/usr/share/singular/LIB/resbinomial.lib is in singular-data 4.0.3+ds-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 | /////////////////////////////////////////////////////////////////////////
version="version resbinomial.lib 4.0.0.0 Jun_2013 "; // $Id: 7f5e8f0a7c702784ef3334266f3d767725a1f457 $
category="Resolution of singularities";
info="
LIBRARY: resbinomial.lib Combinatorial algorithm of resolution of singularities
of binomial ideals in arbitrary characteristic.
Binomial resolution algorithm of Blanco
AUTHORS: R. Blanco, mariarocio.blanco@uclm.es,
@* G. Pfister, pfister@mathematik.uni-kl.de
PROCEDURES:
BINresol(J); computes a E-resolution of singularities of (J) (THE SECOND PART IS NOT IMPLEMENTED YET)
Eresol(J); computes a E-resolution of singularities of (J) in char 0
determinecenter(L1,L2,c,n,Y,a,mb,flag,control3); computes the next blowing-up center
Blowupcenter(L1,id,m,L2,c,n,h); makes the blowing-up
Nonhyp(Coef,expJ,sJ,n,flag,sums); computes the ideal generated by the non hyperbolic generators of expJ
identifyvar(); identifies status of variables
Edatalist(Coef,Exp,k,n,flag); gives the E-order of each term in Exp
EOrdlist(Coef,Exp,k,n,flag); computes the E-order of an ideal (giving in the language of lists)
maxEord(Coef,Exp,k,n,flag); computes de maximum E-order of an ideal given by Coef and Exp
ECoef(Coef,expP,sP,V,auxc,n,flag); Computes a simplified version of the E-Coeff ideal. The E-orders are correct,
but tranformations of coefficients of the generators and powers of binomials
cannot be computed easily in terms of lists.
elimrep(L); removes repeated terms from a list
Emaxcont(Coef,Exp,k,n,flag); computes a list of hypersurfaces of E-maximal contact
cleanunit(mon,n,flag); clean the units in a monomial mon
resfunction(t,auxinv,nchart,n); composes the E-resolution function
calculateI(Coef,J,c,n,Y,a,b,D); computes the order of the non monomial part of an ideal J
Maxord(L,n); computes the maximum exponent of an exceptional monomial ideal
Gamma(L,c,n); computes the Gamma function for an exceptional monomial ideal given by L
convertdata(C,L,n,flag); computes the ideal corresponding to C,L
lcmofall(nchart,mobile); computes the lcm of the denominators of the E-orders for all the charts
computemcm(Eolist); computes the lcm of the denominators of the E-orders for one chart
constructH(Hhist,n,flag); construct the list of exceptional divisors accumulated at this chart
constructblwup(blwhist,n,chy,flag); construct the ideal defining the map K[W] --> K[Wi],
which gives the composition map of all the blowing up leading to this chart
constructlastblwup(blwhist,n,chy,flag); construct the ideal defining the last blowup leading to this chart
genoutput(chart,mobile,nchart,nsons,n,q,p); generates the output for visualization
salida(idchart,chart,mobile,numson,previousa,n,q); generates the output for one chart
iniD(n); creates a list of lists of zeros of size n
sumlist(L1,L2); sums two lists component to component
reslist(L1,L2); subtracts two lists component to component
multiplylist(L,a); multiplies a list by a number, component to component
dividelist(L1,L2); divides two lists component to component
createlist(L1,L2); creates a list of lists of two elements
";
// inidata(K,k); verifies input data, a binomial ideal K of k generators
// data(K,k,n); transforms data on lists of length n
// list0(n); creates a list of zeros of size n
LIB "general.lib";
LIB "qhmoduli.lib";
LIB "inout.lib";
LIB "poly.lib";
LIB "resolve.lib";
LIB "reszeta.lib";
LIB "resgraph.lib";
////////////////////////////////////////////////////////////////////////////
static proc inidata(ideal K,int k)
"USAGE: inidata(K,k); K any ideal, k integer (!=0)
COMPUTE: Verifies the input data
RETURN: flag indicating if the ideal is binomial or not
EXAMPLE: example inidata; shows an example
"
{
int i;
for (i=1;i<=k; i++)
{ if (size(K[i])>2){return(0);}
}
return(1);
}
example
{"EXAMPLE:"; echo = 2;
ring r = 0,(x(1..3)),dp;
ideal J1=x(1)^4*x(2)^2, x(1)^2+x(3)^3;
inidata(J1,2);
ideal J2=x(1)^4*x(2)^2, x(1)^2+x(2)^3+x(3)^5;
inidata(J2,2);
}
/////////////////////////////////////////////////////////////////////////////////
proc changeoriginalvar()
"USAGE: changeoriginalvar();
COMPUTE: Change the name of the variables to x(1...n), only necessary at the beginning
RETURN: the new ring with the suitable names
EXAMPLE: example changeoriginalvar; shows an example
"
{
int i,n,cont;
n=nvars(basering);
cont=0;
def r=basering;
// check the name of the variables
for (i=1;i<=n; i++){if (varstr(i)[1]=="x" or varstr(i)[1]=="y"){cont=cont+1;}}
// change them if there exists some variable different from x(i) or y(i)
if (cont!=n or n<=2){
// making the change
def Rnew=changevar ("x()");
setring Rnew;
// print("INVERTIBLE VARIABLES NOT CONSIDERED AT THE BEGINNING");
return(Rnew,1);
}
else{ // print("INVERTIBLE VARIABLES ALREADY CONSIDERED AT THE BEGINNING");
return(r,0);
}
}
example
{"EXAMPLE:"; echo = 2;
ring r = 0,(x(1),y(2),x(3),y(4),x(5..7),y(8)),dp;
changeoriginalvar();
ring r = 0,(x,y,z,w),dp;
changeoriginalvar();
}
/////////////////////////////////////////////////////////////////////////////////
proc identifyvar()
"USAGE: identifyvar();
COMPUTE: Asign 0 to variables x and 1 to variables y, only necessary at the beginning
RETURN: list, say l, of size the dimension of the basering
l[i] is: 0 if the i-th variable is x(i),
1 if the i-th variable is y(i)
EXAMPLE: example identifyvar; shows an example
"
{
int i,n;
list flaglist;
n=nvars(basering);
flaglist=list0(n);
for (i=1;i<=n; i++){if (varstr(i)[1]=="y"){flaglist[i]=1;}}
return(flaglist);
}
example
{"EXAMPLE:"; echo = 2;
ring r = 0,(x(1),y(2),x(3),y(4),x(5..7),y(8)),dp;
identifyvar();
}
/////////////////////////////////////////////////////////////////////////////////
proc data(ideal K,int k,int n)
"USAGE: data(K,k,n); K any ideal, k integer (!=0), n integer (!=0)
COMPUTE: Construcs a list with the coefficients and exponents of one ideal
RETURN: lists of coefficients and exponents of K
EXAMPLE: example data; shows an example
"
{int i,j,lon;
number aa;
intvec cc;
list bb,dd,aux,ddaux,Coef,Exp;
for (i=1;i<=k; i++)
{ lon=size(K[i]);
// binomial
if (lon==2){aa=leadcoef(K[i][1]);
bb=aa;
Coef[i]=bb; // coefficients
cc=leadexp(K[i][1]); // exponents
// cc is an intvec, transform cc in dd, a list of lists
dd=cc[1..n];
aux[1]=dd;
// the same for the second term
aa=leadcoef(K[i][2]);
bb=aa;
Coef[i]=Coef[i] + bb; // all the coefficients of i-th generator of K
cc=leadexp(K[i][2]);
dd=cc[1..n];
aux[2]=dd;
Exp[i]=aux;}
// monomial
if (lon==1){aux=list();
aa=leadcoef(K[i][1]);
bb=aa;
Coef[i]=bb;
cc=leadexp(K[i][1]);
dd=cc[1..n];
aux[1]=dd;
Exp[i]=aux;}
} //end for
return(Coef,Exp);
}
example
{"EXAMPLE:"; echo = 2;
ring r = 0,(x(1..3)),dp;
ideal J=x(1)^4*x(2)^2, x(1)^2-x(3)^3;
data(J,2,3);
}
//////////////////////////////////////////////////////
proc Edatalist(list Coef,list Exp,int k,int n,list flaglist)
"USAGE: Edatalist(Coef,Exp,k,n,flaglist);
Coef,Exp,flaglist lists, k,n, integers
Exp is a list of lists of exponents, k=size(Exp)
COMPUTE: computes a list with the E-order of each term
RETURN: a list with the E-order of each term
EXAMPLE: example Edatalist; shows an example
"
{int i,j,lon,mm;
list dd,ss,sums;
number aux,aux1,aux2;
for (i=1;i<=k;i++){lon=size(Coef[i]);
if (lon==1) { for (j=1;j<=n;j++){if (flaglist[j]==0){aux=aux+Exp[i][1][j];}}
ss=aux; aux=0;} // monomial
else { for (j=1;j<=n;j++){if (flaglist[j]==0){ aux1=aux1+Exp[i][1][j];
aux2=aux2+Exp[i][2][j];}}
ss=aux1,aux2; aux1=0; aux2=0; } // binomial
sums[i]=ss;}
return(sums);
}
example
{"EXAMPLE:"; echo = 2;
ring r = 0,(x(1),y(2),x(3),y(4),x(5..7),y(8)),dp;
list flag=identifyvar();
ideal J=x(1)^3*x(3)-y(2)*y(4)^2,x(5)*y(2)-x(7)*y(4)^2,x(6)^2*(1-y(4)*y(8)^5);
list L=data(J,3,8);
list EL=Edatalist(L[1],L[2],3,8,flag);
EL; // E-order of each term
ring r = 2,(x(1),y(2),x(3),y(4),x(5..7),y(8)),dp;
list flag=identifyvar();
ideal J=x(1)^3*x(3)-y(2)*y(4)^2,x(5)*y(2)-x(7)*y(4)^2,x(6)^2*(1-y(4)*y(8)^5);
list L=data(J,3,8);
list EL=Edatalist(L[1],L[2],3,8,flag);
EL; // E-order of each term IN CHAR 2, COMPUTATIONS NEED TO BE DONE IN CHAR 0
ring r = 0,(x(1..3)),dp;
list flag=identifyvar();
ideal J=x(1)^4*x(2)^2, x(1)^2-x(3)^3;
list L=data(J,2,3);
list EL=Edatalist(L[1],L[2],2,3,flag);
EL; // E-order of each term
}
///////////////////////////////////////////////////////////////////////////////////
proc EOrdlist(list Coef,list Exp,int k,int n,list flaglist)
"USAGE: EOrdlist(Coef,Exp,k,n,flaglist);
Coef,Exp,flaglist lists, k,n, integers
Exp is a list of lists of exponents, k=size(Exp)
COMPUTE: computes de E-order of an ideal given by a list (Coef,Exp) and extra information
