/usr/share/singular/LIB/resjung.lib is in singular-data 4.0.3+ds-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 | ////////////////////////////////////////////////////////////////////////////
version="version resjung.lib 4.0.1.0 Nov_2014 "; // $Id: 8a7f52632c2869e127981bdafc45667b1efc800c $
category="Commutative Algebra";
info="
LIBRARY: jung.lib Resolution of surface singularities (Desingularization)
Algorithm of Jung
AUTHOR: Philipp Renner, philipp_renner@web.de
PROCEDURES:
jungresolve(J[,is_noeth]) computes a resolution (!not a strong one) of the
surface given by the ideal J using Jungs Method,
jungnormal(J[,is_noeth]) computes a representation of J such that all it's
singularities are of Hirzebruch-Jung type,
jungfib(J[,is_noeth]) computes a representation of J such that all it's
singularities are quasi-ordinary
";
LIB "resolve.lib";
LIB "mregular.lib";
LIB "sing.lib";
LIB "normal.lib";
LIB "primdec.lib";
//-----------------------------------------------------------------------------------------
//Main procedure
//-----------------------------------------------------------------------------------------
proc jungfib(ideal id, list #)
"USAGE: jungfib(J[,is_noeth]);
@* J = ideal
@* j = int
ASSUME: J = two dimensional ideal
RETURN: a list l of rings
l[i] is a ring containing two Ideals: QIdeal and BMap.
BMap defines a birational morphism from V(QIdeal)-->V(J), such that
V(QIdeal) has only quasi-ordinary singularities.
If is_noeth=1 the algorithm assumes J is in noether position with respect to
the last two variables. As a default or if is_noeth = 0 the algorithm computes
a coordinate change such that J is in noether position.
NOTE: since the noether position algorithm is randomized the performance
can vary significantly.
EXAMPLE: example jungfib; shows an example.
"
{
int noeth = 0;
if(size(#) == 0)
{
#[1]=0;
noeth=0;
}
if(#[1]==1){
noeth=1;
}
ideal I = id;
I = radical(id);
def A = basering;
int n = nvars(A);
if(deg(NF(1,groebner(slocus(id)))) == -1){
list result;
ideal QIdeal = I;
ideal BMap = maxideal(1);
export(QIdeal);
export(BMap);
result[1] = A;
return(result);
}
if(char(A) <> 0){ERROR("only works for characterisitc 0");} //dummy check
if(dim(I)<> 2){ERROR("dimension is unequal 2");} //dummy check
//Noether Normalization
if(noeth == 0){
if(n==3){
int pos = NoetherP_test(I);
if(pos ==0){
ideal noethpos = NoetherPosition(I);
map phi = A,noethpos;
kill noethpos,pos;
}
else{
ideal NoetherPos = var(pos);
for(int i = 1;i<=3;i++){
if(i<>pos){
NoetherPos = NoetherPos + var(i);
}
}
map phi = A,NoetherPos;
kill i,pos,NoetherPos;
}
}
else{
map phi = A,NoetherPosition(I);
}
ideal NoetherN = ideal(phi(I)); //image of id under the NoetherN coordinate change
}
else{
ideal NoetherN = I;
map phi = A,maxideal(1);
}
kill I;
//Critical Locus
def C2 = branchlocus(NoetherN);
setring C2;
//dim of critical locus is 0 then the normalization is an resolution
if(dim(clocus) == 0){
setring A;
list nor = normal(NoetherN);
list result;
int sizeofnor = size(nor[1]);
for(int i = 1;i<=sizeofnor;i++){
def R = nor[1][i];
setring R;
ideal QIdeal = norid;
ideal BMap = BMap;
export(QIdeal);
export(BMap);
result[size(result)+1] = R;
kill R;
setring A;
}
kill sizeofnor;
print("This is a resolution.");
return(result);
}
//dim of critical locus is 1, so compute embedded resolution of the discriminant curve
list embresolvee = embresolve(clocus);
//build the fibreproduct
setring A;
list fibreP = buildFP(embresolvee,NoetherN,phi);
//a list of lists, where fibreP[i] contains the information conserning
//the i-th chart of the fibrepoduct
//fibreP[i] is the ring; QIdeal the quotientideal; BMap is the map from A
return(fibreP);
}
example{
"EXAMPLE:";echo = 2;
//Computing a resolution of singularities of the variety z2-x3-y3
ring r = 0,(x,y,z),dp;
ideal I = z2-x3-y3;
//The ideal is in noether position
list l = jungfib(I,1);
def R1 = l[1];
def R2 = l[2];
setring R1;
QIdeal;
BMap;
setring R2;
QIdeal;
BMap;
}
proc jungnormal(ideal id,list #)
"USAGE: jungnormal(ideal J[,is_noeth]);
@* J = ideal
@* i = int
ASSUME: J = two dimensional ideal
RETURN: a list l of rings
l[i] is a ring containing two Ideals: QIdeal and BMap.
