, ideal embedding, list#)
"USAGE: QuotientEquations(G,action,emb [, opt]); ideal G,action,emb;int opt
PURPOSE: compute the quotient of the variety given by the parameterization
'emb' by the linear action 'action' of the algebraic group G.
ASSUME: 'action' is linear, G must be finite if the Reynolds operator is
needed (i.e., NullCone(G,action) returns some non-invariant polys)
RETURN: polynomial ring over a simple extension of the ground field of the
basering, containing the ideals 'id' and 'embedid'.
- 'id' contains the equations of the quotient, if opt = 1;
if opt = 0, 2, 'id' contains generators of the coordinate ring R
of the quotient (Spec(R) is the quotient)
- 'embedid' = 0, if opt = 1;
if opt = 0, 2, it is the ideal defining the equivariant embedding
OPTIONS: 1 compute equations of the quotient,
2 use a primary decomposition when computing the Reynolds operator,@*
to combine options, add their value, default: opt =3.
EXAMPLE: example QuotientEquations; shows an example
"
{
int i, opt, primaryDec, relationsQ, dbPrt;
ideal Gf, variety;
intvec wt;
dbPrt = printlevel-voice+3;
if(size(#) > 0) { opt = #[1]; }
else { opt = 3; }
if(opt div 2 > 0) { primaryDec = 1; opt = opt - 2; }
else { primaryDec = 0; }
if(opt > 0) { relationsQ = 1;}
else { relationsQ = 0; }
Gf = std(G);
variety = EquationsOfEmbedding(embedding, nvars(basering) - size(Gaction));
if(size(variety) == 0) { // use Hilbert function !
//for(i = 1; i <= ncols(Gaction); i ++) { wt[i] = 1;}
for(i = 1; i <= nvars(basering); i ++) { wt[i] = 1;}
}
def RQER = InvariantRing(Gf, Gaction, primaryDec); // compute the nullcone of the linear action
def RQEB = basering;
setring(RQER);
export(RQER);
if(relationsQ > 0) {
dbprint(dbPrt, " compute equations of the variety (" + string(size(imap(RQER, invars))) + " invariants) ");
if(!defined(variety)) { ideal variety = imap(RQEB, variety); }
if(wt[1] > 0) {
def RQES = ImageVariety(variety, imap(RQER, invars), wt);
}
else {
def RQES = ImageVariety(variety, imap(RQER, invars)); // forget imap
}
setring(RQES);
ideal id = imageid;
ideal embedid = 0;
}
else {
def RQES = basering;
ideal id = imap(RQER, invars);
ideal embedid = imap(RQEB, variety);
}
kill RQER;
export(id);
export(embedid);
return(RQES);
}
///////////////////////////////////////////////////////////////////////////////
proc UpperMonomials(poly f, list #)
"USAGE: UpperMonomials(poly f, [intvec w])
PURPOSE: compute the upper monomials of the milnor algebra of f.
ASSUME: f is quasihomogeneous (w.r.t. w)
RETURN: ideal
EXAMPLE: example UpperMonomials; shows an example
"
{
int i,d;
intvec wt;
ideal I, J;
if(size(#) == 0) { wt = weight(f);}
else { wt = #[1];}
J = kbase(std(jacob(f)));
d = deg(f, wt);
for(i = 1; i <= size(J); i++) { if(deg(J[i], wt) > d) {I = I, J[i];} }
return(simplify(I, 2));
}
example
{"EXAMPLE:"; echo = 2;
ring B = 0,(x,y,z), ls;
poly f = -z5+y5+x2z+x2y;
UpperMonomials(f);
}
///////////////////////////////////////////////////////////////////////////////
proc ArnoldAction(poly f, list #)
"USAGE: ArnoldAction(f, [Gf, B]); poly f; list Gf, B;
'Gf' is a list of two rings (coming from 'StabEqn')
PURPOSE: compute the induced action of the stabilizer G of f on T_, where
T_ is given by the upper monomials B of the Milnor algebra of f.
ASSUME: f is quasihomogeneous
RETURN: polynomial ring over the same ground field, containing the ideals
'actionid' and 'stabid'.
- 'actionid' is the ideal defining the induced action of Gf on T_ @*
- 'stabid' is the ideal of the stabilizer Gf in the new ring
EXAMPLE: example ArnoldAction; shows an example
"
{
int i, offset, ub, pos, nrStabVars, dbPrt;
intvec wt = weight(f);
ideal B;
list Gf, parts, baseDeg;
string ringSTR1, ringSTR2, parName, namesSTR, varSTR;
dbPrt = printlevel-voice+2;
if(size(#) == 0) {
Gf = StabEqn(f);
B = UpperMonomials(f, wt);
}
else {
Gf = #[1];
if(size(#) > 1) { B = #[2];}
else {B = UpperMonomials(f, wt);}
}
if(size(B) == 0) { ERROR("the principal part " + string(f) + " has no upper monomials");}
for(i = 1; i <= size(B); i = i + 1) {
baseDeg[i] = deg(B[i], wt);
}
ub = Max(baseDeg) + 1; // max degree of an upper mono.
