/usr/share/singular/LIB/ratgb.lib is in singular-data 4.0.3+ds-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 | /////////////////////////////////////////////////////////////////////////
version="version ratgb.lib 4.0.0.0 Jun_2013 "; // $Id: 108489c4d1cb89f45eada9101344ee6e76fa6e67 $
category="Noncommutative";
info="
LIBRARY: ratgb.lib Groebner bases in Ore localizations of noncommutative G-algebras
AUTHOR: Viktor Levandovskyy, levandov@risc.uni-linz.ac.at
OVERVIEW:
Theory: Let A be an operator algebra with @code{R = K[x1,.,xN]} as subring.
The operators are usually denoted by @code{d1,..,dM}.
Assume, that A is a @code{G}-algebra, then the set @code{S=R-0} is multiplicatively
closed Ore set in A.
That is, for any s in S and a in A, there exist t in S and b in A, such that @code{sa=bt}.
In other words, one can transform any left fraction into a right fraction.
The algebra @code{A_S} is called an Ore localization of A with respect to S.
This library provides Groebner basis procedure for A_S, performing polynomial (that is
fraction-free) computations only. Note, that there is ongoing development of the
subsystem called Singular:Locapal, which will provide yet another approach to Groebner
bases over such Ore localizations.
Assumptions: in order to treat such localizations constructively, some care need to be taken.
We will assume that the variables @code{x1,...,xN} from above (which will become invertible
in the localization) come as the first block among the variables of the basering.
Moreover, the ordering on the basering must be an antiblock ordering, that is its
matrix form has the left upper @code{NxN} block zero. Here is a recipe to create such
an ordering easily: use 'a(w)' definitions of the ordering N times with intvecs @code{w_i}
of the following form: @code{w_i} has first N components zero. The rest entries need to
be positive and such, that @code{w1,..,wN} are linearly independent (see an example below).
Guide: with this library, it is possible
- to compute a Groebner basis of an ideal or a submodule in the 'rational'
Ore localization D = A_S
- to compute a dimension of associated graded submodule (called D-dimension)
- to compute a vector space dimension over Quot(R) of a submodule of
D-dimension 0 (so called D-finite submodule)
- to compute a basis over Quot(R) of a D-finite submodule
PROCEDURES:
ratstd(I, n); compute Groebner basis and dimensions in Ore localization of the basering
Support: SpezialForschungsBereich F1301 of the Austrian FWF and
Transnational Access Program of RISC Linz, Austria
SEE ALSO: jacobson_lib
";
LIB "poly.lib";
LIB "dmodapp.lib"; // for Appel1, Appel2, Appel4
static proc rm_content_id(def J)
"USAGE: rm_content_id(I); I an ideal/module
RETURN: the same type as input
PURPOSE: remove the content of every generator of I
EXAMPLE: example rm_content_id; shows examples
"
{
def I = J;
int i;
int s = ncols(I);
for (i=1; i<=s; i++)
{
if (I[i]!=0)
{
I[i] = I[i]/content(I[i]);
}
}
return(I);
}
example
{
"EXAMPLE:"; echo = 2;
ring r = (0,k,n),(K,N),dp;
ideal I = n*((k+1)*K - (n-k)), k*((n-k+1)*N - (n+1));
I;
rm_content_id(I);
module M = I[1]*gen(1), I[2]*gen(2);
print(rm_content_id(M));
}
proc ratstd(def I, int is, list #)
"USAGE: ratstd(I, n [,eng]); I an ideal/module, n an integer, eng an optional integer
RETURN: ring
PURPOSE: compute the Groebner basis of I in the Ore localization of
the basering with respect to the subalgebra, generated by first n variables
ASSUME: the variables of basering are organized in two blocks and
- the first block of length n contains the elements with respect to which one localizes,
- the basering is equipped with the elimination block ordering for the variables
in the second block
NOTE: the output ring C is commutative. The ideal @code{rGBid} in C
represents the rational form of the output ideal @code{pGBid} in the basering.
- During the computation, the D-dimension of I and the corresponding
dimension as K(x)-vector space of I are computed and printed out.