BMap defines a birational morphism from V(QIdeal)-->V(J), such that
V(QIdeal) has only singularities of Hizebuch-Jung type.
If is_noeth=1 the algorithm assumes J is in noether position with respect to
the last two variables. As a default or if is_noeth = 0 the algorithm computes
a coordinate change such that J is in noether position.
NOTE: since the noether position algorithm is randomized the performance
can vary significantly.
EXAMPLE: example jungnormal; gives an example.
"
{
int noeth = 0;
if(size(#) == 0)
{
#[1]=0;
noeth=0;
}
if(#[1]==1){
noeth=1;
}
def A = basering;
list fibreP = jungfib(id,noeth);
list result;
for(int i =1;i<=size(fibreP);i++){
def R1 = fibreP[i];
setring R1;
map f1 = A,BMap;
list nor = normal(QIdeal);
int sizeofnor = size(nor[1]);
for(int j = 1;j<=sizeofnor;j++){
def Ri2 = nor[1][j];
setring Ri2;
map f2 = R1,normap;
ideal BMap = ideal(f2(f1));
ideal QIdeal = norid;
export(BMap);
export(QIdeal);
result[size(result)+1] = Ri2;
kill Ri2,f2;
setring R1;
}
kill j,sizeofnor,R1;
}
return(result);
}
example{
"EXAMPLE:";echo = 2;
//Computing a resolution of singularities of the variety z2-x3-y3
ring r = 0,(x,y,z),dp;
ideal I = z2-x3-y3;
//The ideal is in noether position
list l = jungnormal(I,1);
def R1 = l[1];
def R2 = l[2];
setring R1;
QIdeal;
BMap;
setring R2;
QIdeal;
BMap;
}
proc jungresolve(ideal id,list #)
"USAGE: jungresolve(ideal J[,is_noeth]);
@* J = ideal
@* i = int
ASSUME: J = two dimensional ideal
RETURN: a list l of rings
l[i] is a ring containing two Ideals: QIdeal and BMap.
BMap defines a birational morphism from V(QIdeal)-->V(J), such that
V(QIdeal) is smooth. For this the algorithm computes first with
jungnormal a representation of V(J) with Hirzebruch-Jung singularities
and then it uses Villamayor's algorithm to resolve these singularities
If is_noeth=1 the algorithm assumes J is in noether position with respect to
the last two variables. As a default or if is_noeth = 0 the algorithm computes
a coordinate change such that J is in noether position.
NOTE: since the noether position algorithm is randomized the performance
can vary significantly.
EXAMPLE: example jungresolve; shows an example.