def RAAB = basering;
def STR1 = Gf[1];
def STR2 = Gf[2];
nrStabVars = nvars(STR1);
dbprint(dbPrt, "ArnoldAction of f = ", f, ", upper base = " + string(B));
setring STR1;
string @mPoly = string(minpoly);
setring RAAB;
// setup new ring with s(..) and t(..) as parameters
varSTR = string(maxideal(1));
ringSTR2 = "ring RAAS = ";
if(npars(basering) == 1) {
parName = parstr(basering);
ringSTR2 = ringSTR2 + "(0, " + parstr(1) + "), ";
}
else {
parName = "a";
ringSTR2 = ringSTR2 + "0, ";
}
offset = 1 + nrStabVars;
namesSTR = "s(1.." + string(nrStabVars) + "), t(1.." + string(size(B)) + ")";
ringSTR2 = ringSTR2 + "(" + namesSTR + "), lp;";
ringSTR1 = "ring RAAR = (0, " + parName + "," + namesSTR + "), (" + varSTR + "), ls;"; // lp ?
execute(ringSTR1);
export(RAAR);
ideal upperBasis, stabaction, action, reduceIdeal;
poly f, F, monos, h;
execute("reduceIdeal = " + @mPoly + ";"); reduceIdeal = reduceIdeal, imap(STR1, stabid);
f = imap(RAAB, f);
F = f;
upperBasis = imap(RAAB, B);
for(i = 1; i <= size(upperBasis); i = i + 1) {
F = F + par(i + offset)*upperBasis[i];
}
monos = F - f;
stabaction = imap(STR2, actionid);
// action of the stabilizer on the semiuniversal unfolding of f
F = f + APSubstitution(monos, stabaction, reduceIdeal, wt, ub, nrStabVars, size(upperBasis));
// apply the theorem of Arnold
h = ArnoldFormMain(f, upperBasis, F, reduceIdeal, nrStabVars, size(upperBasis)) - f;
// extract the polynomials of the action of the stabilizer on T_
parts = MonosAndTerms(h, wt, ub);
for(i = 1; i <= size(parts[1]); i = i + 1)
{
pos = FirstEntryQHM(upperBasis, parts[1][i]);
if (pos!=0) { action[pos] = parts[2][i]/parts[1][i];}
}
execute(ringSTR2);
execute("minpoly = number(" + @mPoly + ");");
ideal actionid = imap(RAAR, action);
ideal stabid = imap(STR1, stabid);
export(actionid);
export(stabid);
kill RAAR;
dbprint(dbPrt, "
// 'ArnoldAction' created a new ring.
// To see the ring, type (if the name of the ring is R):
show(R);
// To access the ideal of the stabilizer G of f and its group action,
// where f is the quasihomogeneous principal part, type
def R = ArnoldAction(f); setring R; stabid; actionid;
// 'stabid' is the ideal of the group G and 'actionid' is the ideal defining
// the group action of the group G on T_. Note: this action might be nonlinear
");
return(RAAS);
}
example
{"EXAMPLE:"; echo = 2;
ring B = 0,(x,y,z), ls;
poly f = -z5+y5+x2z+x2y;
def R = ArnoldAction(f);
setring R;
actionid;
stabid;
}
///////////////////////////////////////////////////////////////////////////////
proc StabOrder(list #)
"USAGE: StabOrder(f); poly f
PURPOSE: compute the order of the stabilizer group of f.
ASSUME: f quasihomogeneous polynomial with an isolated singularity at 0
RETURN: int
GLOBAL: varSubsList
"
{
list stab;
if(size(#) == 1) { stab = StabEqn(#[1]); }
else { stab = #;}
def RSTO = stab[1];
setring(RSTO);
return(vdim(std(stabid)));
}
///////////////////////////////////////////////////////////////////////////////
proc StabEqn(poly f)
"USAGE: StabEqn(f); f polynomial
PURPOSE: compute the equations of the isometry group of f.
ASSUME: f semiquasihomogeneous polynomial with an isolated singularity at 0
RETURN: list of two rings 'S1', 'S2'
- 'S1' contians the equations of the stabilizer (ideal 'stabid') @*
- 'S2' contains the action of the stabilizer (ideal 'actionid')
EXAMPLE: example StabEqn; shows an example
GLOBAL: varSubsList, contains the index j s.t. x(i) -> x(i)t(j) ...
"
{
dbprint(dbPrt, "
// 'StabEqn' created a list of 2 rings.
// To see the rings, type (if the name of your list is stab):
show(stab);
// To access the 1-st ring and map (and similair for the others), type:
def S1 = stab[1]; setring S1; stabid;
// S1/stabid is the coordinate ring of the variety of the
// stabilizer, say G. If G x K^n --> K^n is the action of G on
// K^n, then the ideal 'actionid' in the second ring describes
// the dual map on the ring level.
// To access the 2-nd ring and map (and similair for the others), type:
def S2 = stab[2]; setring S2; actionid;
");
return(StabEqnId(ideal(f), qhweight(f)));
}
example
{"EXAMPLE:"; echo = 2;
ring B = 0,(x,y,z), ls;
poly f = -z5+y5+x2z+x2y;
list stab = StabEqn(f);
def S1 = stab[1]; setring S1; stabid;
def S2 = stab[2]; setring S2; actionid;
}
///////////////////////////////////////////////////////////////////////////////
proc StabEqnId(ideal data, intvec wt)
"USAGE: StabEqn(I, w); I ideal, w intvec
PURPOSE: compute the equations of the isometry group of the ideal I,
each generator of I is fixed by the stabilizer.
ASSUME: I semiquasihomogeneous ideal w.r.t. 'w' with an isolated singularity at 0
RETURN: list of two rings 'S1', 'S2'
- 'S1' contians the equations of the stabilizer (ideal 'stabid') @*
- 'S2' contains the action of the stabilizer (ideal 'actionid')
EXAMPLE: example StabEqnId; shows an example
GLOBAL: varSubsList, contains the index j s.t. t(i) -> t(i)t(j) ...
