This file is indexed.

/usr/share/singular/LIB/ring.lib is in singular-data 4.0.3+ds-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
/////////////////////////////////////////////////////////////////////////////
version="version ring.lib 4.0.2.2 Jan_2016 "; // $Id: 80fc872a4d42a846cb376f7bd59e9130cbc01801 $
category="General purpose";
info="
LIBRARY:  ring.lib      Manipulating Rings and Maps
AUTHORS: Singular team

PROCEDURES:
 changechar(c[,r]); make a copy of basering [ring r] with new char c
 changeord(o[,r]);  make a copy of basering [ring r] with new ord o
 changevar(v[,r]);  make a copy of basering [ring r] with new vars v
 defring(\"R\",c,n,v,o);  define a ring R in specified char c, n vars v, ord o
 defrings(n[,p]);         define ring Sn in n vars, char 32003 [p], ord ds
 defringp(n[,p]);         define ring Pn in n vars, char 32003 [p], ord dp
 extendring(\"R\",n,v,o); extend given ring by n vars v, ord o and name it R
 fetchall(R[,str]);       fetch all objects of ring R to basering
 imapall(R[,str]);        imap all objects of ring R to basering
 mapall(R,i[,str]);       map all objects of ring R via ideal i to basering
 ord_test(R);             test wether ordering of R is global, local or mixed
 ringtensor(s,t,..);      create ring, tensor product of rings s,t,...
 ringweights(r);          intvec of weights of ring variables of ring r
 preimageLoc(R,phi,Q)     computes preimage for non-global orderings
 rootofUnity(n);          the minimal polynomial for the n-th primitive root of unity
             (parameters in square brackets [] are optional)
 optionIsSet(opt)         check if as a string given option is set or not.
 hasFieldCoefficient      check if the coefficient ring is considered a field
 hasGFCoefficient         check if the coefficient ring is GF(p,k)
 hasNumericCoeffs(rng)    check for use of floating point numbers
 hasCommutativeVars(rng)  non-commutive or commnuative polynomial ring
 hasGlobalOrdering(rng)   global versus mixed/local monomial ordering
 hasMixedOrdering()       mixed versus global/local ordering
 hasFieldCoefficient(rng) coefficients are a field
 hasAlgExtensionCoefficient(r) coefficients are an algebraic extension
 isQuotientRing(rng)      ring is a qotient ring
 isSubModule(I,J)         check if I is in J as submodule

 changeordTo(r,o)         change the ordering of a ring to a simple one
 addvarsTo(r,vars,i)      add variables to a ring
 addNvarsTo(r,N,name,i)   add N variables to a ring
";

LIB "inout.lib";
LIB "general.lib";
LIB "primdec.lib";

///////////////////////////////////////////////////////////////////////////////
proc optionIsSet(string optionName)
"
USAGE:       optionIsSet( optionName )
PARAMETERS:  optionName: a name as string of an option of interest
RETURN:      true, if the by optionName given option is active, false otherwise.
EXAMPLE:     example optionIsSet;
"
{
   intvec op = option(get);
   //sanity check, if option is valid. will raise an error if not
   option(optionName);    option("no" + optionName);
   option(set,op);
   // first entry is currently a comment "//options:", which is not an option.
   int pos = find(option(), optionName, 11 );
   return(pos>0);
}
example
{
    // check if the option "warn" is set.
    optionIsSet("warn");
    option("warn");
    // now the option is set
    optionIsSet("warn");

    option("nowarn");
    // now the option is unset
    optionIsSet("warn");
}


static proc testOptionIsSet()
{
     option("warn");
     ASSUME(0, optionIsSet("warn") );
     option("nowarn");
     ASSUME(0, 0 == optionIsSet("warn") );
}