"
{
int noeth = 0;
if(size(#) == 0)
{
#[1]=0;
noeth=0;
}
if(#[1]==1){
noeth=1;
}
def A = basering;
list result;
list nor = jungnormal(id,noeth);
for(int i = 1;i<=size(nor);i++){
if(defined(R)==voice){kill R;}
def R3 = nor[i];
setring R3;
def R = changeord(list(list("dp",1:nvars(basering))));
setring R;
ideal QIdeal = imap(R3,QIdeal);
ideal BMap = imap(R3,BMap);
map f = A,BMap;
if(QIdeal <> 0){
list res = resolve(QIdeal);
for(int j =1;j<=size(res[1]);j++){
def R2 = res[1][j];
setring R2;
if(defined(QIdeal)==voice){kill QIdeal;}
if(defined(BMap)==voice){kill BMap;}
if(BO[1]<>0){ideal QIdeal = BO[1]+BO[2];}
else{ideal QIdeal = BO[2];}
map g = R,BO[5];
ideal BMap = ideal(g(f));
export(QIdeal);
export(BMap);
result[size(result)+1] = R2;
kill R2;
}
kill j,res;
}
else{
result[size(result)+1] = nor[i];
}
setring A;
kill R,R3;
}
return(result);
}
example{
"EXAMPLE:";echo = 2;
//Computing a resolution of singularities of the variety z2-x3-y3
ring r = 0,(x,y,z),dp;
ideal I = z2-x3-y3;
//The ideal is in noether position
list l = jungresolve(I,1);
def R1 = l[1];
def R2 = l[2];
setring R1;
QIdeal;
BMap;
setring R2;
QIdeal;
BMap;
}
//---------------------------------------------------------------------------------------
//Critical locus for the Weierstrass map induced by the noether normalization
//---------------------------------------------------------------------------------------
static proc branchlocus(ideal id)
{
//"USAGE: branchlocus(ideal J);
// J = ideal
//ASSUME: J = two dimensional ideal in noether position with respect of
// the last two variables
//RETURN: A ring containing the ideal clocus respresenting the criticallocus
// of the projection V(J)-->C^2 on the last two coordinates
//EXAMPLE: none"
def A = basering;
int n = nvars(A);
list l = equidim(id);
int k = size(l);
ideal LastTwo = var(n-1),var(n);
ideal lowdim = 1; //the components of id with dimension smaller 2
if(k>1){
for(int j=1;j<k;j++){
lowdim = intersect(lowdim,radical(l[j]));
}
}
kill k;
lowdim = radical(lowdim);
ideal I = radical(l[size(l)]);
poly product=1;
kill l;
for(int i=1; i < n-1; i++){ //elimination of all variables exept var(i),var(n-1),var(n)
intvec v;
for(int j=1; j < n-1; j++){
if(j<>i){
v[j]=1;
}
else{
v[j]=0;
}
}
v[size(v)+1]=0;
v[size(v)+1]=0;
list ringl = ringlist(A);
list l;
l[1] = "a";
l[2] = v;
list ll = insert(ringl[3],l);
ringl[3]=ll;
kill l,ll;
def R = ring(ringl); //now x_j > x_i > x_n-1 > x_n forall j <> i,n-1,n
setring R;
ideal J = groebner(fetch(A,I));//this eliminates the variables
setring A;
ideal J = fetch(R,J);
attrib(J,"isPrincipal",0);
if(size(J)==1){
attrib(J,"isPrincipal",1);
}
int index = 1;
if(attrib(J,"isPrincipal")==0){
setring R;
for(int j = 1;j<=size(J);j++){//determines the monic polynomial in var(i) with coefficents in C2
intvec w = leadexp(J[j]);
attrib(w,"isMonic",1);
for(int k = 1;k<=size(w);k++){
if(w[k] <> 0 && k <> i){
attrib(w,"isMonic",0);
break;
}
}
//kill k;
if(attrib(w,"isMonic")==1){
index = j;
break;
}
kill w;
}
kill j;
setring A;
}
product = product*resultant(J[index],diff(J[index],var(i)),var(i));