"
{
int i, j, c, k, r, nrVars, offset, n, sln, dbPrt;
list Variables, rd, temp, sList, varSubsList;
string ringSTR, ringSTR1, varString, parString;
dbPrt = printlevel-voice+2;
dbprint(dbPrt, "StabilizerEquations of " + string(data));
export(varSubsList);
n = nvars(basering);
Variables = StabVar(wt); // possible quasihomogeneous substitutions
nrVars = 0;
for(i = 1; i <= size(wt); i++)
{
nrVars = nrVars + size(Variables[i]);
}
// set the new basering needed for the substitutions
varString = "s(1.." + string(nrVars) + ")";
if(npars(basering) == 1)
{
parString = "(0, " + parstr(basering) + ")";
}
else { parString = "0"; }
def RSTB = basering;
string @mPoly = string(minpoly);
ringSTR = "ring RSTR = " + parString + ", (" + varstr(basering) + ", " + varString + "), dp;"; // dp
ringSTR1 = "ring RSTT = " + parString + ", (" + varString + ", " + varstr(basering) + "), dp;";
if(defined(RSTR)) { kill RSTR;}
if(defined(RSTT)) { kill RSTT;}
execute(ringSTR1); // this ring is only used for the result, where the variables
export(RSTT); // are s(1..m),t(1..n), as needed for Derksens algorithm (NullCone)
execute("minpoly = number(" + @mPoly + ");");
execute(ringSTR);
export(RSTR);
execute("minpoly = number(" + @mPoly + ");");
poly f, f1, g, h, vars, pp; // f1 is the polynomial after subs,
ideal allEqns, qhsubs, actionid, stabid, J;
list ringList; // all t(i)`s which do not appear in f1
ideal data = simplify(imap(RSTB, data), 2);
// generate the quasihomogeneous substitution map F
nrVars = 0;
offset = 0;
for(i = 1; i <= size(wt); i++)
{ // build the substitution t(i) -> ...
if(i > 1) { offset = offset + size(Variables[i - 1]); }
g = 0;
for(j = 1; j <= size(Variables[i]); j++)
{
pp = 1;
for(k = 2; k <= size(Variables[i][j]); k++)
{
pp = pp * var(Variables[i][j][k]);
if(Variables[i][j][k] == i) { varSubsList[i] = offset + j;}
}
g = g + s(offset + j) * pp;
}
qhsubs[i] = g;
}
dbprint(dbPrt, " qhasihomogenous substituion =" + string(qhsubs));
map F = RSTR, qhsubs;
kill varSubsList;
// get the equations of the stabilizer by comparing coefficients
// in the equation f = F(f).
vars = RingVarProduct(Table("i", "i", 1, size(wt)));
allEqns = 0;
matrix newcoMx, coMx;
int d;
for(r = 1; r <= ncols(data); r++)
{
f = data[r];
f1 = F(f);
d = deg(f);
newcoMx = coef(f1, vars); // coefficients of F(f)
coMx = coef(f, vars); // coefficients of f
for(i = 1; i <= ncols(newcoMx); i++)
{ // build the system of eqns via coeff. comp.
j = 1;
h = 0;
while(j <= ncols(coMx))
{ // all monomials in f
if(coMx[j][1] == newcoMx[i][1]) { h = coMx[j][2]; j = ncols(coMx) + 1;}
else {j = j + 1;}
}
J = J, newcoMx[i][2] - h; // add equation
}
allEqns = allEqns, J;
}
allEqns = std(allEqns);
// simplify the equations, i.e., if s(i) in J then remove s(i) from J
// and from the basering
sList = SimplifyIdeal(allEqns, n, "s");
stabid = sList[1];
map phi = basering, sList[2];
sln = size(sList[3]) - n;
// change the substitution
actionid = phi(qhsubs);
// change to new ring, auxillary construction
setring(RSTT);
ideal actionid, stabid;
actionid = imap(RSTR, actionid);
stabid = imap(RSTR, stabid);
export(stabid);
export(actionid);
ringList[2] = RSTT;
dbprint(dbPrt, " substitution = " + string(actionid));
dbprint(dbPrt, " equations of stabilizer = " + string(stabid));
varString = "s(1.." + string(sln) + ")";
ringSTR = "ring RSTS = " + parString + ", (" + varString + "), dp;";
execute(ringSTR);
execute("minpoly = number(" + @mPoly + ");");
ideal stabid = std(imap(RSTR, stabid));
export(stabid);
ringList[1] = RSTS;
dbprint(dbPrt, "
// 'StabEqnId' created a list of 2 rings.
// To see the rings, type (if the name of your list is stab):
show(stab);
// To access the 1-st ring and map (and similair for the others), type:
def S1 = stab[1]; setring S1; stabid;
// S1/stabid is the coordinate ring of the variety of the
// stabilizer, say G. If G x K^n --> K^n is the action of G on
// K^n, then the ideal 'actionid' in the second ring describes
// the dual map on the ring level.