///////////////////////////////////////////////////////////////////////////////

proc changechar (list @L, list #)
"USAGE:   changechar(c[,r]);  c=list, r=ring
RETURN:  ring R, obtained from the ring r [default: r=basering], by changing
         ringlist(r)[1] to c.
EXAMPLE: example changechar; shows an example
"
{
   def save_ring=basering;
   if( size(#)==0 ) { def @r=basering; }
   if(( size(#)==1 ) and (typeof(#[1])=="ring")) { def @r=#[1]; }
   setring @r;
   list rl=ringlist(@r);
   if(defined(@L)!=voice) { def @L=fetch(save_ring,@L); }
   if (size(@L)==1) { rl[1]=@L[1];} else { rl[1]=@L;}
   def Rnew=ring(rl);
   setring save_ring;
   return(Rnew);
}
example
{  "EXAMPLE:"; echo = 2;
   ring rr=2,A,dp;
   ring r=0,(x,y,u,v),(dp(2),ds);
   def R=changechar(ringlist(rr)); R;"";
   def R1=changechar(32003,R); setring R1; R1;
   kill R,R1;
}
///////////////////////////////////////////////////////////////////////////////

proc changeord (list @o, list #)
"USAGE:   changeord(neword[,r]);  newordstr=list, r=ring/qring
RETURN:  ring R, obtained from the ring r [default: r=basering], by changing
         order(r) to neword.
         If, say, neword=list(list(\"wp\",intvec(2,3)),list(list(\"dp\",1:(n-2))));
         and if the ring r exists and has n variables, the ring R will be
         equipped with the monomial ordering wp(2,3),dp.
EXAMPLE: example changeord; shows an example
"
{
   def save_ring=basering;
   if( size(#)==0 ) { def @r=basering; }
   if( size(#)==1 ) { def @r=#[1]; }
   setring @r;
   list rl=ringlist(@r);
   rl[3]=@o;
   def Rnew=ring(rl);
   setring save_ring;
   return(Rnew);
}
example
{  "EXAMPLE:"; echo = 2;
   ring r=0,(x,y,u,v),(dp(2),ds);
   def R=changeord(list(list("wp",intvec(2,3)),list("dp",1:2))); R; "";
   ideal i = x^2,y^2-u^3,v;
   qring Q = std(i);
   def Q'=changeord(list(list("lp",nvars(Q))),Q); setring Q'; Q';
   kill R,Q,Q';
}
///////////////////////////////////////////////////////////////////////////////

proc changevar (string vars, list #)
"USAGE:   changevar(vars[,r]);  vars=string, r=ring/qring
RETURN:  ring R, obtained from the ring r [default: r=basering], by changing
         varstr(r) according to the value of vars.
         If, say, vars = \"t()\" and the ring r exists and has n
         variables, the new basering will have name R and variables
         t(1),...,t(n).
         If vars = \"a,b,c,d\", the new ring will have the variables a,b,c,d.
NOTE:    This procedure is useful in connection with the procedure ringtensor,
         when a conflict between variable names must be avoided.
         This proc uses 'execute' or calls a procedure using 'execute'.
EXAMPLE: example changevar; shows an example
"
{
   if( size(#)==0 ) { def @r=basering; }
   if( size(#)==1 ) { def @r=#[1]; }
   setring @r;
   ideal i = ideal(@r); int @q = size(i);
   if( @q!=0 )
      { string @s = "Rnew1"; }
   else
      { string @s = "Rnew"; }
   string @newring = @s+"=("+charstr(@r)+"),(";
   if( vars[size(vars)-1]=="(" and vars[size(vars)]==")" )
   {
      @newring = @newring+vars[1,size(vars)-2]+"(1.."+string(nvars(@r))+")";
   }
   else { @newring = @newring+vars; }
   string ords=ordstr(@r);
   int l=size(ords);
   int l1,l2;
   while(l>0)
   {
     if (ords[l]=="(") { l1=l; break; }
     if (ords[l]==")") { l2=l; }
     l--;
   }
   string last_ord=string(ords[l1-3..l1-1]);
   if ((last_ord[1]!="w")
   && (last_ord[1]!="W")
   && (last_ord[2]!="M"))
   {
     if (l2==size(ords)) { ords=string(ords[1..l1-1]); }
     else { ords=string(ords[1..l1-1])+string(ords[l2+1..size(ords)]); }
   }
   @newring = @newring+"),("+ords+");";
   execute("ring "+@newring);
   if( @q!=0 )
   {
      map phi = @r,maxideal(1);
      ideal i = phi(i);
      attrib(i,"isSB",1);         //*** attrib funktioniert ?
      qring Rnew=i;
   }
   return(Rnew);
}
example
{  "EXAMPLE:"; echo = 2;
   ring r=0,(x,y,u,v),(dp(2),ds);
   ideal i = x^2,y^2-u^3,v;
   qring Q = std(i);
   setring(r);
   def R=changevar("A()"); R; "";
   def Q'=changevar("a,b,c,d",Q); setring Q'; Q';
   kill R,Q,Q';
}
///////////////////////////////////////////////////////////////////////////////