//Product of the discriminants, which lies in C2
kill index,J,v;
}
ring C2 = 0,(var(n-1),var(n)),dp;
setring C2;
ideal clocus= imap(A,product); //the critical locus is contained in this
ideal I = preimage(A,LastTwo,lowdim);
clocus= radical(intersect(clocus,I));
//radical is necessary since the resultant is in gerneral not reduced
export(clocus);
return(C2);
}
//-----------------------------------------------------------------------------------------
//Build the fibre product of the embedded resolution and the coordinate ring of the variety
//-----------------------------------------------------------------------------------------
static proc buildFP(list embresolve,ideal NoetherN, map phi){
def A = basering;
list fibreP;
int n = nvars(A);
for(int i=1;i<=size(embresolve);i++){
def R = embresolve[i];
setring R;
list temp = ringlist(A);
//data for the new ring which is, if A=K[x_1,..,x_n] and
//R=K[y_1,..,y_m], K[x_1,..,x_n-2,y_1,..,y_m]
for(int j = 1; j<= nvars(R);j++){
string st = string(var(j));
temp[2][n-2+j] = st;
kill st;
}
temp[4] = BO[1];
ideal J = BO[5]; //ideal of the resolution map
export(J);
int m = size(J);
def R2 = ring(temp);
kill temp;
setring R2;
ideal Temp=0; //defines map from R to R2 which is the inclusion
for(int k=n-1;k<n-1+nvars(R);k++){
Temp = Temp + ideal(var(k));
}
map f = R,Temp;
kill Temp,k;
ideal FibPMI = ideal(0); //defines the map from A to R2
for(int k=1;k<=nvars(A)-m;k++){
FibPMI=FibPMI+var(k);
}
FibPMI= FibPMI+ideal(f(J));
map FibMap = A,FibPMI;
kill f,FibPMI;
ideal TotalT = groebner(FibMap(NoetherN));
ideal QIdeal = TotalT;
export(QIdeal);
ideal FibPMap = ideal(FibMap(phi));
ideal BMap = FibPMap;
export(BMap);
fibreP[i] = R2;
setring R;
kill J,R,R2,k,j,m;
}
return(fibreP);
}
//-------------------------------------------------------------------------------
//embedded resolution for curves
//-------------------------------------------------------------------------------
static proc embresolve(ideal C)
"USAGE: embresolve(ideal C);
@* C = ideal
ASSUME: C = ideal of plane curve
RETURN: a list l of rings
l[i] is a ring containing a basic object BO, the result of the
resolution. Whereas the algorithm does not resolve normal
crossings of V(C)
EXAMPLE: example embresolve shows an example
"
{
ideal J = 1;
attrib(J,"iswholeRing",1);
list primdec = equidim(C);
if(size(primdec)==2){
//zero dimensional components of the discrimiant curve are smooth
//an cross normally so they can be ignored in the resolution process
ideal Lowdim = radical(primdec[1]);
}
else{
J=radical(C);
}
kill primdec;
list l;
list BO = createBO(J,l);
kill J,l;
list result = resolve2(BO);
if(defined(Lowdim)==voice)
{
for(int i = 1;i<=size(result);i++)
{
//had zero dimensional components which I add now to the end result
def RingforEmbeddedResolution = result[i];
setring RingforEmbeddedResolution;
map f = R2,BO[5];
BO[2]=BO[2]*f(Lowdim);
kill RingforEmbeddedResolution,f;
}
}
return(result);
}
example
{
"EXAMPLE:";echo=2;
//The following curve is the critical locus of the projection z2-x3-y3
//onto y,z-coordinates.