RETURN: maximal E-order, and its position=number of generator and term
EXAMPLE: example EOrdlist; shows an example
"
{int i,can,canpost,lon;
number canmin;
list sums;
sums=Edatalist(Coef,Exp,k,n,flaglist);
canmin=sums[1][1]; // inicializating, works also with a monomial
for (i=1;i<=k; i++){lon=size(sums[i]); // this is 2 for binomial and 1 for monomial generators
if (sums[i][1]<=canmin and Coef[i][1]!=0){canmin=sums[i][1];
can=i; canpost=1;}
// if the generator is a binomial we check the second term
if (lon==2) {if (sums[i][2]<canmin and Coef[i][2]!=0){canmin=sums[i][2];
can=i; canpost=2;}}
}
return(canmin,can,canpost);
}
example
{"EXAMPLE:"; echo = 2;
ring r = 0,(x(1),y(2),x(3),y(4),x(5..7),y(8)),dp;
list flag=identifyvar();
ideal J=x(1)^3*x(3)-y(2)*y(4)^2,x(5)*y(2)-x(7)*y(4)^2,x(6)^2*(1-y(4)*y(8)^5),x(7)^4*y(8)^2;
list L=data(J,4,8);
list Eo=EOrdlist(L[1],L[2],4,8,flag);
Eo[1]; // E-order
Eo[2]; // generator giving the E-order
Eo[3]; // term giving the E-order
}
//////////////////////////////////////////////////////
proc maxEord(list Coef,list Exp,int k,int n,list flaglist)
"USAGE: maxEord(Coef,Exp,k,n,flaglist);
Coef,Exp,flaglist lists, k,n, integers
Exp is a list of lists of exponents, k=size(Exp)
RETURN: computes de maximal E-order of an ideal given by Coef,Exp
EXAMPLE: example maxEord; shows an example
"
{
int i,lon;
number canmin; // THE ASSIGNMENT IS NOT OK BECAUSE IT IS OF TYPE NUMBER
list sums;
sums=Edatalist(Coef,Exp,k,n,flaglist);
canmin=sums[1][1]; // inicializating, works also with a monomial
for (i=1;i<=k; i++){lon=size(sums[i]); // this is 2 for binomial and 1 for monomial generators
if (sums[i][1]<=canmin and Coef[i][1]!=0){canmin=sums[i][1];}
// if the generator is a binomial we check the second term
if (lon==2) {if (sums[i][2]<canmin and Coef[i][2]!=0){canmin=sums[i][2];}}
}
return(canmin,sums);
}
example
{"EXAMPLE:"; echo = 2;
ring r = 0,(x(1),y(2),x(3),y(4),x(5..7),y(8)),dp;
list flag=identifyvar();
ideal J=x(1)^3*x(3)-y(2)*y(4)^2*x(3),x(5)*y(2)-x(7)*y(4)^2,x(6)^2*(1-y(4)*y(8)^5),x(7)^4*y(8)^2;
list L=data(J,4,8);
list M=maxEord(L[1],L[2],4,8,flag);
M[1]; // E-order
}
//////////////////////////////////////////////////////
proc elimrep(list maxvar)
"USAGE: elimrep(L); L is a list
COMPUTE: Eliminate repeated terms from a list
RETURN: the same list without repeated terms
EXAMPLE: example elimrep; shows an example
"
{
int i,j;
list aux2;
aux2=maxvar;
for (i=1;i<=size(aux2); i++)
{ for (j=i+1;j<=size(aux2); j++){if (aux2[i]==aux2[j] and i!=j){aux2=delete(aux2,j);}}
}
maxvar=aux2;
return(maxvar);
}
example
{"EXAMPLE:"; echo = 2;
ring r = 0,(x(1..3)),dp;
list L=4,5,2,5,7,8,6,3,2;
elimrep(L);
}
//////////////////////////////////////////////////////
proc Emaxcont(list Coef,list Exp,int k,int n,list flag)
"USAGE: Emaxcont(Coef,Exp,k,n,flag);
Coef,Exp,flag lists, k,n, integers
Exp is a list of lists of exponents, k=size(Exp)
COMPUTE: Identify ALL the variables of E-maximal contact
RETURN: a list with the indexes of the variables of E-maximal contact
EXAMPLE: example Emaxcont; shows an example
"
{
int i,j,lon;
number maxEo;
list L,sums,bx,maxvar;
L=maxEord(Coef,Exp,k,n,flag);
maxEo=L[1];
sums=L[2];
if (maxEo>0){
for (i=1;i<=k; i++){lon=size(sums[i]);
if (lon==2){if (sums[i][1]==maxEo) // variables of the first term
{for (j=1;j<=n; j++){if(Exp[i][1][j]!=0 and flag[j]==0){bx=j; maxvar=maxvar + bx;}}}
if (sums[i][2]==maxEo) // variables of the second term
{for (j=1;j<=n; j++){if(Exp[i][2][j]!=0 and flag[j]==0){bx=j; maxvar=maxvar + bx;}}}}
else {if (sums[i][1]==maxEo)
{for (j=1;j<=n; j++){if(Exp[i][1][j]!=0 and flag[j]==0){bx=j; maxvar=maxvar + bx;}}}}
}}
else {maxvar=list();}
// eliminating repeated terms
maxvar=elimrep(maxvar);
// It is necessary to check if flag[j]==0 in order to avoid the selection of y variables
return(maxEo,maxvar);
}
example
{"EXAMPLE:"; echo = 2;
ring r = 0,(x(1),y(2),x(3),y(4),x(5..7),y(8)),dp;
list flag=identifyvar();
ideal J=x(1)^3*x(3)-y(2)*y(4)^2,x(5)*y(2)-x(7)*y(4)^2,x(6)^2*(1-y(4)*y(8)^5),x(7)^4*y(8)^2;
list L=data(J,4,8);
list hyp=Emaxcont(L[1],L[2],4,8,flag);
hyp[1]; // max E-order=0
hyp[2]; // There are no hypersurfaces of E-maximal contact
ring r = 0,(x(1),y(2),x(3),y(4),x(5..7),y(8)),dp;
list flag=identifyvar();
ideal J=x(1)^3*x(3)-y(2)*y(4)^2*x(3),x(5)*y(2)-x(7)*y(4)^2,x(6)^2*(1-y(4)*y(8)^5),x(7)^4*y(8)^2;
list L=data(J,4,8);
list hyp=Emaxcont(L[1],L[2],4,8,flag);
hyp[1]; // the E-order is 1
hyp[2]; // {x(3)=0},{x(5)=0},{x(7)=0} are hypersurfaces of E-maximal contact
}
///////////////////////////////////////////////////////
proc cleanunit(list mon,int n,list flaglist)
"USAGE: cleanunit(mon,n,flaglist);
mon, flaglist lists, n integer
COMPUTE: We clean (or forget) the units in a monomial, given by "y" variables
RETURN: The list defining the monomial ideal already cleaned
EXAMPLE: example cleanunit; shows an example
"
{
int i;
for (i=1;i<=n;i++){if (flaglist[i]==1){mon[i]=0;}}
// coef[1]=coef[1]*y(i)^mon[i]; IS NOT ALLOWED because mon[i] can be a number
// therefore, the coefficients remain constant
return(mon);
}
example
{"EXAMPLE:"; echo = 2;
ring r = 0,(x(1),y(2),x(3),y(4)),dp;
list flag=identifyvar();
ideal J=x(1)^3*y(2)*x(3)^5*y(4)^8;
list L=data(J,1,4);
L[2][1][1]; // list of exponents of the monomial J
list M=cleanunit(L[2][1][1],4,flag);
M; // new list without units
}
//////////////////////////////////////////////////////
// Classification of the ideal E-Coeff_V(P):
// ccase=1, E-Coeff_V(P)=0
// 2,3 Bold regular case
// 4 P=1 monomial case (detected before)
// 0 Otherwise
proc ECoef(list Coef,list expP,int sP,int V,number auxc,int n,list flaglist)
"USAGE: ECoef(Coef,expP,sP,V,auxc,n,flaglist);
Coef, expP, flaglist lists, sP, V, n integers, auxc number
COMPUTE: The ideal E-Coeff_V(P), where V is a permissible hypersurface which belongs to the center
RETURN: list of exponents, list of coefficients and classification of the ideal E-Coeff_V(P)
EXAMPLE: example ECoef; shows an example
"
{
int i,j,k,l,numg,ccase,cont2,cont3,val;
number aa;
list Eco,newcoef,auxexp,newL,rs,rs2,aux,aux2,aux3,aux4,L;
auxexp=expP;
l=1;
for (i=1;i<=sP;i++)
{rs[i]=size(Coef[i]);
if (rs[i]==2){ // binomials
if (auxexp[i][1][V]!=auxexp[i][2][V]) // no common factors for the variable in V
{for (j=1;j<=2;j++){if (auxexp[i][j][V]<auxc){aa=auxc/(auxc-auxexp[i][j][V]);
auxexp[i][j][V]=0;
aux4[1]=multiplylist(auxexp[i][j],aa);
Eco[l]=aux4;
// newcoef[l]=Coef[i][j]^aa; IT IS NO ALLOWED!!!
newcoef[l]=Coef[i][j]; // we leave it constant
l=l+1;}}}
else // common factors for the variable in V, of zero in both terms
{if (auxexp[i][1][V]<auxc){aa=auxc/(auxc-auxexp[i][1][V]);
auxexp[i][1][V]=0; auxexp[i][2][V]=0;
// this generator is a power of a binomial
// one possibility is Eco[l]=auxexp[i]; we leave it constant and add some extra number aa, or
// define a binomial again. The E-order coincides!!!
aux=multiplylist(auxexp[i][1],aa);
aux2=multiplylist(auxexp[i][2],aa);
aux3[1]=aux;
aux3[2]=aux2;
Eco[l]=aux3;
newcoef[l]=Coef[i];
l=l+1;}}
}
else // monomials
{if (auxexp[i][1][V]<auxc){aa=auxc/(auxc-auxexp[i][1][V]);
auxexp[i][1][V]=0;
aux4=list();
aux4[1]=multiplylist(auxexp[i][1],aa);
Eco[l]=aux4;
newcoef[l]=Coef[i];
l=l+1;}}
}
// cleaning units from the monomial generators of Eco
// If there are hyperbolic equations in Eco, such that Eco=1, we detect it later, computing the E-order
numg=size(Eco);
for (k=1;k<=numg;k++){ if (size(newcoef[k])==1){Eco[k][1]=cleanunit(Eco[k][1],n,flaglist);}}
// checking Eco
ccase=0;
cont2=0;
cont3=0;
val=0;
// CASE Eco=0: If Eco=empty list then as ideal Eco=0
if (numg==0){ccase=1;}
else
{
for (i=1;i<=numg;i++) {rs2[i]=size(newcoef[i]);
if (rs2[i]==1){val=val+n; // monomials
for (l=1;l<=n; l++) {if (Eco[i][1][l]==0) {cont2=cont2+1;}}
}
else{val=val+(2*n); // binomials
for (l=1;l<=n; l++) {if (Eco[i][1][l]==0) {cont2=cont2+1;}
if (Eco[i][2][l]==0) {cont2=cont2+1;}}
}
}
// If cont2=val then all the entries of Eco are zero!! As ideal Eco=1
for (i=1;i<=sP;i++){if (rs[i]==2){ // binomials
for (l=1;l<=n;l++) {if (expP[i][1][l]!=0) {cont3=cont3+1;}
if (expP[i][2][l]!=0) {cont3=cont3+1;}}
}
else{ // monomials
for (l=1;l<=n;l++) {if (expP[i][1][l]!=0) {cont3=cont3+1;}}
}
}
// If cont3=0 all the entries of expP are zero!! As ideal P=1 this is detected before
// If cont3=1 then P is bold regular
// CASE Eco=1
if (cont2==val and cont3==1){ccase=2;} // BOLD REGULAR CASE
if (cont2==val and cont3>1){ccase=3;} // CASE P=x^{\alpha},x^{\beta}, IN FACT, BOLD REGULAR
if (cont2==val and cont3==0){ccase=4;} // P=1, then I=1 monomial case
// Case BOLD REGULAR P=x^{\alpha}*(1-\mu y^{\delta})
// IT IS NON NECESSARY TO CHECK IT, Eco=empty list, already done!
