This file is indexed.

/usr/share/singular/LIB/qmatrix.lib is in singular-data 4.0.3+ds-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
/////////////////////////////////////
version="version qmatrix.lib 4.0.0.0 Jun_2013 "; // $Id: 0ff9b9f42c3021528e3920ce6700195dc3d55673 $
category="Noncommutative";
info="
LIBRARY: qmatrix.lib     Quantum matrices, quantum minors and symmetric groups
AUTHORS: Lobillo, F.J.,  jlobillo@ugr.es
@*       Rabelo, C.,     crabelo@ugr.es

SUPPORT: 'Metodos algebraicos y efectivos en grupos cuanticos', BFM2001-3141, MCYT, Jose Gomez-Torrecillas (Main researcher).

PROCEDURES:
quantMat(n, [p]);          generates the quantum matrix ring of order n;
qminor(u, v, nr);          calculate a quantum minor of a quantum matrix

SymGroup(n);                generates an intmat containing S(n), each row is an element of S(n)
LengthSymElement(v);        calculates the length of the element v of S(n)
LengthSym(M);               calculates the length of each element of M, being M a subset of S(n)
";

LIB "ncalg.lib";
LIB "nctools.lib";  // for rootofUnity
///////////////////////////////////////////////////////////////////////////////

proc SymGroup(int n)
"USAGE:   SymGroup(n); n an integer (positive)
RETURN:  intmat
PURPOSE: represent the symmetric group S(n) via integer vectors (permutations)
NOTE:    each row of the output integer matrix is an element of S(n)
SEE ALSO: LengthSym, LengthSymElement
EXAMPLE: example SymGroup; shows examples
"{
  if (n<=0)
  {
    "n must be positive";
    intmat M[1][1]=0;
  }
  else
  {
    if (n==1)
    {
      intmat M[1][1]=1;
    }
    else
    {
      def N=SymGroup(n-1); // N is the symmetric group S(n-1)
      int m=nrows(N); // The order of S(n-1)=(n-1)!
      intmat M[m*n][n]; // Matrix to save S(n), m*n=n*(n-1)!=n!=#S(n)
      int i,j,k;
      for (i=1; i<=m; i++)
      { // fixed an element i of S(n-1)
        for (j=n; j>0; j--)
        { // and fixed a position j to introduce an "n"
          for (k=1; k<j; k++)
          { // we want to copy the i-th element until position j-1
            M[n*(i-1)+(n-j+1),k]=N[i,k];
          }
          M[n*(i-1)+(n-j+1),j]=n; // we write the "n" in the position j
          for (k=j+1; k<=n; k++)
          {
            M[n*(i-1)+(n-j+1),k]=N[i,k-1]; // and we run until the end of copying
          }
        }
      }
    }
  }
  return (M);
}
example
{
  "EXAMPLE:";echo=2;
  //  "S(3)={(1,2,3),(1,3,2),(3,1,2),(2,1,3),(2,3,1),(3,2,1)}";
  SymGroup(3);
}

///////////////////////////////////////////////////////////////////////////////

// This procedure calculates the length of an element v of a symmetric group
// If size(v)=n, the group is S(n). The permutation is i->v[i].

proc LengthSymElement(intvec v)
"USAGE:  LengthSymElement(v); v intvec
RETURN:  int
PURPOSE: determine the length of the permutation given by v in some S(n)
ASSUME:  v represents an element of S(n); otherwise the output may have no sense
SEE ALSO: SymGroup, LengthSym
EXAMPLE: example LengthSymElement; shows examples
"{
  int n=size(v);
  int l=0;
  int i,j;
  for (i=1; i<n; i++)
  {
    for (j=i+1; j<=n; j++)
    {
      if (v[j]<v[i]) {l++;}
    }
  }
  return (l);
}
example
{
  "EXAMPLE:";echo=2;
  intvec v=1,3,4,2,8,9,6,5,7,10;
  LengthSymElement(v);
}

///////////////////////////////////////////////////////////////////////////////

proc LengthSym(intmat M)
"USAGE:   LengthSym(M); M an intmat
RETURN:  intvec
PURPOSE: determine a vector, where the i-th element is the length of the permutation of S(n) given by the i-th row of M
ASSUME: M represents a subset of S(n) (each row must be an element of S(n)); otherwise, the output may have no sense
SEE ALSO: SymGroup, LengthSymElement
EXAMPLE: example LengthSym; shows examples
"{
  int n=ncols(M); // this n is the n of S(n)
  int m=nrows(M); // m=num of element of S(n) in M, if M=S(n) m=n!
  intvec L=0;
  int i;
  for (i=1; i<=m; i++)
  {
    L=L,LengthSymElement(intvec(M[i,1..n]));
  }
  L=L[2..size(L)];
  return (L);
}
example
{
  "EXAMPLE:";echo=2;
  def M = SymGroup(3); M;
  LengthSym(M);
}