ring R = 0,(y,z),dp;
ideal C = z2-y3;
list l = embresolve(C);
def R1 = l[1];
def R2 = l[2];
setring R1;
showBO(BO);
setring R2;
showBO(BO);
}
static proc resolve2(list BO){
//computes an embedded resolution for the basic object BO and returns
//a list of rings with BO
def H = basering;
setring H;
attrib(BO[2],"smoothC",0);
export(BO);
list result;
result[1]=H;
attrib(result[1],"isResolved",0); //has only simple normal crossings
attrib(result[1],"smoothC",0); //has smooth components
int safety=0; //number of runs restricted to 30
while(1){
int count2 = 0; //counts the number of smooth charts
int p = size(result);
for(int j = 1;j<=p;j++){
if(attrib(result[j],"isResolved")==0){
if(defined(R)){kill R;}
def R = result[j];
setring R;
if(attrib(result[j],"smoothC")==0){
//has possibly singular components so choose a singular point and blow up
list primdecPC = primdecGTZ(BO[2]);
attrib(result[j],"smoothC",1);
for(int i = 1;i<=size(primdecPC);i++){
ideal Sl = groebner(slocus(primdecPC[i][2]));
if(deg(NF(1,Sl))<>-1){
list primdecSL = primdecGTZ(Sl);
for(int h =1;h<=size(primdecSL);h++){
attrib(primdecSL[h],"isRational",1);
}
kill h;
if(!defined(index)){int index = 1;}
if(defined(blowup)){kill blowup;}
list blowup = blowUpBO(BO,primdecSL[index][2],3);
//if it has a rational singularity blow it up else choose
//some arbitary singular point
if(attrib(primdecSL[1],"isRational")==0){
//if we blow up a non rational singularity the exeptional divisors
//are reduzible so we need to separate them
for(int k=1;k<=size(blowup);k++){
def R2=blowup[k];
setring R2;
list L;
for(int l = 1;l<=size(BO[4]);l++){
list primdecED=primdecGTZ(BO[4][l]);
L = L + primdecED;
kill primdecED;
}
kill l;
BO[4] = L;
blowup[k]=R2;
kill L,R2;
}
kill k;
}
kill primdecSL;
list hlp;
for(int k = 1;k<j;k++){
hlp[k]=result[k];
attrib(hlp[k],"isResolved",attrib(result[k],"isResolved"));
attrib(hlp[k],"smoothC",attrib(result[k],"smoothC"));
}
kill k;
for(int k =1;k<=size(blowup);k++){
hlp[size(hlp)+1]=blowup[k];
attrib(hlp[size(hlp)],"isResolved",0);
attrib(hlp[size(hlp)],"smoothC",0);
}
kill k;
for(int k = j+1;k<=size(result);k++){
hlp[size(hlp)+1]=result[k];
attrib(hlp[size(hlp)],"isResolved",attrib(result[k],"isResolved"));
attrib(hlp[size(hlp)],"smoothC",attrib(result[k],"smoothC"));
}
result = hlp;
kill hlp,k;
i=size(primdecPC);
}
else{
attrib(result[j],"smoothC",1);
}
kill Sl;
}
kill i,primdecPC;
j=p;
break;
}
else{ //if it has smooth components determine all the intersection
//points and check whether they are snc or not
int count = 0;
ideal Collect = BO[2];
for(int i = 1;i<=size(BO[4]);i++){
Collect = Collect*BO[4][i];
}
list primdecSL = primdecGTZ(slocus(Collect));
for(int k = 1;k<=size(primdecSL);k++){
attrib(primdecSL[k],"isRational",1);
}
kill k;
if(defined(blowup)){kill blowup;}
list blowup = blowUpBO(BO,primdecSL[1][2],3);
if(attrib(primdecSL[1],"isRational")==0){
for(int k=1;k<=size(blowup);k++){
def R2=blowup[k];
setring R2;
list L;
for(int l = 1;l<=size(BO[4]);l++){
list primdecED=primdecGTZ(BO[4][l]);
L = L + primdecED;
kill primdecED;