L=maxEord(newcoef,Eco,numg,n,flaglist); // L[1] is the E-order of Eco
if (L[1]==0){ccase=2; print("E-order zero!");} // BOLD REGULAR CASE
// we leave it to check the computations
} // close else
return(Eco,newcoef,ccase);
}
example
{"EXAMPLE:"; echo = 2;
ring r = 0,(x(1),y(2),x(3),y(4),x(5..7)),dp;
list flag=identifyvar();
ideal P=x(1)^2*x(3)^5-x(5)^7*y(4),x(6)^3*y(2)^5-x(7)^5,x(5)^3*x(6)-y(4)^3*x(1)^5;
list L=data(P,3,7);
list L2=ECoef(L[1],L[2],3,1,3,7,flag);
L2[1]; // exponents of the E-Coefficient ideal respect to x(1)
L2[2]; // its coefficients
L2[3]; // classify the type of ideal obtained
ring r = 0,(x(1),y(2),x(3),y(4)),dp;
list flag=identifyvar();
ideal J=x(1)^3*(1-2*y(2)*y(4)^2); // Bold regular case
list L=data(J,1,4);
list L2=ECoef(L[1],L[2],1,1,3,4,flag);
L2;
ring r = 0,(x(1),y(2),x(3),y(4),x(5..7)),dp;
list flag=identifyvar();
ideal J=x(1)^3-x(3)^2*y(4)^2,x(1)*x(7)*y(2)-x(6)^3*x(5)*y(4)^3,x(5)^3-x(5)^3*y(2)^2;
list L=data(J,3,7);
list L2=ECoef(L[1],L[2],3,1,2,7,flag);
L2;
ring r = 3,(x(1),y(2),x(3),y(4),x(5..7)),dp;
list flag=identifyvar();
ideal J=x(1)^3-x(3)^2*y(4)^2,x(1)*x(7)*y(2)-x(6)^3*x(5)*y(4)^3,x(5)^3-x(5)^3*y(2)^2;
list L=data(J,3,7);
list L2=ECoef(L[1],L[2],3,1,2,7,flag);
L2; // THE COMPUTATIONS ARE NOT CORRECT IN CHARACTERISTIC p>0
// because numbers are treated as 0 in assignments
}
////////////////////////////////////////////////////////////////////////////
// The intvec a indicates the previous center
// Hhist = intvec of exceptional divisors of the parent chart
proc determinecenter(list Coef,list expJ,number c,int n,int Y,intvec a,list listmb,list flag,int control3,intvec Hhist)
"USAGE: determinecenter(Coef,expJ,c,n,Y,a,listmb,flag,control3,Hhist);
Coef, expJ, listmb, flag lists, c number, n, Y, control3 integers, a, Hhist intvec
COMPUTE: next center of blowing up and related information, see example
RETURN: several lists defining the center and related information
EXAMPLE: example determinecenter; shows an example
"
{int i,j,rstep,l,mm,cont,cont1,cont2,cont3,a4,sI,sP,V,V2,ccase,b,Mindx,tip,mval;
number auxc,a1,a2,ex,maxEo,aux;
list D,H,auxJ; // lists of D_n,D_n-1,...,D_1; H_n,H_n-1,...,H_1; J_n,J_n-1,...,J_1
list oldOlist,oldC,oldt,oldD,oldH,allH; // information of the previous step
list Olist,C,t,Dstar,center,expI,expP,newJ,maxset;
list maxvar,auxlist,aux3,auxD,auxolist,auxdiv,auxaux,L,rs,auxgamma,auxg2,aux1; // auxiliary lists
list auxinvlist,newcoef,EL,Ecoaux,Hplus,transH,Hsum,auxset,sumnewH; // auxiliary lists
list auxcoefI,auxcent,center2;
intvec oldinfobo7,infobo7;
int infaux,leh,leh2,leh3;
tip=listmb[1]; // It is not used in this procedure, it is used to compute the lcm of the denominators
oldOlist=listmb[2];
oldC=listmb[3];
oldt=listmb[4]; // t= resolution function
oldD=listmb[5];
oldH=listmb[6];
allH=listmb[7];
oldinfobo7=listmb[8]; // auxiliary intvec, it is used to define BO[7]
// inicializating lists
Olist=list();
C=list();
auxinvlist=list();
auxJ[1]=expJ;
rstep=n; // we are in dimension rstep
auxc=c;
cont=1;
if (Y==0) {D=iniD(n); H=iniD(n); infobo7=-1;} // first center, inicializate previous information
if (Y!=0 and rstep==n) // In dimension n, D'_n is always of this form
{ auxdiv=list0(n);
Dstar[1]=oldD[1];
b=size(a);
for (i=1;i<=n;i++) {for (j=1;j<=b;j++) {if (a[j]==i) {aux=aux+oldD[1][i];}}}
Dstar[1][Y]=aux;
aux=0;
auxdiv[Y]=oldOlist[1]-oldC[1];
D[1]=sumlist(Dstar[1],auxdiv);} // list defining D_n
// computing strict transforms of the exceptional divisors H
if (Y!=0){transH=iniD(n);
for (i=1;i<=size(oldH);i++){transH[i]=oldH[i]; transH[i][Y]=0;} // Note: size(oldH)<=n
allH[Y]=1;} // transform of |H|=H_nU...UH_1
// We put here size(oldH) instead of n because maybe we have not
// calculated all the dimensions in the previous step
// STARTING THE LOOP
while (rstep>=1)
{
if (Y!=0 and rstep!=n) // transformation law of D_i for i<n
{
if (cont!=0) // the resolution function did not drop in higher dimensions
{
if (oldt[n-rstep]==a1/a2 and c==oldC[1] and control3==0)
{auxD=list0(n);
auxD[Y]=oldOlist[n-rstep+1]-oldC[n-rstep+1];
Dstar[n-rstep+1]=oldD[n-rstep+1];
for (i=1;i<=n;i++) {for (j=1;j<=b;j++) {if (a[j]==i) {aux=aux+oldD[n-rstep+1][i];}}}
Dstar[n-rstep+1][Y]=aux;
aux=0;
D[n-rstep+1]=sumlist(Dstar[n-rstep+1],auxD);
}
else
{cont=0;
for (j=n-rstep+1;j<=n; j++){D[j]=list0(n);}
}
}
}
// Factorizing J=M*I
cont1=0;
for (i=1;i<=n;i++) {if (D[n-rstep+1][i]==0) {cont1=cont1+1;}} // if it fails write: listO(n)[i]
if (cont1==n) {expI=expJ;} // D[n-rstep+1]=0 (is a list of zeros)
else {
for (i=1;i<=size(expJ);i++)
{rs[i]=size(Coef[i]);
if (rs[i]==2){ aux1=list();
aux1[1]=reslist(expJ[i][1],D[n-rstep+1]);
aux1[2]=reslist(expJ[i][2],D[n-rstep+1]);
expI[i]=aux1;} // binomial
else {aux1=list();
aux1[1]=reslist(expJ[i][1],D[n-rstep+1]);
expI[i]=aux1;}} // monomial
}
// NOTE: coeficients of I = coeficients of J, because I and J differ in a monomial
// Detecting errors, negative exponents in expI
sI=size(expI);
for (i=1;i<=sI;i++)
{rs[i]=size(Coef[i]);
if (rs[i]==2){for (j=1;j<=2;j++){for (l=1;l<=n; l++)
{if (expI[i][j][l]<0) {print("ERROR, the BINOMIAL ideal I has negative components");
// print("M ideal"); print(D[n-rstep+1]); print(expI); print("dimension"); print(rstep);
// print("previous chart"); print(size(finalchart)); ~;
}}}}
else {for (l=1;l<=n; l++)
{if (expI[i][1][l]<0) {print("ERROR, the MONOMIAL ideal I has negative components");
// print("M ideal"); print(D[n-rstep+1]); print(expI); print("dimension"); print(rstep);
// print("previous chart"); print(size(finalchart)); ~;
}}}
}
// Compute the maximal E-order of I
L=maxEord(Coef,expI,sI,n,flag);
maxEo=L[1]; // E-order of I
// Inicializating information
auxolist=maxEo;
a1=maxEo;
a2=auxc;
Olist=Olist+auxolist; // list of new maximal E-orders o_n,o_{n-1},...o_1
aux3=auxc;
C=C+aux3; // list of new critical values c=c_{n+1},c_{n},...c_2
// It is necessary to check if the first coordinate of the invariant has dropped or not
// NOTE: By construction, the first coordinate is always 1 !!
// It has dropped is equivalent to: CURRENT C<c of the previous step
// Calculate new H, this is done for every dimension
if (Y!=0){a4=size(oldt);
if (n-rstep+1>a4){cont=0; oldt[n-rstep+1]=0; } // VERIFICAR!!!!
if (cont!=0 and oldt[n-rstep+1]==a1/a2 and c==oldC[1] and control3==0){H[n-rstep+1]=transH[n-rstep+1];
// we fill now the value for BO[7]
if (oldinfobo7[n-rstep+1]==-1){leh=size(Hhist);
infobo7[n-rstep+1]=Hhist[leh];} // suitable index !!!
else{ infaux=oldinfobo7[n-rstep+1];
infobo7[n-rstep+1]=infaux;} // the same as the previous step
}
else {
if (rstep<n) {sumnewH=list0(n);
for (i=1;i<n-rstep+1;i++){sumnewH=sumlist(sumnewH,H[i]);}
H[n-rstep+1]=reslist(allH,sumnewH);}
else {H[n-rstep+1]=allH;}
// we fill the value for BO[7] too, we complete it at the end if necessary
infobo7[n-rstep+1]=-1;
}
}
// It is necessary to detect the monomial case AFTER inicializate the information
// OTHERWISE WE WILL HAVE EMPTY COMPONENTS IN THE RESOLUTION FUNCTION
// If maxEo=0 but maxo!=0 MONOMIAL CASE (because E-Sing(J,c) still !=emptyset)
// If maxEo=0 and maxo=0 then I=1, (real) monomial case, the same case for us
// NOTE THAT IT DOESN'T MATTER IF THERE IS A p-TH POWER OF A HYPERBOLIC EQ, THE E-ORDER IS ZERO ANYWAY
if (maxEo==0){auxgamma=Gamma(D[n-rstep+1],auxc,n); // Gamma gives (maxlist,gamma,center)
auxg2=auxgamma[3];
center=center+auxg2;
center=elimrep(center);
auxinvlist=auxgamma[2];
// print("gamma"); print(auxg2);
break;}
// Calculate P // P=I+M^{o/(c-o)} with weight o
if (maxEo>=auxc) {expP=expI; Mindx=0;} // The coefficients also remain constant
else {ex=maxEo/(auxc-maxEo);
auxlist=list();
Mindx=1;
auxlist[1]=multiplylist(D[n-rstep+1],ex); // weighted monomial part: D[n-rstep+1]^ex;
expP=insert(expI,auxlist); // P=I+D[n-rstep+1]^ex;
auxcoefI=Coef;
Coef=insert(Coef,list(1));} // Adding the coefficient for M
// NOTE: IT IS NECESSARY TO ADD COEFFICIENT 1 TO THE MONOMIAL PART M
// E-ord(P_i)=E-ord(I_i) so to compute the E-order of P_i we can compute E-ord(I_i)
// Calculate variables of E-maximal contact, ALWAYS WITH RESPECT TO THE IDEAL I !!
sP=size(expP); // Can be different from size(expI)
if (Mindx==1){ maxvar=Emaxcont(auxcoefI,expI,sI,n,flag);}
else{ maxvar=Emaxcont(Coef,expP,sP,n,flag);}
auxc=maxvar[1]; // E-order of P, critical value for the next step, ALSO VALID auxc=maxEo;
if (auxc!=maxEo){print("ERROR, the E-order is not well computed");}
maxset=maxvar[2];
// center=center + maxset; // HACER DESPUES Y A?ADIR SOLO V!!!!!!
// Cleaning the center: eliminating repeated variables
// center=elimrep(center);
// if (rstep==1) {break;} // Induction finished, is not necessary to compute the rest
// Calculate Hplus=set of non permissible hypersurfaces
// RESET Hplus if c has dropped or we have eliminated hyperbolic generators
// ES NECESARIO PONER CONDICION DE SI INVARIANTE BAJA O NO??? SI BAJA HPLUS NO SE USA...
if (Y==0 or c<oldC[1] or control3==1) {Hplus=list0(n);}
else {Hsum=list0(n);
Hplus=allH;
for (i=1;i<=n-rstep+1;i++){Hsum=sumlist(Hsum,H[i]);}
Hplus=reslist(Hplus,Hsum); // CHEQUEAR QUE NO SALEN -1'S
}
// Taking into account variables of maxset outside of Hplus (so inside Hminus)
if (Y==0 or c<oldC[1] or control3==1){V=maxset[1]; // Hplus=0 so any variable is permissible
maxset=delete(maxset,1);} // eliminating this variable V from maxset
else{
// If the invariant remains constant V comes from the previous step
if (cont!=0 and oldt[n-rstep+1]==a1/a2 and c==oldC[1]){
if (Mindx==1){
//----------------------------USING HPLUS----------------------------------------
// REMIND THAT IN THIS CASE maxset=HYPERSURFACES OF E-MAXIMAL CONTACT FOR I, INSTEAD OF P
V2=a[n-rstep+1]; // V can be different from the variable coming from the previous step
// check that V2 belongs to maxset
for (i=1;i<=size(maxset);i++){
if (V2==maxset[i]){mval=1; break;}
else{mval=0;}
}
if (Hplus[V2]==0 and mval==1){V=V2;} // V2 is permissible
else{
cont2=1;
cont3=1;
auxset=maxset;
while (cont2!=0){mm=auxset[1];
if (Hplus[mm]!=0) {auxset=delete(auxset,1); cont3=cont3+1;}
// eliminating non permissible variables from maxset
else {cont2=0;}}
V=maxset[cont3]; // first permissible variable
maxset=delete(maxset,cont3);
}
}
//-------------------------------------------------------------------------------
else{ V=a[n-rstep+1];}
}
else {V=maxset[1]; // Hplus=0 so any variable is permissible
maxset=delete(maxset,1);
}
}
// if (V!=V2 and V2!=0){print(a); print(rstep); print(V); print(V2); print("num cartas"); print(size(finalchart)); ~;}
V2=0;
// Adding the new hypersurface of E-maximal contact to the center
auxcent[1]=V;
center=center + auxcent; // print("num cartas"); print(size(finalchart)); print(center); if (size(finalchart)==2){~~;}
auxcent=list();
// Cleaning the center: eliminating repeated variables CREO QUE NO HACE FALTA
center2=elimrep(center); // print(center2); print("-----------");
// if (size(center2)!=size(center)){print("MAL");}
// for (i=1;i<=size(center);i++){if (center2[i]!=center[i]){print("cambia");}}
if (rstep==1) {break;} // Induction finished, is not necessary to compute the rest
// Calculate Eco=E-Coeff_V(P) where V is a permissible hypersurface which belongs to the center
// Eco can have rational exponents
Ecoaux=ECoef(Coef,expP,sP,V,auxc,n,flag);
// SPECIAL CASES: BOLD REGULAR CASE
//--------------------------------------------------------------------
if (Ecoaux[3]==1){ // Eco=EMPTY LIST, Eco=0 AS IDEAL
aux1[1]=list0(n);
newJ[1]=aux1; // monomial with zero entries, newJ=1 as ideal
newcoef[1]=list(1); // the new coefficient is only 1
auxaux=list();
auxaux[1]=newJ;
auxJ=auxJ+auxaux; // auxJ list of ideals J_i
auxinvlist=1;
break;}
//-----------------------------------------------------------
// THIS CASE IS NOT GOING TO APPEAR, BUT WE LEAVE IT TO CHECK COMPUTATIONS
if (Ecoaux[3]==2 or Ecoaux[3]==3){ // Eco=0 LIST, Eco=1 AS IDEAL
aux1[1]=list0(n);
newJ[1]=aux1;
newcoef[1]=list(1); // print("Strange case happens"); ~;
auxaux=list();
auxaux[1]=newJ;
auxJ=auxJ + auxaux; // auxJ list of ideals J_i
auxinvlist=1;
break;}
//-----------------------------------------------------------
// THIS CASE IS NOT GOING TO APPEAR, BUT WE LEAVE IT TO CHECK COMPUTATIONS
// P=1 THIS CANNOT HAPPEN SINCE P=1 IFF I=1 (or I is equivalent to 1)
// and this is the monomial case, already checked
if (Ecoaux[3]==4){print("ERROR in ECoef"); break;}
//-----------------------------------------------------------
// If we are here Ecoaux[3]=0, then continue
// Filling the list of "ideals", auxJ=J_n,J_{n-1},...