// To access the 2-nd ring and map (and similair for the others), type:
def S2 = stab[2]; setring S2; actionid;
");
return(ringList);
}
example
{"EXAMPLE:"; echo = 2;
ring B = 0,(x,y,z), ls;
ideal I = x2,y3,z6;
intvec w = 3,2,1;
list stab = StabEqnId(I, w);
def S1 = stab[1]; setring S1; stabid;
def S2 = stab[2]; setring S2; actionid;
}
///////////////////////////////////////////////////////////////////////////////
static
proc ArnoldFormMain(poly f,def B, poly Fs, ideal reduceIdeal, int nrs, int nrt)
"USAGE: ArnoldFormMain(f, B, Fs, rI, nrs, nrt);
poly f,Fs; ideal B, rI; int nrs, nrt
PURPOSE: compute the induced action of 'G_f' on T_, where f is the principal
part and 'Fs' is the semiuniversal unfolding of 'f' with x_i
substituted by actionid[i], 'B' is a list of upper basis monomials
for the milnor algebra of 'f', 'nrs' = number of variables for 'G_f'
and 'nrt' = dimension of T_
ASSUME: f is quasihomogeneous with an isolated singularity at 0,
s(1..r), t(1..m) are parameters of the basering
RETURN: poly
EXAMPLE: example ArnoldAction; shows an example
"
{
int i, j, d, ub, dbPrt;
list upperBasis, basisDegList, gmonos, common, parts;
ideal jacobianId, jacobIdstd, mapId; // needed for phi
intvec wt = weight(f);
matrix gCoeffMx; // for lift command
poly newFs, g, gred, tt; // g = sum of all monomials of degree d, gred is needed for lift
map phi; // the map from Arnold's Theorem
dbPrt = printlevel-voice+2;
jacobianId = jacob(f);
jacobIdstd = std(jacobianId);
newFs = Fs;
for(i = 1; i <= size(B); i++)
{
basisDegList[i] = deg(B[i], wt);
}
ub = Max(basisDegList) + 1; // max degree of an upper monomial
parts = MonosAndTerms(newFs - f, wt, ub);
gmonos = parts[1];
d = deg(f, wt);
for(i = d + 1; i < ub; i++)
{ // base[1] = monomials of degree i
upperBasis[i] = SelectMonos(list(B, B), wt, i); // B must not contain 0's
}
// test if each monomial of Fs is contained in B, if not,
// compute a substitution via Arnold's theorem and substitutite
// it into newFs
for(i = d + 1; i < ub; i = i + 1)
{ // ub instead of @UB
dbprint(dbPrt, "-- degree = " + string(i) + " of " + string(ub - 1) + " ---------------------------");
if(size(newFs) < 80) { dbprint(dbPrt, " polynomial = " + string(newFs - f));}
else { dbprint(dbPrt, " poly has deg (not weighted) " + string(deg(newFs)) + " and contains " + string(size(newFs)) + " monos");}
// select monomials of degree i and intersect them with upperBasis[i]
gmonos = SelectMonos(parts, wt, i);
common = IntersectionQHM(upperBasis[i][1], gmonos[1]);
if(size(common) == size(gmonos[1]))
{
dbprint(dbPrt, " no additional monomials ");
}
// other monomials than those in upperBasis occur, compute
// the map constructed in the proof of Arnold's theorem
// write g = c[i] * jacobianId[i]
else
{
dbprint(dbPrt, " additional Monomials found, compute the map ");
g = PSum(gmonos[2]); // sum of all monomials in g of degree i
dbprint(dbPrt, " sum of degree " + string(i) + " is " + string(g));
gred = reduce(g, jacobIdstd);
gCoeffMx = lift(jacobianId, g - gred); // compute c[i]
mapId = var(1) - gCoeffMx[1][1]; // generate the map
for(j = 2; j <= size(gCoeffMx); j++)
{
mapId[j] = var(j) - gCoeffMx[1][j];
}
dbprint(dbPrt, " map = " + string(mapId));
// apply the map to newFs
newFs = APSubstitution(newFs, mapId, reduceIdeal, wt, ub, nrs, nrt);
parts = MonosAndTerms(newFs - f, wt, ub); // monos and terms of deg < ub
newFs = PSum(parts[2]) + f; // result of APS... is already reduced
dbprint(dbPrt, " monomials of degree " + string(i));
}
}
return(newFs);
}
///////////////////////////////////////////////////////////////////////////////
static proc MonosAndTerms(poly f,def wt, int ub)
"USAGE: MonosAndTerms(f, w, ub); poly f, intvec w, int ub
PURPOSE: returns a list of all monomials and terms occuring in f of
weighted degree < ub
RETURN: list
_[1] list of monomials
_[2] list of terms
EXAMPLE: example MonosAndTerms shows an example
"
{
int i, k;
list monomials, terms;
poly mono, lcInv, data;
data = jet(f, ub - 1, wt);
k = 0;
for(i = 1; i <= size(data); i++)
{
mono = lead(data[i]);
if(deg(mono, wt) < ub)
{
k = k + 1;
lcInv = 1/leadcoef(mono);
monomials[k] = mono * lcInv;
terms[k] = mono;
}
}
return(list(monomials, terms));
}
example
{"EXAMPLE:"; echo = 2;
ring B = 0,(x,y,z), lp;
poly f = 6*x2 + 2*x3 + 9*x*y2 + z*y + x*z6;
MonosAndTerms(f, intvec(2,1,1), 5);
}
///////////////////////////////////////////////////////////////////////////////
static proc SelectMonos(def parts, intvec wt, int d)
"USAGE: SelectMonos(parts, w, d); list/ideal parts, intvec w, int d
PURPOSE: returns a list of all monomials and terms occuring in f of
weighted degree = d
RETURN: list
_[1] list of monomials
_[2] list of terms
EXAMPLE: example SelectMonos; shows an example
"
{
int i, k;
list monomials, terms;
poly mono;
k = 0;
for(i = 1; i <= size(parts[1]); i++)
{
mono = parts[1][i];
if(deg(mono, wt) == d)
{
k++;
monomials[k] = mono;
terms[k] = parts[2][i];
}
}
return(list(monomials, terms));
}
example
{"EXAMPLE:"; echo = 2;
ring B = 0,(x,y,z), lp;
poly f = 6*x2 + 2*x3 + 9*x*y2 + z*y + x*z6;
list mt = MonosAndTerms(f, intvec(2,1,1), 5);
SelectMonos(mt, intvec(2,1,1), 4);
}
///////////////////////////////////////////////////////////////////////////////
static proc Expand(def substitution,def degVec, ideal reduceI, intvec w1, int ub, list truncated)
"USAGE: Expand(substitution, degVec, reduceI, w, ub, truncated);
ideal/list substitution, list/intvec degVec, ideal reduceI, intvec w,
int ub, list truncated
PURPOSE: substitute 'substitution' in the monomial given by the list of
exponents 'degVec', omit all terms of weighted degree > ub and reduce
the result w.r.t. 'reduceI'. If truncated[i] = 0 then the result is
stored for later use.