}
kill l;
BO[4] = L;
blowup[k]=R2;
kill L,R2;
}
kill k;
}
kill Collect,i;
for(int i=1;i<=size(primdecSL);i++){
list L = BO[4];
L[size(L)+1]=BO[2];
for(int l = 1;l<=size(L);l++){
if(L[l][1]==1){L=delete(L,l);}
}
kill l;
if(normalCrossing(ideal(0),L,primdecSL[i][2])==0){
if(defined(blowup)){kill blowup;}
list blowup = blowUpBO(BO,primdecSL[i][2],3);
list hlp;
for(int k = 1;k<j;k++){
hlp[k]=result[k];
attrib(hlp[k],"isResolved",attrib(result[k],"isResolved"));
attrib(hlp[k],"smoothC",attrib(result[k],"smoothC"));
}
kill k;
for(int k =1;k<=size(blowup);k++){
hlp[size(hlp)+1]=blowup[k];
attrib(hlp[size(hlp)],"isResolved",0);
attrib(hlp[size(hlp)],"smoothC",1);
}
kill k;
for(int k = j+1;k<=size(result);k++){
hlp[size(hlp)+1]=result[k];
attrib(hlp[size(hlp)],"isResolved",attrib(result[k],"isResolved"));
attrib(hlp[size(hlp)],"smoothC",attrib(result[k],"smoothC"));
}
result = hlp;
kill hlp,k;
j = p;
break;
}
else{
count++;
}
kill L;
}
kill i;
if(count == size(primdecSL)){
attrib(result[j],"isResolved",1);
}
kill count,primdecSL;
}
kill R;
}
else{
count2++;
}
}
if(count2==size(result)){
break;
}
kill count2,j,p;
safety++;
}
return(result);
}
static proc NoetherP_test(ideal id)
{
def A = basering;
list ringA=ringlist(A);
int index = 0;
if(size(id)==1 && nvars(A))
{ //test if V(id) = C[x,y,z]/<f>
list L;
intvec v = 1,1,1;
L[1] = "lp";
L[2] = v;
kill v;
poly f = id[1];
int j = 0;
for(int i = 1;i<=3;i++)
{
setring A;
list l = ringA; //change ordering to lp and var(i)>var(j) j<>i
list vari = ringA[2];
string h = vari[1];
vari[1] = vari[i];
vari[i] = h;
l[2] = vari;
kill h,vari;
l[3][1] = L;
def R = ring(l);
kill l;
setring R;
ideal I = imap(A,id);
if(defined(v)){kill v;}
intvec v = leadexp(I[1]);
attrib(v,"isMonic",1);
//if(defined(k)==voice){kill k;}
for(int k = 2;k<=3;k++)
{ //checks whether f is monic in var(i)
if(v[k] <> 0 || v[1] == 0)
{
attrib(v,"isMonic",0);
j++;
break;
}
}
kill k;
if(attrib(v,"isMonic")==1)
{
index = i;
return(index);
}
kill R;
}
if(j == 3){ return(0); }
}
else{ //not yet a test for more variables
return(index);
}
}
////copied from resolve.lib/////////////////
static proc normalCrossing(ideal J,list E,ideal V)
"Internal procedure - no help and no example available
"
{
int i,d,j;
int n=nvars(basering);
list E1,E2;
ideal K,M,Estd;
intvec v,w;
for(i=1;i<=size(E);i++)
{
Estd=std(E[i]+J);
if(deg(Estd[1])>0)
{
E1[size(E1)+1]=Estd;
}
}
E=E1;
for(i=1;i<=size(E);i++)
{
v=i;
E1[i]=list(E[i],v);
}
list ll;
int re=1;
while((size(E1)>0)&&(re==1))
{
K=E1[1][1];
v=E1[1][2];
attrib(K,"isSB",1);
E1=delete(E1,1);
d=n-dim(K);
M=minor(jacob(K),d)+K;
if(deg(std(M+V)[1])>0)
{
re=0;
break;
}
for(i=1;i<=size(E);i++)
{
for(j=1;j<=size(v);j++){if(v[j]==i){break;}}
if(j<=size(v)){if(v[j]==i){i++;continue;}}
Estd=std(K+E[i]);
w=v;
if(deg(Estd[1])==0){i++;continue;}
if(d==n-dim(Estd))
{
if(deg(std(Estd+V)[1])>0)
{
re=0;
break;
}
}
w[size(w)+1]=i;
E2[size(E2)+1]=list(Estd,w);
}
if(size(E2)>0)
{
if(size(E1)>0)
{
E1[size(E1)+1..size(E1)+size(E2)]=E2[1..size(E2)];
}
else
{
E1=E2;
}
}
kill E2;
list E2;
}
return(re);
}
|