newJ=Ecoaux[1];
newcoef=Ecoaux[2];
auxJ=insert(auxJ,newJ,n-rstep+1); // newJ is inserted after n-rstep+1 position, so in position n-rstep+2
// New input for the loop, if we are here newJ is different from 0
expJ=newJ;
Coef=newcoef;
newJ=list();
expI=list();
expP=list();
rstep=rstep-1; // print(size(auxJ));
}
// EXIT LOOP "while"
// we do NOT construct the center as an ideal because WE USE LISTS
t=dividelist(Olist,C); // resolution function t
// Complete the intvec infobo7 if necessary
if (control3==1){infobo7=-1;} // We reset the value after clean hyperbolic equations
leh2=size(Olist);
leh3=size(infobo7);
if (leh3<leh2){for (j=leh3+1;j<=leh2; j++){infobo7[j]=-1;}}
// Auxiliary list to complete the resolution function in special cases
if (size(auxinvlist)==0) {auxinvlist[1]=0;}
return(center,auxJ,Olist,C,t,D,H,allH,auxinvlist,infobo7);
}
example
{"EXAMPLE:"; echo = 2;
ring r = 0,(x(1..4)),dp;
list flag=identifyvar();
ideal J=x(1)^2-x(2)^2*x(3)^5, x(1)*x(3)^3+x(4)^6;
list Lmb=1,list(0,0,0,0),list(0,0,0,0),list(0,0,0,0),iniD(4),iniD(4),list(0,0,0,0),-1;
list L=data(J,2,4);
list LL=determinecenter(L[1],L[2],2,4,0,0,Lmb,flag,0,-1); // Compute the first center
LL[1]; // index of variables in the center
LL[2]; // exponents of ideals J_4,J_3,J_2,J_1
LL[3]; // list of orders of J_4,J_3,J_2,J_1
LL[4]; // list of critical values
LL[5]; // components of the resolution function t
LL[6]; // list of D_4,D_3,D_2,D_1
LL[7]; // list of H_4,H_3,H_2,H_1 (exceptional divisors)
LL[8]; // list of all exceptional divisors acumulated
LL[9]; // auxiliary invariant
LL[10]; // intvec pointing out the last step where the function t has dropped
ring r= 0,(x(1..4)),dp;
list flag=identifyvar();
ideal J=x(1)^3-x(2)^2*x(3)^5, x(1)*x(3)^3+x(4)^5;
list Lmb=2,list(0,0,0,0),list(0,0,0,0),list(0,0,0,0),iniD(4),iniD(4),list(0,0,0,0),-1;
list L2=data(J,2,4);
list L3=determinecenter(L2[1],L2[2],2,4,0,0,Lmb,flag,0,-1); // Example with rational exponents in E-Coeff
L3[1]; // index of variables in the center
L3[2]; // exponents of ideals J_4,J_3,J_2,J_1
L3[3]; // list of orders of J_4,J_3,J_2,J_1
L3[4]; // list of critical values
L3[5]; // components of the resolution function
}
////////////////////////////////////////////////////////
// idchart= identity number of the current chart
// infochart=chart[idchart] information related to the chart to blow up
// infochart= int parent,int Y,intvec a,list expJ,list Coef, list flag, // NEEDED FOR THE RESOLUTION
// intvec Hhist, list blwhist, module path, list hipercoef, list hiperexp // NEEDED FOR THE OUTPUT
// NOTE: IT IS NOT NECESSARY TAKE INTO ACCOUNT "y" VARIABLES BECAUSE THE CENTER IS ALREADY GIVEN
proc Blowupcenter(list center,int idchart,int nchart,list infochart,number c,int n,int currentstep)
"USAGE: Blowupcenter(center,id,nchart,infochart,c,n,cstep);
center, infochart lists, id, nchart, n, cstep integers, c number
COMPUTE: The blowing up at the chart IDCHART along the given center
RETURN: new affine charts and related information, see example
EXAMPLE: example Blowupcenter; shows an example
"
{int num,i,j,k,l,parent,Y,lon,m,m2;
intvec a,Hhist,auxHhist;
number auxsum, auxsum2;
list sons,aux,expJ,blexpJ,blD;
list auxstep,Coef;
list auxchart,auxchart1,info,flaglist;
list auxblwhist,blwhist,hipercoef,hiperexp;
module auxpath,auxp2;
parent=idchart;
num=size(center);
// Transform to intvec the list of variables defining the center
a=center[1];
for (i=2;i<=num;i++){a=a,center[i];}
expJ=infochart[4];
Coef=infochart[5];
flaglist=infochart[6];
Hhist=infochart[7];
blwhist=infochart[8];
auxpath=infochart[9];
hipercoef=infochart[10];
hiperexp=infochart[11];
l=size(expJ);
// input for the loop
blexpJ=expJ;
// making the blowing up in the i-th chart
for (i=1;i<=num;i++)
{
// we assign the current number of charts +1 to the i-th chart
idchart=nchart+1;
nchart=nchart+1;
aux=idchart;
sons=sons+aux;
auxstep[i]=currentstep+1;
Y=center[i];
// The blowing up
for (j=1;j<=l;j++){lon=size(Coef[j]);
if (lon==1){for (m=1;m<=n;m++){for (m2=1;m2<=num;m2++){
if (m==center[m2]){auxsum=auxsum+ expJ[j][1][m];}}}
blexpJ[j][1][Y]=auxsum-c;
auxsum=0;} // monomial
else {for (m=1;m<=n;m++){for (m2=1;m2<=num;m2++){
if (m==center[m2]){auxsum=auxsum+expJ[j][1][m];
auxsum2=auxsum2+expJ[j][2][m];}}}
blexpJ[j][1][Y]=auxsum-c;
blexpJ[j][2][Y]=auxsum2-c;
auxsum=0; auxsum2=0;} // binomial
}
auxHhist=Hhist,Y; // history of the exceptional divisors in this chart
auxblwhist=tradblwup(blwhist,n,Y,a,num); // history of the blow ups in this chart
auxp2=auxpath,[parent,i];
auxchart1=parent,Y,a,blexpJ,Coef,flaglist,auxHhist,auxblwhist,auxp2,hipercoef,hiperexp;
// Coef, flaglist are not modified after the blowing-up, the hyperbolic information is the same as in the parent chart
auxchart[i]=auxchart1;
// Inicializating the exponents of J for the next chart
blexpJ=expJ;
}
// end of the loop
// we add its sons to the current chart
infochart=infochart+sons;
info[1]=infochart;
return(info,auxchart,nchart,auxstep,num);
}
example
{"EXAMPLE:"; echo = 2;
ring r = 0,(x(1),y(2),x(3),y(4),x(5..7)),dp;
list flag=identifyvar();
ideal J=x(1)^3-x(3)^2*y(4)^2,x(1)*x(7)*y(2)-x(6)^3*x(5)*y(4)^3,x(5)^3-x(5)^3*y(2)^2;
list Lmb=2,list(0,0,0,0,0,0,0),list(0,0,0,0,0,0,0),list(0,0,0,0,0,0,0),iniD(7),iniD(7),list(0,0,0,0,0,0,0),-1;
list L=data(J,3,7);
list L2=determinecenter(L[1],L[2],2,7,0,0,Lmb,flag,0,-1); // Computing the center
module auxpath=[0,-1];
list infochart=0,0,0,L[2],L[1],flag,0,list(0,0,0,0,0,0,0),auxpath,list(),list();
list L3=Blowupcenter(L2[1],1,1,infochart,2,7,0);
L3[1]; // current chart (parent,Y,center,expJ,Coef,flag,Hhist,blwhist,path,hipercoef,hiperexp) with sons: [12],...,[16]
L3[2][1]; // information of its first son, write L3[2][2],...,L3[2][5] to see the other sons
L3[3]; // current number of charts
L3[4]; // step/level associated to each son
L3[5]; // number of variables in the center
}
//////////////////////////////////////////////////////////////
proc tradblwup(list blwhist,int n,int Y,intvec a,int num)
"Internal procedure - no help and no example available
"
{
int i,j,blwnew;
intvec aux,aux2;
for (j=1;j<=n;j++){
for (i=1;i<=num;i++){
if (j==a[i] and a[i]!=Y){blwnew=Y; break;}
else {blwnew=0;}
}
aux=blwhist[j];
aux2=aux,blwnew;
blwhist[j]=aux2;
}
return(blwhist);
}
//////////////////////////////////////////////////////////////
// It is called only when Eord(J)=0, and J!=1 it is checked inside
// SO IT IS CALLED AFTER: maxEord(Coef,expJ,sJ,n,flaglist); --> gives (max E-order,sums)
proc Nonhyp(list Coef,list expJ,int sJ,int n,list flaglist,list sums)
"USAGE: Nonhyp(Coef,expJ,sJ,n,flaglist,sums);
Coef, expJ, flaglist, sums lists, sJ, n integers
COMPUTE: The "ideal" generated by the non hyperbolic generators of J
RETURN: lists with the following information
newcoef,newJ: coefficients and exponents of the non hyperbolic generators
totalhyp,totalgen: coefficients and exponents of the hyperbolic generators
flaglist: new list saying status of variables
NOTE: the basering r is supposed to be a polynomial ring K[x,y],
in fact, we work in a localization of K[x,y], of type K[x,y]_y with y invertible variables.
EXAMPLE: example Nonhyp; shows an example
"
{
int i,j,k,h,lon,lon2,cont;
number eordcontrol;
list genhyp,listgen,listid,posnumJ,newJ,newcoef,hypcoef,hyp,aux1,aux2,aux3,aux,midlist;
list totalhyp,totalgen;
eordcontrol=0;
while (eordcontrol==0 and sJ!=0)
{
// Give a positional number/flag to each generator of expJ
for (i=1;i<=sJ; i++){listgen=expJ[i]; listid=i; posnumJ[i]=listgen+listid; }
// Select the non hyperbolic and hyperbolic generators
for (j=1;j<=sJ; j++){lon=size(Coef[j]);
if (lon==1){
// IS NOT NECESSARY TO CHECK IF THERE EXIST A MONOMIAL WITH ONLY UNITS, ALREADY DONE!!
aux1=aux1+posnumJ[j];
aux3=list();
aux3[1]=expJ[j];
newJ=newJ+aux3;
aux3[1]=Coef[j];
newcoef=newcoef+aux3;
}
else{ // CHECKING BINOMIALS, ONE TERM WITH E-ORDER ZERO GIVES HYPERBOLIC EQ
if (sums[j][1]==0 or sums[j][2]==0){aux2=aux2+posnumJ[j];
aux3=list();
aux3[1]=expJ[j];
genhyp=genhyp+aux3;
aux3[1]=Coef[j];
hypcoef=hypcoef+aux3;
if (sums[j][1]==0){aux3[1]=expJ[j][2]; hyp=hyp+aux3;}
if (sums[j][2]==0){aux3[1]=expJ[j][1]; hyp=hyp+aux3;}
}
else {aux1=aux1+posnumJ[j];
aux3=list();
aux3[1]=expJ[j];
newJ=newJ+aux3;
aux3[1]=Coef[j];
newcoef=newcoef+aux3;}
}
}
// NOTE: aux1 and aux2 are no needed right now!