- Setting optional integer eng to 1, slimgb is taken as Groebner engine
DISPLAY: In order to see the steps of the computation, set printlevel to >=2
EXAMPLE: example ratstd; shows examples
"
{
int ppl = printlevel-voice+1;
int eng = 0;
// optional arguments
if (size(#)>0)
{
if (typeof(#[1]) == "int")
{
eng = int(#[1]);
}
}
dbprint(ppl,"engine chosen to be");
dbprint(ppl,eng);
// 0. do the subst's /reformulations
// for the time being, ASSUME
// the ord. is an elim. ord. for D
// and the block of X's is on the left
// its length is 'is'
int i,j,k;
dbprint(ppl,"// -1- creating K(x)[D]");
// 1. create K(x)[D], commutative
def save = basering;
list L = ringlist(save);
list RL, tmp1,tmp2,tmp3,tmp4;
intvec iv;
// copy: field, enlarge it with Xs
if ( size(L[1]) == 0)
{
// i.e. the field with char only
tmp2[1] = L[1];
// tmp1 = L[2];
j = size(L[2]);
iv = 1;
for (i=1; i<=is; i++)
{
tmp1[i] = L[2][i];
iv = iv,1;
}
iv = iv[1..size(iv)-1]; //extra 1
tmp2[2] = tmp1;
tmp3[1] = "lp";
tmp3[2] = iv;
// tmp2[3] = 0;
tmp4[1] = tmp3;
tmp2[3] = tmp4;
//[1] = "lp";
// tmp2[3][2] = iv;
tmp2[4] = ideal(0);
RL[1] = tmp2;
}
if ( size(L[1]) >0 )
{
// TODO!!!!!
tmp2[1] = L[1][1]; //char K
// there are parameters
// add to them X's, IGNORE alg.extension
// the ordering on pars
tmp1 = L[1][2]; // param names
j = size(tmp1);
iv = L[1][3][1][2];
for (i=1; i<=is; i++)
{
tmp1[j+i] = L[2][i];
iv = iv,1;
}
tmp2[2] = tmp1;
tmp2[3] = L[1][3];
tmp2[3][1][2] = iv;
tmp2[4] = ideal(0);
RL[1] = tmp2;
}
// vars: leave only D's
kill tmp1; list tmp1;
// tmp1 = L[2];
for (i=is+1; i<= size(L[2]); i++)
{
tmp1[i-is] = L[2][i];
}
RL[2] = tmp1;
// old: assume the ordering is the block with (a(0:is),ORD)
// old :set up ORD as the ordering
// L; "RL:"; RL;
if (size(L[3]) != 3)
{
//"note: strange ordering";
// NEW assume: ordering is the antiblock with (a(0:is),a(*1),a(*), ORD)
// get the a() parts after is => they should form a complete D-ordering
list L3 = L[3]; list NL3; kill tmp3; list tmp3;
int @sl = size(L3);
int w=1; int z; intvec va,vb;
while(L3[w][1] == "a")
{
va = L3[w][2];
for(z=1;z<=nvars(save)-is;z++)
{
vb[z] = va[is+z];
}
tmp3[1] = "a";
tmp3[2] = vb;
NL3[w] = tmp3; tmp3=0;
w++;
}
// check for completeness: must be >= nvars(save)-is rows
if (w < nvars(save)-is)
{
"note: ordering is incomplete on D. Adding lower Dp block";
// adding: positive things like Dp
tmp3[1]= "Dp";
for (z=1; z<=nvars(save)-is; z++)
{
va[is+z] = 1;
}
tmp3[2] = va;
NL3[w] = tmp3; tmp3 = 0;
w++;
}
NL3[w] = L3[@sl]; // module ord?