proc defring (string s2, int n, string s3, string s4)
"USAGE:   defring(ch,n,va,or);  ch,va,or=strings, n=integer
RETURN:  ring R with characteristic 'ch', ordering 'or' and n variables with
         names derived from va.
         If va is a single letter, say va=\"a\", and if n<=26 then a and the
         following n-1 letters from the alphabet (cyclic order) are taken as
         variables. If n>26 or if va is a single letter followed by a bracket,
         say va=\"T(\", the variables are T(1),...,T(n).
NOTE:    This proc is useful for defining a ring in a procedure.
         This proc uses 'execute' or calls a procedure using 'execute'.
EXAMPLE: example defring; shows an example
"
{
   string @newring = "ring newring =("+s2+"),(";
   if( n>26 or s3[2]=="(" ) { string @v = s3[1]+"(1.."+string(n)+")"; }
   else { string @v = A_Z(s3,n); }
   @newring=@newring+@v+"),("+s4+");";
   execute(@newring);
   return(newring);
}
example
{ "EXAMPLE:"; echo = 2;
   def r=defring("0",5,"u","ls"); r; setring r;"";
   def R=defring("2,A",10,"x(","dp(3),ws(1,2,3),ds"); R; setring R;
   kill R,r;
}
///////////////////////////////////////////////////////////////////////////////

proc defrings (int n, list #)
"USAGE:   defrings(n,[p]);  n,p integers
RETURN:  ring R with characteristic p [default: p=32003], ordering ds and n
         variables x,y,z,a,b,...if n<=26 (resp. x(1..n) if n>26)
NOTE:    This proc uses 'execute' or calls a procedure using 'execute'.
EXAMPLE: example defrings; shows an example
"
{
   int p;
   if (size(#)==0) { p=32003; }
   else { p=#[1]; }
   if (n >26)
   {
      string s="ring S ="+string(p)+",x(1.."+string(n)+"),ds;";
   }
   else
   {
      string s="ring S ="+string(p)+",("+A_Z("x",n)+"),ds;";
   }
   execute(s);
   dbprint(printlevel-voice+2,"
// 'defrings' created a ring. To see the ring, type (if the name R was
// assigned to the return value):
    show R;
// To make the ring the active basering, type
    setring R; ");
   return(S);
}
example
{ "EXAMPLE:"; echo = 2;
   def S5=defrings(5,0); S5; "";
   def S30=defrings(30); S30;
   kill S5,S30;
}
///////////////////////////////////////////////////////////////////////////////

proc defringp (int n,list #)
"USAGE:   defringp(n,[p]);  n,p=integers
RETURN:  ring R with characteristic p [default: p=32003], ordering dp and n
         variables x,y,z,a,b,...if n<=26 (resp. x(1..n) if n>26)
NOTE:    This proc uses 'execute' or calls a procedure using 'execute'.
EXAMPLE: example defringp; shows an example
"
{
   int p;
   if (size(#)==0) { p=32003; }
   else { p=#[1]; }
   if (n >26)
   {
      string s="ring P="+string(p)+",x(1.."+string(n)+"),dp;";
   }
   else
   {
     string s="ring P="+string(p)+",("+A_Z("x",n)+"),dp;";
   }
   execute(s);
   dbprint(printlevel-voice+2,"
// 'defringp' created a ring. To see the ring, type (if the name R was
// assigned to the return value):
    show R;
// To make the ring the active basering, type
    setring R; ");
   return(P);
}
example
{ "EXAMPLE:"; echo = 2;
   def P5=defringp(5,0); P5; "";
   def P30=defringp(30); P30;
   kill P5,P30;
}
///////////////////////////////////////////////////////////////////////////////