// Identify new y variables, that is, x variables in the monomials contained in hyp
h=size(hyp);
for (k=1;k<=h; k++){ for(i=1;i<=n; i++){ if (hyp[k][i]!=0 and flaglist[i]==0) {flaglist[i]=1;}}}
// To replace x by y IT IS NECESSARY TO CHANGE THE BASERING!!! We change only the list flaglist
// CHECK IF THE IDEAL IS ALREADY GENERATED BY MONOMIALS, in this case
// WE HAVE FINISHED THE E-RESOLUTION PART, J GENERATED BY MONOMIALS AND HYPERBOLIC EQS
cont=0;
lon2=size(newJ);
for (j=1;j<=lon2; j++){if (size(newJ[j])==1){cont=cont+1;}}
if (cont==lon2){newcoef=list();
newJ=list();
totalgen=totalgen+genhyp;
totalhyp=totalhyp+hypcoef;
break;}
// CHECK IF THERE ARE MORE HYPERBOLIC EQUATIONS AFTER UPDATE THE FLAG LIST
// CHECK THE MAXIMAL E-ORDER AGAIN
if (lon2==0){ // we are in the previous case, newJ=empty list, save values and exit
totalgen=totalgen+genhyp;
totalhyp=totalhyp+hypcoef;
break;
}
midlist=maxEord(newcoef,newJ,lon2,n,flaglist);
eordcontrol=midlist[1];
if (eordcontrol==0){ // new input for the loop
Coef=newcoef;
expJ=newJ;
sJ=lon2;
sums=midlist[2]; // flaglist is already updated
totalgen=totalgen+genhyp;
totalhyp=totalhyp+hypcoef;
hypcoef=list();
genhyp=list();
newJ=list();
newcoef=list();
}
else{ // If the process is already finished we save the values and exit
totalgen=totalgen+genhyp;
totalhyp=totalhyp+hypcoef;
}
} // closing while
return(newcoef,newJ,totalhyp,totalgen,flaglist);
}
example
{"EXAMPLE:"; echo = 2;
ring r = 0,(x(1),y(2),x(3),y(4),x(5..7)),dp;
list flag=identifyvar(); // List giving flag=1 to invertible variables: y(2),y(4)
ideal J=x(1)^3-x(3)^2*y(4)^2,x(1)*x(7)*y(2)-x(6)^3*x(5)*y(4)^3,1-x(5)^2*y(2)^2;
list L=data(J,3,7);
list L2=maxEord(L[1],L[2],3,7,flag);
L2[1]; // Maximum E-order
list New=Nonhyp(L[1],L[2],3,7,flag,L2[2]);
New[1]; // Coefficients of the non hyperbolic part
New[2]; // Exponents of the non hyperbolic part
New[3]; // Coefficients of the hyperbolic part
New[4]; // New hyperbolic equations
New[5]; // New list giving flag=1 to invertible variables: y(2),y(4),y(5)
ring r = 0,(x(1..4)),dp;
list flag=identifyvar();
ideal J=1-x(1)^5*x(2)^2*x(3)^5, x(1)^2*x(3)^3+x(1)^4*x(4)^6;
list L=data(J,2,4);
list L2=maxEord(L[1],L[2],2,4,flag);
L2[1]; // Maximum E-order
list New=Nonhyp(L[1],L[2],2,4,flag,L2[2]);
New;
}
//////////////////////////////////////////////////////////////
proc calculateI(list Coef,list expJ,number c,int n,int Y,intvec a,number oldordI,list oldD)
"USAGE: calculateI(Coef,expJ,c,n,Y,a,b,D);
Coef, expJ, D lists, c, b numbers, n,Y integers, a intvec
RETURN: ideal I, non monomial part of J
EXAMPLE: example calculateI; shows an example
"
{
int i,cont1,b,j;
number EordI,aux;
list D,L,expI;
list auxdiv,Dstar,aux1,rs;
// WE NEED THE MONOMIAL PART, BUT ONLY IN DIMENSION n
auxdiv=list0(n);
auxdiv[Y]=oldordI-c;
Dstar[1]=oldD[1];
b=size(a);
for (i=1;i<=n;i++) {for (j=1;j<=b;j++) {if (a[j]==i) {aux=aux+oldD[1][i];}}}
Dstar[1][Y]=aux;
aux=0;
D[1]=sumlist(Dstar[1],auxdiv);
cont1=0;
for (i=1;i<=n;i++) {if (D[1][i]==0) {cont1=cont1+1;}} // if it fails write listO(n)[i]
if (cont1==n) {expI=expJ;}
else {
for (i=1;i<=size(expJ);i++)
{rs[i]=size(Coef[i]);
if (rs[i]==2){ aux1=list();
aux1[1]=reslist(expJ[i][1],D[1]);
aux1[2]=reslist(expJ[i][2],D[1]);
expI[i]=aux1;} // binomial
else {aux1=list();
aux1[1]=reslist(expJ[i][1],D[1]);
expI[i]=aux1;}} // monomial
}
return(expI);
}
example
{"EXAMPLE:"; echo = 2;
ring r = 0,(x(1..3)),dp;
list flag=identifyvar();
ideal J=x(1)^4*x(2)^2, x(3)^3;
list Lmb=1,list(0,0,0),list(0,0,0),list(3),iniD(3),iniD(3),list(0,0,0),-1;
list L=data(J,2,3);
list LL=determinecenter(L[1],L[2],3,3,0,0,Lmb,flag,0,-1); // Calculate the center
module auxpath=[0,-1];
list infochart=0,0,0,L[2],L[1],flag,0,list(0,0,0),auxpath,list(),list();
list L3=Blowupcenter(LL[1],1,1,infochart,3,3,0); // blowing-up and looking to the x(3) chart
calculateI(L3[2][1][5],L3[2][1][4],3,3,3,L3[2][1][3],3,iniD(3)); // (I_3)
// looking to the x(1) chart
calculateI(L3[2][2][5],L3[2][2][4],3,3,1,L3[2][2][3],3,iniD(3)); // (I_3)
}
//////////////////////////////////////////////////////////////////////////////////////
// //
// E-RESOLUTION: Eresol(J) subroutine computing the E-resolution of J, char 0 //
// //
//////////////////////////////////////////////////////////////////////////////////////
proc Eresol(ideal J)
"USAGE: Eresol(J); J ideal
RETURN: The E-resolution of singularities of J in terms of the affine charts, see example
EXAMPLE: example Eresol; shows an example
"
{int i,n,k,idchart,nchart,parent,Y,oldid,tnum,s,cont,control,control2,control3,cont2,val,rs2,l,cont3,tip;
intvec a,Hhist;
number c,EordJ,EordI,oldordI;
list L,LL,oldD,t,auxL,finalchart,chart,auxchart,newL,auxp,auxfchart,L2;
list Coef,expJ,expI,sons,oldOlist,oldC,oldt,oldH,allH,auxordJ,auxordI,auxmb,mobile,invariant;
list step,nsons,auxinv,extraL,totalinv,auxsum;
string empstring;
module auxpath;
// ADDED LATER
list flag,newflag,blwhist,hipercoef,hiperexp,hipercoefson,hiperexpson;
intvec infobo7;
export finalchart;
// export nsons;
// export tnum;
// export nchart;
// export step;
export invariant;
export auxinv;
export mobile;
n=nvars(basering);
flag=identifyvar();
k=size(J);
// Checking input data
if (inidata(J,k)==0){return("This library only works for binomial ideals.");}
idchart=1;
nchart=1;
parent=0;
step=0;
control=0;
control2=0;
control3=0;
// Translate the input ideal to a list
auxL=data(J,k,n); // data gives (Coef,Exp)
// THEREAFTER WE WORK ALL THE TIME WITH LISTS
L=maxEord(auxL[1],auxL[2],k,n,flag); // gives (max E-ord, sums)
EordJ=L[1];
// before the first blow up I=J
EordI=EordJ;
// main loop AT EACH CHART WE MUST INICIALIZATE ALL THE VALUES AND
// CONSTRUCT THE FIRST CHART chart[1] BEFORE THE LOOP
// at the first step, before the blow up, there are no exceptional divisors, Y=0
Y=0;
expJ=auxL[2];
Coef=auxL[1];
Hhist=0;
blwhist=list0(n);
auxpath=[0,-1];
hipercoef=list(); // this is for the first chart
hiperexp=list();
auxp=parent,Y,a,expJ,Coef,flag,Hhist,blwhist,auxpath,hipercoef,hiperexp;
chart[1]=auxp; // information of the first chart
tip=1;
oldOlist=list0(n);
oldC=list0(n);
oldC[1]=EordJ; // non necessary here
c=EordJ; // the value c is given by the previous step
oldt=list0(n);
oldD=iniD(n);
oldH=iniD(n);
allH=list0(n);
for (i=1;i<=n;i++){infobo7[i]=-1;}
auxmb=tip,oldOlist,oldC,oldt,oldD,oldH,allH,infobo7;
mobile[1]=auxmb; // mobile corresponding to the first chart
auxinv[1]=list(0);
// NOTE: oldC[1] is the value c to classify the chart in one of the next cases
// HERE BEGIN THE LOOP
while (idchart<=nchart) // WE PROCEED WHILE THERE EXIST UNSOLVED CHARTS
{
if (idchart!=1) // WE ARE NOT IN THE FIRST CHART, INICIALIZATE ALL THE VALUES
{
parent=chart[idchart][1];
Y=chart[idchart][2];
a=chart[idchart][3];
expJ=chart[idchart][4];
Coef=chart[idchart][5];
flag=chart[idchart][6];
Hhist=chart[idchart][7]; // it is not necessary for the computations
blwhist=chart[idchart][8];
auxpath=chart[idchart][9];
hipercoef=chart[idchart][10];
hiperexp=chart[idchart][11];
k=size(Coef); // IT IS NECESSARY TO COMPUTE IT BECAUSE IT DECREASES IF THERE ARE HYPERBOLIC EQS
auxordJ=maxEord(Coef,expJ,k,n,flag);
EordJ=auxordJ[1];
if (control==0){c=mobile[parent+1][3][1];} // we keep c from the last step
else {c=EordJ; control=0; } // we reset the value of c
if (control2==1){c=EordJ; control2=0; control3=1;} // we reset the value of c
// NOTE: oldC[1] is the value c to classify the chart in one of the next cases
}
// The E-order must be computed here
oldid=idchart;
if (EordJ<0) {print("ERROR in J in chart"); print(idchart); ~; break;}
//-------------------------------------------------------------
// CASE J=1, if we reset c, can happen Eord=c=0
// or if there are hyperbolic equations at the beginning!!! A?ADIR!!!!
// if (EordJ==0){auxfchart[1]=chart[idchart]; // WE HAVE FINISHED
// finalchart=finalchart+auxfchart;
// empstring="#"; print("reset c and Eord=c=0"); print(idchart);
// invariant[idchart]=empstring;
// auxinv[idchart]=list(0);
// nsons[idchart]=0;
// idchart=idchart+1;}
//----------------------------------------------------------------------
if (EordJ>=c and EordJ!=0) // subroutine: E-RESOLUTION OF PAIRS
{
if (parent>0)
{ LL=determinecenter(Coef,expJ,c,n,Y,a,mobile[parent+1],flag,control3,chart[parent][7]); }
else { LL=determinecenter(Coef,expJ,c,n,Y,a,mobile[parent+1],flag,control3,Hhist); }
// determinecenter gives (center,auxJ,Olist,C,t,D,H,allH,auxinvlist,infobo7)
// save current values, before the blow up
oldOlist=LL[3];
tip=computemcm(oldOlist);
oldC=LL[4];
oldt=LL[5];
oldD=LL[6];
oldH=LL[7];
allH=LL[8];
auxinv[idchart]=LL[9];
infobo7=LL[10];
auxmb=tip,oldOlist,oldC,oldt,oldD,oldH,allH,infobo7;
mobile[idchart+1]=auxmb;
invariant[idchart]=oldt;
newL=Blowupcenter(LL[1],idchart,nchart,chart[idchart],c,n,step[idchart]);
// Blowupcenter gives (info,auxchart,nchart,auxstep,num)
// IMPORTANT: ADD THE NEW CHARTS AFTER EACH BLOW UP, IN ORDER TO KEEP THEM CORRECTLY
step=step+newL[4];
nsons[idchart]=newL[5];
chart=chart+newL[2];
finalchart=finalchart+newL[1];
// new input for the loop
idchart=idchart+1;
nchart=newL[3];
control3=0;
} // END OF CASE EordJ>=c
//---------------------------------------------------------------------
else{
// compute EordI=max E-order(I)
expI=calculateI(Coef,expJ,c,n,Y,a,mobile[parent+1][2][1],mobile[parent+1][5]);
k=size(expJ); // probably non necessary
auxordI=maxEord(Coef,expI,k,n,flag);
EordI=auxordI[1];
auxsum=auxordI[2];
// CASE EordI>0 DROP c AND CONTINUE
if (EordI>0){idchart=idchart; // keep the chart and back to the main loop while, dropping the value of c
control=1;}
else{ // EordI=0, so check if I=1 or not
cont2=0; // If cont2=val then all the entries of expI are zero!!