RETURN: poly
NOTE: used by APSubstitution
GLOBAL: computedPowers
"
{
int i, minDeg;
list powerList;
poly g, h;
// compute substitution[1]^degVec[1],...,subs[n]^degVec[n]
for(i = 1; i <= ncols(substitution); i++)
{
if(size(substitution[i]) < 3 || degVec[i] < 4)
{
powerList[i] = reduce(substitution[i]^degVec[i], reduceI); // new
} // directly for small exponents
else
{
powerList[i] = PolyPower1(i, substitution[i], degVec[i], reduceI, w1, truncated[i], ub);
}
}
// multiply the terms obtained by using PolyProduct();
g = powerList[1];
minDeg = w1[1] * degVec[1];
for(i = 2; i <= ncols(substitution); i++)
{
g = jet(g, ub - w1[i] * degVec[i] - 1, w1);
h = jet(powerList[i], ub - minDeg - 1, w1);
g = PolyProduct(g, h, reduceI, w1, ub);
if(g == 0) { Print(" g = 0 "); break;}
minDeg = minDeg + w1[i] * degVec[i];
}
return(g);
}
///////////////////////////////////////////////////////////////////////////////
static proc PolyProduct(poly g1, poly h1, ideal reduceI, intvec wt, int ub)
"USAGE: PolyProduct(g, h, reduceI, wt, ub); poly g, h; ideal reduceI,
intvec wt, int ub.
PURPOSE: compute g*h and reduce it w.r.t 'reduceI' and omit terms of weighted
degree > ub.
RETURN: poly
NOTE: used by 'Expand'
"
{
int SUBSMAXSIZE = 3000;
int i, nrParts, sizeOfPart, currentPos, partSize, maxSIZE;
poly g, h, gxh, prodComp, @g2; // replace @g2 by subst.
g = g1;
h = h1;
if(size(g)*size(h) > SUBSMAXSIZE)
{
// divide the polynomials with more terms in parts s.t.
// the product of each part with the other polynomial
// has at most SUBMAXSIZE terms
if(size(g) < size(h)) { poly @h = h; h = g; g = @h;@h = 0; }
maxSIZE = SUBSMAXSIZE / size(h);
//print(" SUBSMAXSIZE = "+string(SUBSMAXSIZE)+" exceeded by "+string(size(g)*size(h)) + ", maxSIZE = ", string(maxSIZE));
nrParts = size(g) div maxSIZE + 1;
partSize = size(g) div nrParts;
gxh = 0; // 'g times h'
for(i = 1; i <= nrParts; i++)
{
//print(" loop #" + string(i) + " of " + string(nrParts));
currentPos = (i - 1) * partSize;
if(i < nrParts) {sizeOfPart = partSize;}
else { sizeOfPart = size(g) - (nrParts - 1) * partSize; print(" last #" + string(sizeOfPart) + " terms ");}
prodComp = g[currentPos + 1..sizeOfPart + currentPos] * h; // multiply a part
@g2 = jet(prodComp, ub - 1, wt); // eventual reduce ...
if(size(@g2) < size(prodComp)) { print(" killed " + string(size(prodComp) - size(@g2)) + " terms ");}
gxh = reduce(gxh + @g2, reduceI);
}
}
else
{
gxh = reduce(jet(g * h,ub - 1, wt), reduceI);
} // compute directly
return(gxh);
}
///////////////////////////////////////////////////////////////////////////////
static proc PolyPower1(int varIndex, poly f, int e, ideal reduceI, intvec wt,
int truncated, int ub)
"USAGE: PolyPower1(i, f, e, reduceI, wt, truncated, ub);int i, e, ub;poly f;
ideal reduceI; intvec wt; list truncated;
PURPOSE: compute f^e, use previous computations if possible, and reduce it
w.r.t reudecI and omit terms of weighted degree > ub.