///////////////////////////////////////////////////////////////////////////////

proc quantMat(int n, list #)
"USAGE:   quantMat(n [, p]); n integer (n>1), p an optional integer
RETURN:  ring (of quantum matrices). If p is specified, the quantum parameter q
@*       will be specialized at the p-th root of unity
PURPOSE: compute the quantum matrix ring of order n
NOTE:    activate this ring with the \"setring\" command.
@*       The usual representation of the variables in this quantum
@*       algebra is not used because double indexes are not allowed
@*       in the variables. Instead the variables are listed by reading
@*       the rows of the usual matrix representation, that is, there
@*       will be n*n variables (one for each entry an n*N generic matrix),
@*       listed row-wise
SEE ALSO: qminor
EXAMPLE: example quantMat; shows examples
"{
  if (n>1)
  {
    int nv=n^2;
    intmat m[nv][nv];
    int i,j;
    for (i=1; i<=nv; i++)
    {
      m[i,nv+1-i]=1;
    }
    int chr = 0;
    if ( size(#) > 0 )
    {
      if ( typeof( #[1] ) == "int" )
      {
        chr = #[1];
      }
    }
    ring @rrr=(0,q),(y(1..nv)),Dp;
    minpoly = rootofUnity(chr);
    matrix C[nv][nv]=0;
    matrix D[nv][nv]=0;
    intvec idyi, idyj;
    for (i=1; i<nv; i++)
    {
      for (j=i+1; j<=nv; j++)
      {
        idyi=itoij(i,n);
        idyj=itoij(j,n);
        if (idyi[1]==idyj[1] || idyi[2]==idyj[2])
        {
          C[i,j]=1/q;
        }
        else
        {
          if (idyi[2]<idyj[2])
          {
            C[i,j]=1;
            D[i,j]=(1/q - q)*y(ijtoi(idyi[1],idyj[2],n))*y(ijtoi(idyj[1],idyi[2],n));
          }
          else
          {
            C[i,j]=1;
          }
        }
      }
    }
    def @@rrr=nc_algebra(C,D);
    return (@@rrr);
  }
  else
  {
    "ERROR: n must be greater than 1";
    return();
  }
}
example
{
  "EXAMPLE:"; echo=2;
  def r = quantMat(2); // generate O_q(M_2) at q generic
  setring r;   r;
  kill r;
  def r = quantMat(2,5); // generate O_q(M_2) at q^5=1
  setring r;   r;
}

///////////////////////////////////////////////////////////////////////////////

proc qminor(intvec I, intvec J, int nr)
"USAGE:        qminor(I,J,n); I,J intvec, n int
RETURN: poly, the quantum minor of a generic n*n quantum matrix
ASSUME: I is the ordered list of the rows to consider in the minor,
@*      J is the ordered list of the columns to consider in the minor,
@*      I and J must have the same number of elements,
@*      n is the order of the quantum matrix algebra you are working with (quantMat(n)).
@*      The base ring should be constructed using @code{quantMat}.
SEE ALSO: quantMat
EXAMPLE: example qminor; shows examples
"{
  poly d=0;
  poly f=0;
  int k=0;
  int n=size(I);
  if ( size(I)!=size(J) )
  {
    "#I must be equal to #J";
  }
  else
  {
    def Sn=SymGroup(n);
    def L=LengthSym(Sn);
    int m=size(L); // m is the order of S(n)
    int i,j;
    for (i=1; i<=m; i++)
    {
      f=(-q)^(L[i]);
      for (j=1; j<=n; j++)
      {
        k=ijtoi(I[j],J[Sn[i,j]],nr);
        f=f*y(k);
      }
      d=d+f;
    }
  }
  return (d);
}
example
{
  "EXAMPLE:";
  echo=2;
  def r = quantMat(3); // let r be a quantum matrix of order 3
  setring r;
  intvec u = 1,2;
  intvec v = 2,3;
  intvec w = 1,2,3;
  qminor(w,w,3);
  qminor(u,v,3);
  qminor(v,u,3);
  qminor(u,u,3);
}

///////////////////////////////////////////////////////////////////////////////

// For tecnical reasons we work with a list of variables {y(1)...y(n^2)}.
// In quantum matrices the usual is to work with a square matrix of variables {y(ij)}.
// The formulas are easier if we use matricial notation.
// The following two procedures change the index of a list to a matrix and viceversa in order
// to use matricial notation in the calculus but use list notation in input and output.
// n is the order of the quantum matrix algebra where we are working.

static proc itoij(int i,int n)
{
  intvec ij=0,0;
  ij[1]=((i-1) div n)+1;
  ij[2]=((i-1) mod n)+1;
  return(ij);
}

static proc ijtoi(int i,int j,int n)
{
  return((j-1)+n*(i-1)+1);
}
///////////////////////////////////////////////////////////////////////////////