val=0;
for (i=1;i<=k;i++) {rs2=size(Coef[i]);
if (rs2==1){if (auxsum[i][1]==0){cont2=val; break;} // THERE EXIST A MONOMIAL WITH ONLY UNITS
val=val+n; // monomials
for (l=1;l<=n; l++) {if (expI[i][1][l]==0) {cont2=cont2+1;}}
}
else{val=val+(2*n); // binomials
for (l=1;l<=n; l++) {if (expI[i][1][l]==0) {cont2=cont2+1;}
if (expI[i][2][l]==0) {cont2=cont2+1;}}
}
}
// CASE EordI==0 AND I=1 THIS CHART IS DONE, FINISH
// NOTE: THIS CASE IS NOT MONOMIAL BECAUSE E-Sing(J,c) is empty
if (cont2==val){auxfchart[1]=chart[idchart];
finalchart=finalchart+auxfchart;
empstring="#";
invariant[idchart]=empstring;
auxinv[idchart]=list(0);
nsons[idchart]=0;
// information for the mobile
tip=1;
oldOlist=list(0);
oldC=list(0);
oldt=list(0);
oldD=list(0);
oldH=list(0);
allH=list(0); // the value of the parent + the new one
infobo7=-1;
auxmb=tip,oldOlist,oldC,oldt,oldD,oldH,allH,infobo7;
mobile[idchart+1]=auxmb;
idchart=idchart+1;}
else{ // CASE EordI==0 AND I!=1 --> HYPERBOLIC EQUATIONS
// COMPUTE THE IDEAL OF NON HYPERBOLIC ELEMENTS
extraL=Nonhyp(Coef,expI,k,n,flag,auxordI[2]); // gives (newcoef,newI,hypcoef,genhyp,flaglist)
// CHECK IF ALL THE VARIABLES ARE ALREADY INVERTIBLE
newflag=extraL[5];
chart[idchart][6]=extraL[5]; // update the status of variables
cont3=0;
for (i=1;i<=n;i++){if (newflag[i]==1){cont3=cont3+1;}}
if (cont3==n){ // ALL THE VARIABLES ARE INVERTIBLE
auxfchart[1]=chart[idchart];
finalchart=finalchart+auxfchart;
empstring="@";
invariant[idchart]=empstring;
auxinv[idchart]=list(0);
nsons[idchart]=0;
// information for the mobile
tip=1;
oldOlist=list(0);
oldC=list(0);
oldt=list(0);
oldD=list(0);
oldH=list(0);
allH=list(0);
infobo7=-1;
auxmb=tip,oldOlist,oldC,oldt,oldD,oldH,allH,infobo7;
mobile[idchart+1]=auxmb;
idchart=idchart+1;}
else{ // OTHERWISE, CONTINUE CHEKING IF newI=0 or not
Coef=extraL[1];
expI=extraL[2];
hipercoefson=extraL[3]; // Information about hyperbolic generators
hiperexpson=extraL[4];
k=size(expI);
if (k==0){auxfchart[1]=chart[idchart]; // WE HAVE FINISHED
finalchart=finalchart+auxfchart;
empstring="#"; // no more non-hyperbolic generators in this chart
invariant[idchart]=empstring;
auxinv[idchart]=list(0);
nsons[idchart]=0;
// information for the mobile
tip=1;
oldOlist=list(0);
oldC=list(0);
oldt=list(0);
oldD=list(0);
oldH=list(0);
allH=list(0);
infobo7=-1;
auxmb=tip,oldOlist,oldC,oldt,oldD,oldH,allH,infobo7;
mobile[idchart+1]=auxmb;
idchart=idchart+1;}
else{ // CONTINUE WITH THE IDEAL OF NON HYPERBOLIC EQS
chart[idchart][4]=expI; // new input ideal and coefficients
chart[idchart][5]=Coef;
chart[idchart][10]=hipercoef+hipercoefson;
chart[idchart][11]=hiperexp+hiperexpson;
idchart=idchart;
control2=1; // it is necessary to reset the value of c
control3=1; // and the previous exceptional divisors
}
// PROBABLY IT IS NEC MORE INFORMATION !!!
} // closing else otherwise
} // closing else case I!=1
} // closing else for EordI=0
if (EordI<0) {print("ERROR in chart"); print(idchart); ~; break;}
//----------------------- guardar de momento--------
// if (EordI==0) {auxfchart[1]=chart[idchart];
// finalchart=finalchart+auxfchart;
// L2=Gamma(expJ,c,n); // HAY QUE APLICARLO AL M NO AL J
// invariant[idchart]=L2[2];
// auxinv[idchart]=list(0);
// nsons[idchart]=0;
// idchart=idchart+1;}
//------------------------------------------------
} // END ELSE
//---------------------------------------------------
} // END LOOP WHILE
tnum=step[nchart];
totalinv=resfunction(invariant,auxinv,nchart,n);
return(chart,finalchart,invariant,nchart,step,nsons,auxinv,mobile,totalinv);
}
example
{"EXAMPLE:"; echo = 2;
ring r = 0,(x(1..2)),dp;
ideal J=x(1)^2-x(2)^3;
list L=Eresol(J);
"Please press return after each break point to see the next element of the output list";
L[1][1]; // information of the first chart, L[1] list of charts
~;
L[2]; // list of charts with information about sons
~;
L[3]; // invariant, "#" means solved chart
~;
L[4]; // number of charts, 7 in this example
~;
L[5]; // height corresponding to each chart
~;
L[6]; // number of sons
~;
L[7]; // auxiliary invariant
~;
L[8]; // H exceptional divisors and more information
~;
L[9]; // complete resolution function
"Second example, write L[i] to see the i-th component of the list";
ring r = 0,(x(1..3)),dp;
ideal J=x(1)^2*x(2),x(3)^3; // SOLVED!
list L=Eresol(J);
L[4]; // 16 charts
L[9]; // complete resolution function
~;
"Third example, write L[i] to see the i-th component of the list";
ring r = 0,(x(1..2)),dp;
ideal J=x(1)^3-x(1)*x(2)^3;
list L=Eresol(J);
L[4]; // 8 charts, rational exponents
L[9]; // complete resolution function
~;
}
//////////////////////////////////////////////////////////////////////////////////////
proc resfunction(list invariant, list auxinv, int nchart,int n)
"USAGE: resfunction(invariant,auxinv,nchart,n);
invariant, auxinv lists, nchart, n integers
COMPUTE: Patch the resolution function
RETURN: The complete resolution function
EXAMPLE: example resfunction; shows an example
"
{
int i,j,l,k;
list patchfun,aux;
for (i=1;i<=nchart;i++){patchfun[i]=invariant[i];}
for (i=1;i<=nchart;i++){if (auxinv[i][1]!=0 and size(auxinv[i])==3){l=size(invariant[i]);
for (j=1;j<=l;j++){
if (invariant[i][j]==0){aux=auxinv[i];
patchfun[i][j]=aux;
if (l<n){for (k=j+1;k<=n;k++){patchfun[i][k]="*";}}}}
}
else{
if (auxinv[i][1]==1 and size(auxinv[i])==1){l=size(invariant[i]);
if (l<n){for (k=l+1;k<=n;k++){patchfun[i][k]="*";}}
}
}
}
return(patchfun);
}
example
{"EXAMPLE:"; echo = 2;
ring r = 0,(x(1..2)),dp;
ideal J=x(1)^2-x(2)^3;
list L=Eresol(J);
L[3]; // incomplete resolution function
resfunction(L[3],L[7],7,2); // complete resolution function
}
//////////////////////////////////////////////////////////////////////////////////////
// //
// MAIN PROCEDURE //
// //
//////////////////////////////////////////////////////////////////////////////////////
proc BINresol(ideal J)
"USAGE: BINresol(J); J ideal
RETURN: E-resolution of singularities of a binomial ideal J in terms of the affine charts, see example
EXAMPLE: example BINresol; shows an example
"
{
int p,n;
p=char(basering);
n=nvars(basering); // already computed in Eresol, it can be improved
def rr=basering;
// INTERNAL CHANGE: changing the name of the variables, only if it is necessary
list Mout=changeoriginalvar();
if (Mout[2]==1){
def r=Mout[1];
setring r;
ideal chy=maxideal(1);
map frr=rr,chy;
ideal J=frr(J);
}
// else{def r=basering;} // CHECK THAT IS NECESSARY !!!
// IF WE ARE IN POSTIVE CHAR
if (p>0){list Lring=ringlist(basering);
Lring[1]=0;
// def r=basering;
def Rnew=ring(Lring);
setring Rnew;
ideal chy=maxideal(1);
map fRnew=r,chy;
ideal J=fRnew(J);
// E-RESOLUTION, Computations in char 0
list L=Eresol(J);
// STEP 2: WRITE THE LOCALLY MONOMIAL IDEAL AS A MONOMIAL IDEAL
// not implemented yet, CHAR p !!!!