proc extendring (int n, string va, string o, list #)
"USAGE:   extendring(n,va,o[,iv,i,r]);  va,o=strings, n,i=integers, r=ring,
          iv=intvec of positive integers or iv=0
RETURN:  ring R, which extends the ring r by adding n new variables in front
         of (resp. after, if i!=0) the old variables.
         [default: (i,r)=(0,basering)].
@*       -- The characteristic is the characteristic of r.
@*       -- The new vars are derived from va. If va is a single letter, say
            va=\"T\", and if n<=26 then T and the following n-1 letters from
            T..Z..T (resp. T(1..n) if n>26) are taken as additional variables.
            If va is a single letter followed by a bracket, say va=\"x(\",
            the new variables are x(1),...,x(n).
@*       -- The ordering is the product ordering of the ordering of r and of an
            ordering derived from `o` [and iv].
@*        -  If o contains a 'c' or a 'C' in front resp. at the end, this is
            taken for the whole ordering in front, resp. at the end. If o does
            not contain a 'c' or a 'C' the same rule applies to ordstr(r).
@*        -  If no intvec iv is given, or if iv=0, o may be any allowed ordstr,
            like \"ds\" or \"dp(2),wp(1,2,3),Ds(2)\" or \"ds(a),dp(b),ls\" if
            a and b are globally (!) defined integers and if a+b+1<=n.
            If, however, a and b are local to a proc calling extendring, the
            intvec iv must be used to let extendring know the values of a and b
@*        -  If a non-zero intvec iv is given, iv[1],iv[2],... are taken for the
            1st, 2nd,... block of o, if o contains no substring \"w\" or \"W\"
            i.e. no weighted ordering (in the above case o=\"ds,dp,ls\"
            and iv=a,b).
            If o contains a weighted ordering (only one (!) weighted block is
            allowed) iv[1] is taken as size for the weight-vector, the next
            iv[1] values of iv are taken as weights and the remaining values of
            iv as block size for the remaining non-weighted blocks.
            e.g. o=\"dp,ws,Dp,ds\", iv=3,2,3,4,2,5 creates the ordering
            dp(2),ws(2,3,4),Dp(5),ds
NOTE:    This proc is useful for adding deformation parameters.
         This proc uses 'execute' or calls a procedure using 'execute'.
         If you use it in your own proc, it may be advisable to let the local
         names of your proc start with a @
EXAMPLE: example extendring; shows an example
"
{
//--------------- initialization and place c/C of ordering properly -----------
   string @o1,@o2,@ro,@wstr,@v,@newring;
   int @i,@w,@ii,@k;
   intvec @iv,@iw;
   if( find(o,"c")+find(o,"C") != 0)
   {
      @k=1;
      if( o[1]=="c" or o[1]=="C" ) { @o1=o[1,2]; o=o[3..size(o)]; }
      else                         { @o2=o[size(o)-1,2]; o=o[1..size(o)-2]; }
   }
   if( size(#)==0 ) { #[1]=0; }
   if( typeof(#[1])!="intvec" )
   {
     if( size(#)==1 ) { @i=#[1]; def @r=basering; }
     if( size(#)==2 ) { @i=#[1]; def @r=#[2]; }
     if( o[size(o)]!=")" and find(o,",")==0 ) { o=o+"("+string(n)+")"; }
   }
   else
   {
     @iv=#[1];
     if( size(#)==2 ) { @i=#[2]; def @r=basering; }
     if( size(#)==3 ) { @i=#[2]; def @r=#[3]; }
     if( @iv==0 && o[size(o)]!=")" && find(o,",")==0 ) {o=o+"("+string(n)+")";}
   }
   @ro=ordstr(@r);
   if( @ro[1]=="c" or @ro[1]=="C" )
      { @v=@ro[1,2]; @ro=@ro[3..size(@ro)]; }
   else
      { @wstr=@ro[size(@ro)-1,2]; @ro=@ro[1..size(@ro)-2]; }
   if( @k==0) { @o1=@v; @o2=@wstr; }
//----------------- prepare ordering if an intvec is given --------------------
   if( typeof(#[1])=="intvec" and #[1]!=0 )
   {
      @k=n;                             //@k counts no of vars not yet ordered
      @w=find(o,"w")+find(o,"W");o=o+" ";
      if( @w!=0 )
      {
         @wstr=o[@w..@w+1];
         o=o[1,@w-1]+"@"+o[@w+2,size(o)];
         @iw=@iv[2..@iv[1]+1];
         @wstr=@wstr+"("+string(@iw)+")";
         @k=@k-@iv[1];
         @iv=@iv[@iv[1]+2..size(@iv)];
         @w=0;
      }
      for( @ii=1; @ii<=size(@iv); @ii=@ii+1 )
      {
         if( find(o,",",@w+1)!=0 )
         {
            @w=find(o,",",@w+1);
            if( o[@w-1]!="@" )
            {
               o=o[1,@w-1]+"("+string(@iv[@ii])+")"+o[@w,size(o)];
               @w=find(o,",",@w+1);
               @k=@k-@iv[@ii];
            }
            else { @ii=@ii-1; }
         }
      }
      @w=find(o,"@");
      if( @w!=0 ) { o=o[1,@w-1] + @wstr + o[@w+1,size(o)]; }
      if( @k>0 and o[size(o)]!=")" ) { o=o+"("+string(@k)+")"; }
   }
//------------------------ prepare string of new ring -------------------------
   @newring = "ring na =("+charstr(@r)+"),(";
   if( n>26 or va[2]=="(" ) { @v = va[1]+"(1.."+string(n)+")"; }
   else                     { @v = A_Z(va,n); }
   if( @i==0 )
   {
      @v=@v+","+varstr(@r);
      o=@o1+o+","+@ro+@o2;
   }
   else
   {
      @v=varstr(@r)+","+@v;
      o=@o1+@ro+","+o+@o2;
   }
   @newring=@newring+@v+"),("+o+");";
//---------------------------- execute and export -----------------------------
   execute(@newring);
   dbprint(printlevel-voice+2,"
// 'extendring' created a new ring.
// To see the ring, type (if the name 'R' was assigned to the return value):
     show(R);
");