RETURN: poly
NOTE: used by 'Expand'
GLOBAL: 'computedPowers'
"
{
int i, ordOfg, lb, maxPrecomputedPower;
poly g, fn;
if(e == 0) { return(1);}
if(e == 1) { return(f);}
if(f == 0) { return(1); }
else
{
// test if f has been computed to some power
if(computedPowers[varIndex][1] > 0)
{
maxPrecomputedPower = computedPowers[varIndex][1];
if(maxPrecomputedPower >= e)
{
// no computation necessary, f^e has already benn computed
g = computedPowers[varIndex][2][e - 1];
//Print("No computation, from list : g = elem [", varIndex, ", 2, ", e - 1, "]");
lb = e + 1;
}
else { // f^d computed, where d < e
g = computedPowers[varIndex][2][maxPrecomputedPower - 1];
ordOfg = maxPrecomputedPower * wt[varIndex];
lb = maxPrecomputedPower + 1;
}
}
else
{ // no precomputed data
lb = 2;
ordOfg = wt[varIndex];
g = f;
}
for(i = lb; i <= e; i++)
{
fn = jet(f, ub - ordOfg - 1, wt); // reduce w.r.t. reduceI
g = PolyProduct(g, fn, reduceI, wt, ub);
ordOfg = ordOfg + wt[varIndex];
if(g == 0) { break; }
if((i > maxPrecomputedPower) && !truncated)
{
if(maxPrecomputedPower == 0)
{ // init computedPowers
computedPowers[varIndex] = list(i, list(g));
}
computedPowers[varIndex][1] = i; // new degree
computedPowers[varIndex][2][i - 1] = g;
maxPrecomputedPower = i;
}
}
}
return(g);
}
///////////////////////////////////////////////////////////////////////////////
static proc RingVarsToList(list @index)
{
int i;
list temp;
for(i = 1; i <= size(@index); i++) { temp[i] = string(var(@index[i])); }
return(temp);
}
///////////////////////////////////////////////////////////////////////////////
static
proc APSubstitution(poly f, ideal substitution, ideal reduceIdeal, intvec wt, int ub, int nrs, int nrt)
"USAGE: APSubstitution(f, subs, reduceI, w, ub, int nrs, int nrt); poly f
ideal subs, reduceI, intvec w, int ub, nrs, nrt;
nrs = number of parameters s(1..nrs),
nrt = number of parameters t(1..nrt)
PURPOSE: substitute 'subs' in f, omit all terms with weighted degree > ub and
reduce the result w.r.t. 'reduceI'.
RETURN: poly
GLOBAL: 'computedPowers'
"
{
int i, j, k, d, offset;
int n = nvars(basering);
list coeffList, parts, degVecList, degOfMonos;
list computedPowers, truncatedQ, degOfSubs, @temp;
string ringSTR, @ringVars;
export(computedPowers);
// store arguments in strings
def RASB = basering;
parts = MonosAndTerms(f, wt, ub);
for(i = 1; i <= size(parts[1]); i = i + 1)
{
coeffList[i] = parts[2][i]/parts[1][i];
degVecList[i] = leadexp(parts[1][i]);
degOfMonos[i] = deg(parts[1][i], wt);
}
// built new basering with no parameters and order dp !
// the parameters of the basering are appended to
// the variables of the basering !
// set ideal mpoly = minpoly for reduction !
@ringVars = "(" + varstr(basering) + ", " + parstr(1) + ","; // precondition
if(nrs > 0)
{
@ringVars = @ringVars + "s(1.." + string(nrs) + "), ";
}
@ringVars = @ringVars + "t(1.." + string(nrt) + "))";
ringSTR = "ring RASR = 0, " + @ringVars + ", dp;"; // new basering
// built the "reduction" ring with the reduction ideal
execute(ringSTR);
export(RASR);
ideal reduceIdeal, substitution, newSubs;
intvec w1, degVec;
list minDeg, coeffList, degList;
poly f, g, h, subsPoly;
w1 = wt; // new weights
offset = nrs + nrt + 1;
for(i = n + 1; i <= offset + n; i = i + 1) { w1[i] = 0; }
reduceIdeal = std(imap(RASB, reduceIdeal)); // omit later !
coeffList = imap(RASB, coeffList);
substitution = imap(RASB, substitution);
f = imap(RASB, f);
for(i = 1; i <= n; i++)
{ // all "base" variables
computedPowers[i] = list(0);
for(j = 1; j <= size(substitution[i]); j++) { degList[j] = deg(substitution[i][j], w1);}
degOfSubs[i] = degList;
}
// substitute in each monomial seperately
g = 0;
for(i = 1; i <= size(degVecList); i++)
{
truncatedQ = Table("0", "i", 1, n);
newSubs = 0;
degVec = degVecList[i];
d = degOfMonos[i];
// check if some terms in the substitution can be omitted
// degVec = list of exponents of the monomial m
// minDeg[j] denotes the weighted degree of the monomial m'
// where m' is the monomial m without the j-th variable
for(j = 1; j <= size(degVec); j++) { minDeg[j] = d - degVec[j] * wt[j]; }
for(j = 1; j <= size(degVec); j++)
{
subsPoly = 0; // set substitution to 0
if(degVec[j] > 0)
{
// if variable occurs then check if
// substitution[j][k] * (linear part)^(degVec[j]-1) + minDeg[j] < ub
// i.e. look for the smallest possible combination in subs[j]^degVec[j]
// which comes from the term substitution[j][k]. This term is multiplied
// with the rest of the monomial, which has at least degree minDeg[j].