// STEP 3: DO THE E-RESOLUTION AGAIN (char 0 again)
// generating output in char p
int q=lcmofall(L[4],L[8]); // lcm of the denominators
list B=genoutput(L[1],L[8],L[4],L[6],n,q,p); // generate output needed for visualization
// setring r; // Back to the basering
// ideal chy=maxideal(1);
// map fr=Rnew,chy;
// list L=fr(L);
// list B=fr(B);
}
else{
// E-RESOLUTION
list L=Eresol(J);
// STEP 2: WRITE THE LOCALLY MONOMIAL IDEAL AS A MONOMIAL IDEAL
// not implemented yet
// STEP 3: DO THE E-RESOLUTION AGAIN
// generating output
int q=lcmofall(L[4],L[8]);
list B=genoutput(L[1],L[8],L[4],L[6],n,q,p);
}
return(B);
}
example
{"EXAMPLE:"; echo = 2;
ring r = 0,(x(1..2)),dp;
ideal J=x(1)^2-x(2)^3;
list B=BINresol(J);
B[1]; // list of final charts
B[2]; // list of all charts
ring r = 2,(x(1..3)),dp;
ideal J=x(1)^2-x(2)^2*x(3)^2;
list B=BINresol(J);
B[2]; // list of all charts
}
///////////////////////////////////////////////////////
proc Maxord(list L,int n)
"USAGE: Maxord(L,n); L list, n integer
COMPUTE: Find the maximal entry of a list, input is a list defining a monomial
RETURN: maximum entry of a list and its position
EXAMPLE: example Maxord; shows an example
"
{int i,can;
number canmax;
list aux;
canmax=1;
can=1;
for (i=1;i<=n;i++)
{ if (L[i]>=canmax and i>=can)
{canmax=L[i]; can=i;}}
return(canmax,can);
}
example
{"EXAMPLE:"; echo = 2;
ring r = 0,(x(1..3)),dp;
ideal J=x(1)^2*x(2)*x(3)^5;
list L=data(J,1,3);
L[2]; // list of exponents
Maxord(L[2][1][1],3);
}
///////////////////////////////////////////////////////
proc Gamma(list expM,number c,int n)
"USAGE: Gamma(L,c,n); L list, c number, n integer
COMPUTE: The Gamma function, resolution function corresponding to the monomial case
RETURN: lists of maximum exponents in L, value of Gamma function, center of blow up
EXAMPLE: example Gamma; shows an example
"
{int i,j,k,l,cont,can;
intvec upla;
number canmax;
list expM2,gamma,L,aux,maxlist,center,aux2;
i=1;
cont=0;
expM2=expM;
while (cont==0 and i<=n)
{
L=Maxord(expM2,n);
aux=L[1];
maxlist=maxlist + aux;
can=L[2];
if (i==1) {upla=can; center=can;}
else {upla=upla,can; aux2=can; center=center+aux2;}
canmax=sum(maxlist);
if (canmax>=c)
{gamma[1]=-i; gamma[2]=canmax/c; gamma[3]=upla; cont=1;}
else {expM2[can]=0;}
i=i+1;
}
return(maxlist,gamma,center);
}
example
{"EXAMPLE:"; echo = 2;
ring r = 0,(x(1..5)),dp;
ideal J=x(1)^2*x(2)*x(3)^5*x(4)^2*x(5)^3;
list L=data(J,1,5);
list G=Gamma(L[2][1][1],9,5); // critical value c=9
G[1]; // maximum exponents in the ideal
G[2]; // maximal value of Gamma function
G[3]; // center given by Gamma
}
///////////////////////////////////////////////////////
proc convertdata(list C,list L, int n, list flaglist)
"USAGE: convertdata(C,L,n,flaglist);
C, L, flaglist lists, n integer
COMPUTE: Compute the ideal corresponding to the given lists C,L
RETURN: an ideal whose coefficients are given by C, exponents given by L
EXAMPLE: example convertdata; shows an example
"
{int i,j,k,a,b,lon;
poly aux,aux1,aux2,aux3,f;
ideal J;
aux=poly(0);
aux1=poly(1);
aux2=poly(0);
aux3=poly(1);
k=size(L);
for (i=1;i<=k;i++){lon=size(C[i]);
if (lon==1){ // variables in the monomial
for (j=1;j<=n;j++){a=int(poly(L[i][1][j]));
if (a!=0){
if (flaglist[j]==0){aux=poly(x(j)^a);
aux1=aux1*aux;}
else {aux=poly(y(j)^a);
aux1=aux1*aux;}
}
}
if (C[i][1]!=0){aux1=C[i][1]*aux1;} // we add the coefficient
else {aux1=0;}
J[i]=aux1;
aux1=poly(1);
}
else{ // variables in the binomial
for (j=1;j<=n;j++){a=int(poly(L[i][1][j])); b=int(poly(L[i][2][j]));
if (a!=0){
if (flaglist[j]==0){aux=poly(x(j)^a);
aux1=aux1*aux;}
else {aux=poly(y(j)^a);
aux1=aux1*aux;}
}
if (b!=0){
if (flaglist[j]==0){aux2=poly(x(j)^b);
aux3=aux3*aux2;}
else {aux2=poly(y(j)^b);
aux3=aux3*aux2;}
}
}
// we add the coefficients
if (C[i][1]!=0){aux1=C[i][1]*aux1;}
else {aux1=0;}
if (C[i][2]!=0){aux3=C[i][2]*aux3;}
else {aux3=0;}
f=aux1+aux3;
J[i]=f;
aux1=poly(1);
aux3=poly(1);
}
}
return(J);
}
example
{"EXAMPLE:"; echo = 2;
ring r = 0,(x(1..4),y(5)),dp;
list M=identifyvar();
ideal J=x(1)^2*y(5)^2-x(2)^2*x(3)^2,6*x(4)^2;
list L=data(J,2,5);
L[1]; // Coefficients
L[2]; // Exponents
ideal J2=convertdata(L[1],L[2],5,M);
J2;
}
/////////////////////////////////////////////////////////////////////////////
proc lcmofall(int nchart,list mobile)
"USAGE: lcmofall(nchart,mobile);
nchart integer, mobile list of lists
COMPUTE: Compute the lcm of the denominators of the E-orders of all the charts
RETURN: an integer given the lcm
NOTE: CALL BEFORE salida
EXAMPLE: example lcmofall; shows an example
"
{
int i,m,tip,mcmall;
intvec numall;
for (i=2;i<=nchart+1;i++){
tip=mobile[i][1];
if (tip!=1){numall=numall,tip;}
}
m=size(numall);
if (m==1){mcmall=1;}
else{
if (numall[1]==0){numall=numall[2..m];}
mcmall=lcm(numall);}
return(mcmall);
}
example
{"EXAMPLE:"; echo = 2;
ring r = 0,(x(1..2)),dp;
ideal J=x(1)^3-x(1)*x(2)^3;
list L=Eresol(J);
L[4]; // 8 charts, rational exponents
L[8][2][2]; // E-orders at the first chart
lcmofall(8,L[8]);
}
/////////////////////////////////////////////////////////////////////////////
proc salida(int idchart,list chart,list mobile,int numson,intvec previousa,int n,int q,int p)
"USAGE: salida(idchart,chart,mobile,numson,previousa,n,q,p);
idchart, numson, n, q, p integers, chart, mobile, lists, previousa intvec
COMPUTE: CONVERT THE OUTPUT OF A CHART IN A RING, WHERE DEFINE A BASIC OBJECT (BO)
RETURN: the ring corresponding to the chart
EXAMPLE: example salida; shows an example
"
{
int l,i,m,aux,parent,m4,j;
intvec Hhist,EOhist,aux7,aux9;
list expJ,Coef,BO,blwhist,Eolist,hipercoef,hiperexp;
list flag;
// chart gives: parent,Y,a,expJ,Coef,flag,Hhist,blwhist,path,hipercoef,hiperexp
// mobile gives: tip,oldOlist,oldC,oldt,oldD,oldH,allH,infobo7; NOTE: Eolist=mobile[2];
// we need to define the suitable ring at this chart
list Lring=ringlist(basering);
def RR2=basering;
flag=chart[6];
string newl;
for (l=1;l<=n; l++){if (flag[l]==1){newl=string(l);
Lring[2][l]="y("+newl+")";} }
def RRnew=ring(Lring);
setring RRnew;
ideal chy=maxideal(1);
map fRnew=RR2,chy;
list chart=fRnew(chart);
list mobile2=fRnew(mobile);
flag=chart[6];
// we need to convert expJ and Coef to an ideal
expJ=chart[4];
Coef=chart[5];
Hhist=chart[7];
blwhist=chart[8];
// now the ideal will be correctly defined in the ring Rnew
ideal J2=convertdata(Coef,expJ,n,flag); // Computations in RRnew
//------------------------------------------------------------------------------
// START TO CREATE THE BO corresponding to this chart
BO=createBO(J2);
// MODIFY BO WITH THE INFORMATION OF THE CHART
// BO[1] an ideal, say W_i, defining the ambient space of the i-th chart of the blowing up
// If there are hyperbolic equations, we put them here
hipercoef=chart[10];
hiperexp=chart[11];
if (size(hipercoef)!=0){
ideal ambJ=convertdata(hipercoef,hiperexp,n,flag);
BO[1]=ambJ;
}
// BO[2] an ideal defining the controlled transform
BO[2]=J2;
// BO[3] intvec, tupla containing the maximal E-order of BO[2]
if (numson==0){BO[3]=1;} // we write 1 if the chart is a final chart
else{
Eolist=mobile2[2]; // otherwise, convert the list of E-orders in an intvec
m=size(Eolist);
aux=int(Eolist[1]*q);
EOhist=aux;
if (m>1){for (i=2;i<=m;i++){aux=int(Eolist[i]*q); EOhist=EOhist,aux;}}
BO[3]=EOhist;
}
// BO[4] the list of exceptional divisors given by Hhist
BO[4]=constructH(Hhist,n,flag);
// BO[5] an ideal defining the map K[W] ----> K[Wi] given by blwhist
BO[5]=constructblwup(blwhist,n,chy,flag);
// BO[6] an intvec, BO[6][j]=1 indicates that <BO[4][j],BO[2]>=1, i.e. the
// strict transform does not meet the j-th exceptional divisor
m4=size(BO[4]);
ideal auxydeal;
ideal Jint;
for (j=1;j<=m4;j++){
auxydeal=BO[4][j]+J2;
Jint=std(auxydeal);
if (size(Jint)==1 and Jint[1]==1){BO[6][j]=1;}
else{BO[6][j]=0;}
}
// BO[7] intvec, the index of the first blown-up object in the resolution process
// leading to this object for which the value of b was BO[3]
// the subsequent ones are the indices for the Coeff-Objects
// of BO[2] used when determining the center
// index of last element of H^- in H
if (numson!=0){BO[7]=mobile2[8];} // it is always -1 at the final charts
// BO[8] a matrix indicating that BO[4][i] meets BO[4][j] by BO[8][i,j]=1 for i < j
if (m4>0){
matrix aux8[m4][m4];
BO[8]=aux8;
ideal auxydeal2;
ideal Jint2;
for (i=1;i<=m4;i++){
for (j=i+1;j<=m4;j++){
auxydeal2=BO[4][i]+BO[4][j];
Jint2=std(auxydeal2);
if (size(Jint2)==1 and Jint2[1]==1){BO[8][i,j]=0;}
else{ for (l=1;l<j;l++){BO[8][l,j]=1;} }
}
}
}
else{ matrix aux8[1][1];
BO[8]=aux8;}
// BO[9] INTERNAL DATA, second component of Villamayor resolution function,
// only needed to use the visualization procedures
int m3=size(BO[3]);
if (m3==1){aux9=intvec(0);}
else{ aux9[1]=0;
for (i=2;i<=m3;i++){aux9=aux9,0;}
}
BO[9]=aux9;
//------------------------------------------------------------------------------
// START TO CREATE THE extra information corresponding to this chart
/////////////// Short description of data in a chart ///////////////////
// All chart data is stored in an object of type ring, the following
// variables are always present in such a ring:
// BO: already created
// cent: ideal, describing the upcoming center determined by the algorithm
ideal cent=tradtoideal(previousa,J2,flag);
// path= module (autoconverted to matrix)
// path[1][idchart]=parent[idchart] index of the parent-chart in resolution history of this chart
// path[2][idchart]=index of this chart in relation with its brother-charts
module path=chart[9];
// lastMap: ideal, describing the preceding blow up leading to this chart
ideal lastMap=constructlastblwup(blwhist,n,chy,flag);
//------------------------------------------------------------------------------
// EXTRA INFORMATION NEEDED
list invSat=ideal(0),aux9;
// BACK TO THE CHAR OF THE ORIGINAL RING, IF IT HAD p>0
if (p>0){
list Lring;
Lring=ringlist(RRnew);
Lring[1]=p;
def auxRnew=ring(Lring);
kill Lring;
setring auxRnew;
ideal chy=maxideal(1);
map frnew=RRnew,chy;
def BO=frnew(BO);
// def chart=frr(chart);
def invSat=frnew(invSat);
def lastMap=frnew(lastMap);
def cent=frnew(cent);
def path=frnew(path);
}
// export everything needed
export BO;
export(invSat);
export lastMap;
export path;
export cent;
if (p==0){return(RRnew);}
else{
return(auxRnew);}
}
example
{"EXAMPLE:"; echo = 2;
ring r = 0,(x(1..2)),dp;
ideal J=x(1)^2-x(2)^3;
list L=Eresol(J);
list B=salida(5,L[1][5],L[8][6],2,L[1][3][3],2,1,0); // chart 5
def RR=B[1];
setring RR;
BO;
"press return to see next example"; ~;
ring r = 0,(x(1..2)),dp;
ideal J=x(1)^2-x(2)^3;
list L=Eresol(J);
list B=salida(7,L[1][7],L[8][8],0,L[1][5][3],2,1,0); // chart 7
def RR=B[1];
setring RR;
BO;
showBO(BO);
"press return to see next example"; ~;
ring r = 0,(x(1..2)),dp;
ideal J=x(1)^3-x(1)*x(2)^3;
list L=Eresol(J); // 8 charts, rational exponents
list B=salida(1,L[1][1],L[8][2],2,0,2,2,0); // CHART 1
def RR=B[1];
setring RR;
BO;
}
/////////////////////////////////////////////////////////////////////////////
// CONVERT THE OUTPUT OF Eresol IN A LIST OF RINGS, WHERE A BASIC OBJECT (BO) IS DEFINED
// IN ORDER TO INTEGRATE THIS LIBRARY INSIDE THE LIBRARY resolve.lib
proc genoutput(list chart,list mobile,int nchart,list nsons,int n,int q, int p)
"USAGE: genoutput(chart,mobile,nchart,nsons,n,q,p);
chart, mobile, nsons lists, nchart, n,q, p integers
RETURN: two lists, the first one gives the rings corresponding to the final charts,
the second one is the list of all rings corresponding to the affine charts of the resolution process
EXAMPLE: example genoutput; shows an example
"
{
int idchart,parent;
list auxlist,solvedrings,totalringlist,previousa;
list auxlistenp,solvedringsenp,totalringenp;
// chart gives: parent,Y,a,expJ,Coef,flag,Hhist,blwhist,path,hipercoef,hiperexp
// mobile gives: tip,oldOlist,oldC,oldt,oldD,oldH,allH,infobo7; NOTE: Eolist=mobile[2];
idchart=1;
// first loop, construct list previousa
while (idchart<=nchart)
{
if (idchart==1){previousa[1]=chart[2][3];}
else
{
// if there are no sons, the next center is nothing
if (nsons[idchart]==0){previousa[idchart]=0;}
// always fill the parent
parent=chart[idchart][1];
previousa[parent]=chart[idchart][3];
}
idchart=idchart+1;
}
// HERE BEGIN THE LOOP
idchart=1;
while (idchart<=nchart)
{
def auxexit=salida(idchart,chart[idchart],mobile[idchart+1],nsons[idchart],previousa[idchart],n,q,p);
if (p>0)
{ // we need the computations in char 0 too
def auxexitenp=salida(idchart,chart[idchart],mobile[idchart+1],nsons[idchart],previousa[idchart],n,q,0);
}
else{def auxexitenp=auxexit;}
// we add the ring to the list of all rings
auxlist[1]=auxexit;
totalringlist=totalringlist+auxlist;
auxlistenp[1]=auxexitenp;
totalringenp=totalringenp+auxlistenp;
// if the chart has no sons, add it to the list of final charts
if (nsons[idchart]==0)
{
solvedrings=solvedrings+auxlist;
solvedringsenp=solvedringsenp+auxlistenp;
}
auxlist=list();
auxlistenp=list();
kill auxexit;
kill auxexitenp;
idchart=idchart+1;
} // EXIT WHILE
return(solvedrings,totalringlist,solvedringsenp,totalringenp);
}
example
{"EXAMPLE:"; echo = 2;
ring r = 0,(x(1..2)),dp;
ideal J=x(1)^3-x(1)*x(2)^3;
list L=Eresol(J); // 8 charts, rational exponents
list B=genoutput(L[1],L[8],L[4],L[6],2,2,0); // generates the output
presentTree(B);
list iden0=collectDiv(B);
ResTree(B,iden0[1]); // generates the resolution tree
// Use presentTree(B); to see the final charts
// To see the tree type in another shell
// dot -Tjpg ResTree.dot -o ResTree.jpg
// /usr/bin/X11/xv ResTree.jpg
}
/////////////////////////////////////////////////////////////////////
proc computemcm(list Eolist)
"USAGE: computemcm(Eolist); Eolist list
RETURN: an integer, the least common multiple of the denominators of the E-orders
NOTE: Make the same as lcmofall but for one chart. NECESSARY BECAUSE THE E-ORDERS ARE OF TYPE NUMBER!!