RL[3] = NL3;
}
else
{
kill tmp2; list tmp2;
tmp2[1] = L[3][2];
tmp2[2] = L[3][3];
RL[3] = tmp2;
}
// factor ideal is ignored
RL[4] = ideal(0);
// "ringlist:"; RL;
def @RAT = ring(RL);
dbprint(ppl,"// -2- preprocessing with content");
// 2. preprocess input with rm_content_id
setring @RAT;
dbprint(ppl-1, @RAT);
// ideal CI = imap(save,I);
def CI = imap(save,I);
CI = rm_content_id(CI);
dbprint(ppl-1, CI);
dbprint(ppl,"// -3- running groebner");
// 3. compute G = GB(I) w.r.t. the elim. ord. for D
setring save;
// ideal CI = imap(@RAT,CI);
def CI = imap(@RAT,CI);
option(redSB);
option(redTail);
if (eng)
{
def G = slimgb(CI);
}
else
{
def G = groebner(CI);
}
// ideal G = groebner(CI); // although slimgb looks better
// def G = slimgb(CI);
G = simplify(G,2); // to be sure there are no 0's
dbprint(ppl-1, G);
dbprint(ppl,"// -4- postprocessing with content");
// 4. postprocess the output with 1) rm_content_id, 2) lm-minimization;
setring @RAT;
// ideal CG = imap(save,G);
def CG = imap(save,G);
CG = rm_content_id(CG);
CG = simplify(CG,2);
dbprint(ppl-1, CG);
// warning: a bugfarm! in this ring, the ordering might change!!! (see appelF4)
// so, simplify(32) should take place in the orig. ring! and NOT here
// CG = simplify(CG,2+32);
// 4b. create L(G) with X's as coeffs (for minimization)
setring save;
G = imap(@RAT,CG);
int sG = ncols(G);
// ideal LG;
def LG = G;
for (i=1; i<= sG; i++)
{
LG[i] = lead(G[i]);
}
// compute the D-dimension of the ideal in the ring @RAT
setring @RAT;
// ideal LG = imap(save,LG);
def LG = imap(save,LG);
// ideal LGG = groebner(LG); // cosmetics
def LGG = groebner(LG); // cosmetics
int d = dim(LGG);
int Ddim = d;
printf("the D-dimension is %s",d);
if (d==0)
{
d = vdim(LGG);
int Dvdim = d;
printf("the K-dimension is %s",d);
}
// ideal SLG = simplify(LG,8+32); //contains zeros
def SLG = simplify(LG,8+32); //contains zeros
setring save;
// ideal SLG = imap(@RAT,SLG);
def SLG = imap(@RAT,SLG);
// simplify(LG,8+32); //contains zeros
intvec islg;
if (SLG[1] == 0)
{ islg = 0; }
else
{ islg = 1; }
for (i=2; i<= ncols(SLG); i++)
{
if (SLG[i] == 0)
{
islg = islg, 0;
}
else
{
islg = islg, 1;
}
}
for (i=1; i<= ncols(LG); i++)
{
if (islg[i] == 0)
{
G[i] = 0;
}
}
G = simplify(G,2); // ready!
// G = imap(@RAT,CG);
// return the result
// ideal pGBid = G;
def pGBid = G;
export pGBid;
// export Ddim;
// export Dvdim;
setring @RAT;
// ideal rGBid = imap(save,G);
def rGBid = imap(save,G);
// CG;
export rGBid;
setring save;
return(@RAT);
// kill @RAT;
// return(G);
}
example
{
"EXAMPLE:"; echo = 2;
ring r = (0,c),(x,y,Dx,Dy),(a(0,0,1,1),a(0,0,1,0),dp);
// this ordering is an antiblock ordering, as it must be
def S = Weyl(); setring S;
// the ideal I below annihilates parametric Appel F4 function
// where we set parameters to a=-2, b=-1 and d=0
ideal I =
x*Dx*(x*Dx+c-1) - x*(x*Dx+y*Dy-2)*(x*Dx+y*Dy-1),
y*Dy*(y*Dy-1) - y*(x*Dx+y*Dy-2)*(x*Dx+y*Dy-1);
int is = 2; // hence 1st and 2nd variables, that is x and y