// If the degree of this product is < ub then substitution[j][k] contributes
// to the result and cannot be omitted
for(k = 1; k <= size(substitution[j]); k++)
{
if(degOfSubs[j][k] + (degVec[j] - 1) * wt[j] + minDeg[j] < ub)
{
subsPoly = subsPoly + substitution[j][k];
}
}
}
newSubs[j] = subsPoly; // set substitution
if(substitution[j] - subsPoly != 0) { truncatedQ[j] = 1;} // mark that substitution[j] is truncated
}
h = Expand(newSubs, degVec, reduceIdeal, w1, ub, truncatedQ) * coeffList[i]; // already reduced
g = reduce(g + h, reduceIdeal);
}
kill computedPowers;
setring RASB;
poly fnew = imap(RASR, g);
kill RASR;
return(fnew);
}
///////////////////////////////////////////////////////////////////////////////
static proc StabVar(intvec wt)
"USAGE: StabVar(w); intvec w
PURPOSE: compute the indicies for quasihomogeneous substitutions of each
variable.
ASSUME: f semiquasihomogeneous polynomial with an isolated singularity at 0
RETURN: list
_[i] list of combinations for var(i) (i must be appended
to each comb)
GLOBAL: 'varSubsList', contains the index j s.t. x(i) -> x(i)t(j) ...
"
{
int i, j, k, uw, ic;
list varList, Variables, subs;
string str, varString;
varList = StabVarComb(wt);
for(i = 1; i <= size(wt); i = i + 1)
{
subs = 0;
// built linear substituitons
for(j = 1; j <= size(varList[1][i]); j++)
{
subs[j] = list(i) + list(varList[1][i][j]);
}
Variables[i] = subs;
if(size(varList[2][i]) > 0)
{
// built nonlinear substituitons
subs = 0;
for(j = 1; j <= size(varList[2][i]); j++)
{
subs[j] = list(i) + varList[2][i][j];
}
Variables[i] = Variables[i] + subs;
}
}
return(Variables);
}
///////////////////////////////////////////////////////////////////////////////
static proc StabVarComb(intvec wt)
"USAGE: StabVarComb(w); intvec w
PURPOSE: list all possible indices of indeterminates for a quasihom. subs.
RETURN: list
_[1] linear substitutions
_[2] nonlinear substiutions
GLOBAL: 'varSubsList', contains the index j s.t. x(i) -> x(i)t(j) ...
"
{
int mmi, mma, ii, j, k, uw, ic;
list index, indices, usedWeights, combList, combinations;
list linearSubs, nonlinearSubs;
list partitions, subs, temp; // subs[i] = substitution for var(i)
linearSubs = Table("0", "i", 1, size(wt));
nonlinearSubs = Table("0", "i", 1, size(wt));
uw = 0;
ic = 0;
mmi = Min(wt);
mma = Max(wt);
for(ii = mmi; ii <= mma; ii++)
{
if(containedQ(wt, ii))
{ // find variables of weight ii
k = 0;
index = 0;
// collect the indices of all variables of weight i
for(j = 1; j <= size(wt); j++)
{
if(wt[j] == ii)
{
k++;
index[k] = j;
}
}
uw++;
usedWeights[uw] = ii;
ic++;
indices[ii] = index;
// linear part of the substitution
for(j = 1; j <= size(index); j++)
{
linearSubs[index[j]] = index;
}
// nonlinear part of the substitution
if(uw > 1)
{ // variables of least weight do not allow nonlinear subs.
partitions = Partitions(ii, delete(usedWeights, uw));
for(j = 1; j <= size(partitions); j++)
{
combinations[j] = AllCombinations(partitions[j], indices);
}
for(j = 1; j <= size(index); j++)
{
nonlinearSubs[index[j]] = FlattenQHM(combinations); // flatten one level !
}
}
}
}
combList[1] = linearSubs;
combList[2] = nonlinearSubs;
return(combList);
}
///////////////////////////////////////////////////////////////////////////////
static proc AllCombinations(list partition, list indices)
"USAGE: AllCombinations(partition,indices); list partition, indices)
PURPOSE: all combinations for a given partititon
RETURN: list
GLOBAL: varSubsList, contains the index j s.t. x(i) -> x(i)t(j) ...