EXAMPLE: example computemcm; shows an example
"
{
int m,i,aux,mcmchart;
intvec num;
m=size(Eolist);
if (m==1){mcmchart=int(denominator(Eolist[1])); return(mcmchart);}
if (m>1)
{
num=int(denominator(Eolist[1]));
for (i=2;i<=m;i++)
{aux=int(denominator(Eolist[i])); num=num,aux; }
}
mcmchart=lcm(num);
return(mcmchart);
}
example
{"EXAMPLE:"; echo = 2;
ring r = 0,(x(1..2)),dp;
ideal J=x(1)^3-x(1)*x(2)^3;
list L=Eresol(J); // 8 charts, rational exponents
L[8][2][2]; // maximal E-order at the first chart
computemcm(L[8][2][2]);
}
/////////////////////////////////////////////////////////////////////
proc constructH(intvec Hhist,int n,list flag)
"USAGE: constructH(Hhist,n,flag);
Hhist intvec, n integer, flag list
RETURN: the list of exceptional divisors accumulated at this chart
EXAMPLE: example constructH; shows an example
"
{
int i,j,m,l;
list exceplist;
ideal aux;
m=size(Hhist);
if (Hhist[1]==0 and m>1)
{
Hhist=Hhist[2..m]; m=m-1;
for (i=1;i<=m;i++)
{
l=Hhist[i];
if (flag[l]==0){aux=ideal(poly(x(l))); }
else {aux=ideal(poly(y(l))); }
exceplist[i]=aux;
}
// eliminate repeated variables
for (i=1;i<=m;i++)
{
for (j=1;j<=m;j++)
{
if (Hhist[i]==Hhist[j] and i!=j)
{
if (i<j){exceplist[i]=ideal(1);}
if (i>j){exceplist[j]=ideal(1);}
}
}
}
}
else {exceplist=list();}
// else {exceplist=list(ideal(0));} // IF IT FAILS USE THIS
return(exceplist);
}
example
{"EXAMPLE:"; echo = 2;
ring r = 0,(x(1..3)),dp;
list flag=identifyvar();
ideal J=x(1)^4*x(2)^2, x(1)^2+x(3)^3;
list L=Eresol(J); // 7 charts
// history of the exceptional divisors at the 7-th chart
L[1][7][7]; // blow ups at x(3)-th, x(1)-th and x(1)-th charts
constructH(L[1][7][7],3,flag);
}
/////////////////////////////////////////////////////////////////////
proc constructblwup(list blwhist,int n,ideal chy,list flag)
"USAGE: constructblwup(blwhist,n,chy,flag);
blwhist, flag lists, n integer, chy ideal
RETURN: the ideal defining the map K[W] --> K[Wi],
which gives the composition map of all the blowing up leading to this chart
NOTE: NECESSARY START WITH COLUMNS
EXAMPLE: example constructblwup; shows an example
"
{
int i,j,m,m2;
poly aux2;
m=size(blwhist[1]);
for (j=1;j<=m;j++)
{
for (i=1;i<=n;i++)
{
m2=blwhist[i][j];
// If m2!=0 this variable changes. First decide if the variable to multiply is invertible or not
if (m2!=0)
{
if (flag[m2]==0){aux2=poly(x(m2));}
else {aux2=poly(y(m2));}
// And then substitute this variable for the corresponding product in the whole ideal
if (flag[i]==0){chy=subst(chy,x(i),x(i)*aux2);}
else {chy=subst(chy,y(i),y(i)*aux2);}
}
}
}
return(chy);
}
example
{"EXAMPLE:"; echo = 2;
ring r = 0,(x(1..3)),dp;
list flag=identifyvar();
ideal chy=maxideal(1);
ideal J=x(1)^4*x(2)^2, x(1)^2+x(3)^3;
list L=Eresol(J); // 7 charts
// history of the blow ups at the 7-th chart, center {x(1)=x(3)=0} every time
L[1][7][8]; // blow ups at x(3)-th, x(1)-th and x(1)-th charts
constructblwup(L[1][7][8],3,chy,flag);
}
/////////////////////////////////////////////////////////////////////
proc constructlastblwup(list blwhist,int n,ideal chy,list flag)
"USAGE: constructlastblwup(blwhist,n,chy,flag);
blwhist, flag lists, n integer, chy ideal
RETURN: the ideal defining the last blow up
NOTE: NECESSARY START WITH COLUMNS
EXAMPLE: example constructlastblwup; shows an example
"
{
int i,j,m,m2;
poly aux2;
m=size(blwhist[1]);
if (m>0)
{
for (i=1;i<=n;i++){ m2=blwhist[i][m];
// If m2!=0 this variable changes. First decide if the variable to multiply is invertible or not
if (m2!=0)
{
if (flag[m2]==0){aux2=poly(x(m2));}
else {aux2=poly(y(m2));}
// And then substitute this variable for the corresponding product in the whole ideal
if (flag[i]==0){chy=subst(chy,x(i),x(i)*aux2);}
else {chy=subst(chy,y(i),y(i)*aux2);}
}
}
}
return(chy);
}
example
{"EXAMPLE:"; echo = 2;
ring r = 0,(x(1..3)),dp;
list flag=identifyvar();
ideal chy=maxideal(1);
ideal J=x(1)^4*x(2)^2, x(1)^2+x(3)^3;
list L=Eresol(J); // 7 charts
// history of the blow ups at the 7-th chart, center {x(1)=x(3)=0} every time
L[1][7][8]; // blow ups at x(3)-th, x(1)-th and x(1)-th charts
constructlastblwup(L[1][7][8],3,chy,flag);
}
/////////////////////////////////////////////////////////////////////
proc tradtoideal(intvec a,ideal J2,list flag)
"USAGE: tradtoideal(a,J2,flag);
a intvec, J2 ideal, flag list
COMPUTE: traslate to an ideal the intvec defining the center
RETURN: the ideal of the center, given by the intvec a, or J2 if a=0
EXAMPLE: example tradtoideal; shows an example
"
{
int i,m;
ideal acenter,aux2;
if (a==0)
{acenter=J2;}
else
{
m=size(a);
for (i=1;i<=m;i++)
{
if (flag[a[i]]==0){aux2=poly(x(a[i]));}
else {aux2=poly(y(a[i]));}
acenter=acenter+aux2;
}
}
return(acenter);
}
example
{"EXAMPLE:"; echo = 2;
ring r = 0,(x(1..3)),dp;
list flag=identifyvar();
ideal J=x(1)^4*x(2)^2, x(1)^2+x(3)^3;
intvec a=1,3; // first center of blowing up
tradtoideal(a,J,flag);
}
//////////////////////////////////////////////////////////////////////////////////////
// OPERATIONS WITH LISTS
//////////////////////////////////////////////////////////////////////////////////////
proc iniD(int n)
"USAGE: iniD(n); n integer
RETURN: list of lists of zeros of size n
EXAMPLE: example iniD; shows an example
"
{int i,j;
list D,auxD;
for (j=1;j<=n; j++) {auxD[j]=0;}
for (i=1;i<=n; i++) {D[i]=auxD;}
return(D);
}
example
{"EXAMPLE:"; echo = 2;
iniD(3);
}
/////////////////////////////////////////////////////////
proc sumlist(list L1,list L2)
"USAGE: sumlist(L1,L2); L1,L2 lists, (size(L1)==size(L2))
RETURN: a list, sum of L1 and L2
EXAMPLE: example sumlist; shows an example
"
{
int i,k;
list sumL;
k=size(L1);
if (size(L2)!=k) {return("ERROR en sumlist, lists must have the same size");}
for (i=1;i<=k;i++) {sumL[i]=L1[i]+L2[i];}
return(sumL);
}
example
{"EXAMPLE:"; echo = 2;
list L1=1,2,3;
list L2=5,9,7;
sumlist(L1,L2);
}
///////////////////////////////////////////////////////
proc reslist(list L1,list L2)
"USAGE: reslist(L1,L2); L1,L2 lists, (size(L1)==size(L2))
RETURN: a list, subtraction of L1 and L2
EXAMPLE: example reslist; shows an example
"
{
int i,k;
list resL;
k=size(L1);
if (size(L2)!=k) {return("ERROR en reslist, lists must have the same size");}
for (i=1;i<=k;i++) {resL[i]=L1[i]-L2[i];}
return(resL);
}
example
{"EXAMPLE:"; echo = 2;
list L1=1,2,3;
list L2=5,9,7;
reslist(L1,L2);
}
//////////////////////////////////////////////////////
proc multiplylist(list L,number a)
"USAGE: multiplylist(L,a); L list, a number
RETURN: list of elements of type number, multiplication of L times a
EXAMPLE: example multiplylist; shows an example
"
{int i,k;
list newL,bb;
number b;
k=size(L);
for (i=1;i<=k;i++) {b=L[i]*a; bb=b; newL=newL+bb;}
return(newL);
}
example
{"EXAMPLE:"; echo = 2;
ring r = 0,(x(1..3)),dp;
list L=1,2,3;
multiplylist(L,1/5);
}
///////////////////////////////////////////////////////
proc dividelist(list L1,list L2)
"USAGE: dividelist(L1,L2); L1,L2 lists
RETURN: list of elements of type number, division of L1 by L2
EXAMPLE: example dividelist; shows an example
"
{int i,k,k1,k2;
list LL,bb;
number a1,a2,b;
k1=size(L1);
k2=size(L2);
if (k2!=k1) {print("ERROR en dividelist, lists must have the same size");}
if (k1<=k2) {k=k1;}
else {k=k2;}
for (i=1;i<=k;i++)
{a1=L1[i]; a2=L2[i]; b=a1/a2; bb=b; LL=LL+bb;}
return(LL);
}
example
{"EXAMPLE:"; echo = 2;
ring r = 0,(x(1..3)),dp;
list L1=1,2,3;
list L2=5,9,7;
dividelist(L1,L2);
}
///////////////////////////////////////////////////////
proc createlist(list L1,list L2)
"USAGE: createlist(L1,L2); L1,L2 lists, (size(L1)==size(L2))
RETURN: list of lists of two elements, the first one of L1 and the second of L2
EXAMPLE: example createlist; shows an example
"
{int i,k;
list L,aux;
k=size(L1);
if (size(L2)!=k) {return("ERROR en createlist, lists must have the same size");}
L=list0(k);
for (i=1;i<=k;i++) {if (L1[i]!=0) {aux=L1[i],L2[i]; L[i]=aux;}
else {L=delete(L,i);}}
return(L);
}
example
{"EXAMPLE:"; echo = 2;
list L1=1,2,3;
list L2=5,9,7;
createlist(L1,L2);
}
///////////////////////////////////////////////////////
static proc list0(int n)
"USAGE: list0(n); n integer
RETURN: list of n zeros
EXAMPLE: example list0; shows an example
"
{int i;
list L0;
for (i=1;i<=n;i++) {L0[i]=0;}
return(L0);
}
example
{"EXAMPLE:"; echo = 2;
list0(4);
}
////////////////////////////////////////////////////////////
|