// will become invertible in the localization
def A = ratstd(I,2); // main call
pGBid; // polynomial form of the basis in the localized ring
setring A; // A is a commutative ring used for presentation
rGBid; // "rational" or "localized" form of the basis
//--- Now, let us compute a K(x,y) basis explicitly
print(matrix(kbase(rGBid)));
}
/*
oldExampleForDoc()
{
// VL: removed since it's too easy
ring r = 0,(k,n,K,N),(a(0,0,1,1),a(0,0,1,0),dp);
// note, that the ordering must be an antiblock ordering
matrix D[4][4]; D[1,3] = K; D[2,4] = N;
def S = nc_algebra(1,D);
setring S; // S is the 2nd shift algebra
ideal I = (k+1)*K - (n-k), (n-k+1)*N - (n+1);
int is = 2; // hence 1..2 variables will be treated as invertible
def A = ratstd(I,is);
pGBid; // polynomial form
setring A;
rGBid; // rational form
}
*/
/*
exParamAppelF4()
{
// Appel F4
LIB "ratgb.lib";
ring r = (0,a,b,c,d),(x,y,Dx,Dy),(a(0,0,1,1),a(0,0,1,0),dp);
matrix @D[4][4];
@D[1,3]=1; @D[2,4]=1;
def S=nc_algebra(1,@D);
setring S;
ideal I =
x*Dx*(x*Dx+c-1) - x*(x*Dx+y*Dy+a)*(x*Dx+y*Dy+b),
y*Dy*(y*Dy+d-1) - y*(x*Dx+y*Dy+a)*(x*Dx+y*Dy+b);
def A = ratstd(I,2);
pGBid; // polynomial form
setring A;
rGBid; // rational form
// hence, the K(x,y) basis is {1,Dx,Dy,Dy^2}
}
// more examples:
// F1 is hard
appel F1
{
LIB "dmodapp.lib";
LIB "ratgb.lib";
def A = appelF1();
setring A;
IAppel1;
def F1 = ratstd(IAppel1,2);
lead(pGBid);
setring F1; rGBid;
}
// F2 is much easier
appel F2
{
LIB "dmodapp.lib";
LIB "ratgb.lib";
def A = appelF2();
setring A;
IAppel2;
def F1 = ratstd(IAppel2,2);
lead(pGBid);
setring F1; rGBid;
}
// F4 is feasible
appel F4
{
LIB "dmodapp.lib";
LIB "ratgb.lib";
def A = appelF4();
setring A;
IAppel4;
def F1 = ratstd(IAppel4,2);
lead(pGBid);
setring F1; rGBid;
}
*/
// Important: example for treating modules
// take two annihilators in 2 components
/*
LIB "nctools.lib";
ring r = (0,c),(x,y,Dx,Dy),(a(0,0,1,1),a(0,0,1,0),dp);
// this ordering is an antiblock ordering, as it must be
def S = Weyl(); setring S;
// the ideal I below annihilates parametric Appel F4 function
// where we set parameters to a=-2, b=-1 and d=0
ideal I =
x*Dx*(x*Dx+c-1) - x*(x*Dx+y*Dy-2)*(x*Dx+y*Dy-1),
y*Dy*(y*Dy-1) - y*(x*Dx+y*Dy-2)*(x*Dx+y*Dy-1);
// the ideal J below annihilates parametric Appel F4 function
// where we set parameters to a=0, b=-1, c=0, d=0
ideal J =
x*Dx*(x*Dx-1) - x*(x*Dx+y*Dy)*(x*Dx+y*Dy-1),
y*Dy*(y*Dy-1) - y*(x*Dx+y*Dy)*(x*Dx+y*Dy-1);
module M = I*gen(1), J*gen(2);
// harder modification: M = M, Dx*gen(1) + Dy*gen(2);
// gives K(x,y)-dim 3
int is = 2; // hence 1st and 2nd variables, that is x and y
// will become invertible in the localization
def A = ratstd(M,2); // main call
pGBid; // polynomial form of the basis in the localized ring
setring A;
// we see from computations, that the K(x,y) dimension is 8
rGBid; // "rational" or "localized" form of the basis
print(matrix(kbase(rGBid)));// we see the K(x,y) basis of the corr. module
*/
|