"
{
int i, k, m, ok, p, offset;
list nrList, indexList;
k = 0;
offset = 0;
i = 1;
ok = 1;
m = partition[1];
while(ok)
{
if(i > size(partition))
{
ok = 0;
p = 0;
}
else { p = partition[i];}
if(p == m) { i = i + 1;}
else
{
k = k + 1;
nrList[k] = i - 1 - offset;
offset = offset + i - 1;
indexList[k] = indices[m];
if(ok) { m = partition[i];}
}
}
return(AllCombinationsAux(nrList, indexList));
}
///////////////////////////////////////////////////////////////////////////////
static proc AllSingleCombinations(int n, list index)
"USAGE: AllSingleCombinations(n index); int n, list index
PURPOSE: all combinations for var(n)
RETURN: list
"
{
int i, j, k;
list comb, newC, temp, newIndex;
if(n == 1)
{
for(i = 1; i <= size(index); i++)
{
temp = index[i];
comb[i] = temp;
}
return(comb);
}
if(size(index) == 1)
{
temp = Table(string(index[1]), "i", 1, n);
comb[1] = temp;
return(comb);
}
newIndex = index;
for(i = 1; i <= size(index); i = i + 1)
{
if(i > 1) { newIndex = delete(newIndex, 1); }
newC = AllSingleCombinations(n - 1, newIndex);
k = size(comb);
temp = 0;
for(j = 1; j <= size(newC); j++)
{
temp[1] = index[i];
temp = temp + newC[j];
comb[k + j] = temp;
temp = 0;
}
}
return(comb);
}
///////////////////////////////////////////////////////////////////////////////
static proc AllCombinationsAux(list parts, list index)
"USAGE: AllCombinationsAux(parts ,index); list parts, index
PURPOSE: all compbinations for nonlinear substituiton
RETURN: list
"
{
int i, j, k;
list comb, firstC, restC;
if(size(parts) == 0 || size(index) == 0) { return(comb);}
firstC = AllSingleCombinations(parts[1], index[1]);
restC = AllCombinationsAux(delete(parts, 1), delete(index, 1));
if(size(restC) == 0) { comb = firstC;}
else
{
for(i = 1; i <= size(firstC); i++)
{
k = size(comb);
for(j = 1; j <= size(restC); j++)
{
//elem = firstC[i] + restC[j];
// comb[k + j] = elem;
comb[k + j] = firstC[i] + restC[j];
}
}
}
return(comb);
}
///////////////////////////////////////////////////////////////////////////////
static proc Partitions(int n, list nr)
"USAGE: Partitions(n, nr); int n, list nr
PURPOSE: partitions of n consisting of elements from nr
RETURN: list
"
{
int i, j, k;
list parts, temp, restP, newP, decP;
if(size(nr) == 0) { return(list());}
if(size(nr) == 1)
{
if(NumFactor(nr[1], n) > 0)
{
parts[1] = Table(string(nr[1]), "i", 1, NumFactor(nr[1], n));
}
return(parts);
}
else
{
parts = Partitions(n, nr[1]);
restP = Partitions(n, delete(nr, 1));
parts = parts + restP;
for(i = 1; i <= n div nr[1]; i = i + 1)
{
temp = Table(string(nr[1]), "i", 1, i);
decP = Partitions(n - i*nr[1], delete(nr, 1));
k = size(parts);
for(j = 1; j <= size(decP); j++)
{
newP = temp + decP[j]; // new partition
if(!containedQ(parts, newP, 1))
{
k = k + 1;
parts[k] = newP;
}
}
}
}
return(parts);
}
///////////////////////////////////////////////////////////////////////////////
static proc NumFactor(int a, int b)
" USAGE: NumFactor(a, b); int a, b
PURPOSE: if b divides a then return b/a, else return 0
RETURN: int
"
{
int c = b div a;
if(c*a == b) { return(c); }
else {return(0)}
}
///////////////////////////////////////////////////////////////////////////////
static proc Table(string cmd, string iterator, int lb, int ub)
" USAGE: Table(cmd,i, lb, ub); string cmd, i; int lb, ub
PURPOSE: generate a list of size ub - lb + 1 s.t. _[i] = cmd(i)
RETURN: list
"
{
list data;
execute("int " + iterator + ";");
for(int @i = lb; @i <= ub; @i++)
{
execute(iterator + " = " + string(@i));
execute("data[" + string(@i) + "] = " + cmd + ";");
}
return(data);
}
///////////////////////////////////////////////////////////////////////////////
static proc FlattenQHM(list data)
" USAGE: FlattenQHM(n, nr); list data
PURPOSE: flatten the list (one level) 'data', which is a list of lists
RETURN: list
"
{
int i, j, c;
list fList, temp;
c = 1;
for(i = 1; i <= size(data); i++)
{
for(j = 1; j <= size(data[i]); j++)
{
fList[c] = data[i][j];
c = c + 1;
}
}
return(fList);
}
///////////////////////////////////////////////////////////////////////////////
static proc IntersectionQHM(list l1, list l2)
// Type : list
// Purpose : Intersection of l1 and l2
{
list l;
int b, c;
c = 1;
for(int i = 1; i <= size(l1); i++)
{
b = containedQ(l2, l1[i]);
if(b == 1)
{
l[c] = l1[i];
c++;
}
}
return(l);
}
///////////////////////////////////////////////////////////////////////////////
static proc FirstEntryQHM(def data,def elem)
// Type : int
// Purpose : position of first entry equal to elem in data (from left to right)
{
int i, pos;
i = 0;
pos = 0;
while(i < size(data))
{
i++;
if(data[i] == elem) { pos = i; break;}
}
return(pos);
}
///////////////////////////////////////////////////////////////////////////////
static proc PSum(def e)
{
poly f;
for(int i = size(e);i>=1;i--)
{
f = f + e[i];
}
return(f);
}
///////////////////////////////////////////////////////////////////////////////
proc Max(def data)
"USAGE: Max(data); intvec/list of integers
PURPOSE: find the maximal integer contained in 'data'
RETURN: list
ASSUME: 'data' contains only integers and is not empty
"
{
int i;
int max = data[1];
for(i = size(data); i>1;i--)
{
if(data[i] > max) { max = data[i]; }
}
return(max);
}
example
{"EXAMPLE:"; echo = 2;
Max(list(1,2,3));
}
///////////////////////////////////////////////////////////////////////////////
proc Min(def data)
"USAGE: Min(data); intvec/list of integers
PURPOSE: find the minimal integer contained in 'data'
RETURN: list
ASSUME: 'data' contians only integers and is not empty
"
{
int i;
int min = data[1];
for(i = size(data);i>1; i--)
{
if(data[i] < min) { min = data[i]; }
}
return(min);
}
example
{"EXAMPLE:"; echo = 2;
Min(intvec(1,2,3));
}
///////////////////////////////////////////////////////////////////////////////
|