   return(na);
}
example
{ "EXAMPLE:"; echo = 2;
   ring r=0,(x,y,z),ds;
   show(r);"";
   // blocksize is derived from no of vars:
   int t=5;
   def R1=extendring(t,"a","dp");         //t global: "dp" -> "dp(5)"
   show(R1); setring R1; "";
   def R2=extendring(4,"T(","c,dp",1,r);    //"dp" -> "c,..,dp(4)"
   show(R2); setring R2; "";

   // no intvec given, blocksize given: given blocksize is used:
   def R3=extendring(4,"T(","dp(2)",0,r);   // "dp(2)" -> "dp(2)"
   show(R3); setring R3; "";

   // intvec given: weights and blocksize is derived from given intvec
   // (no specification of a blocksize in the given ordstr is allowed!)
   // if intvec does not cover all given blocks, the last block is used
   // for the remaining variables, if intvec has too many components,
   // the last ones are ignored
   intvec v=3,2,3,4,1,3;
   def R4=extendring(10,"A","ds,ws,Dp,dp",v,0,r);
   // v covers 3 blocks: v[1] (=3) : no of components of ws
   // next v[1] values (=v[2..4]) give weights
   // remaining components of v are used for the remaining blocks
   show(R4);
   kill r,R1,R2,R3,R4;
}
///////////////////////////////////////////////////////////////////////////////

proc fetchall (def R, list #)
"USAGE:   fetchall(R[,s]);  R=ring/qring, s=string
CREATE:  fetch all objects of ring R (of type poly/ideal/vector/module/number/matrix)
         into the basering.
         If no 2nd argument is present, the names are the same as in R. If,
         say, f is a polynomial in R and the 2nd argument is the string \"R\", then f
         is mapped to f_R etc.
RETURN:  no return value
NOTE:    As fetch, this procedure maps the 1st, 2nd, ... variable of R to the
         1st, 2nd, ... variable of the basering.
         The 2nd argument is useful in order to avoid conflicts of names, the
         empty string is allowed
CAUTION: fetchall does not work for locally defined names.
         It does not work if R contains a map.
SEE ALSO: imapall
EXAMPLE: example fetchall; shows an example
"
{
   list @L@=names(R);
   int @ii@; string @s@;
   if( size(#) > 0 ) { @s@=@s@+"_"+#[1]; }
   for( @ii@=size(@L@); @ii@>0; @ii@-- )
   {
      execute("def "+@L@[@ii@]+@s@+"=fetch(R,`@L@[@ii@]`);");
      execute("export "+@L@[@ii@]+@s@+";");
   }
   return();
}
example
{  "EXAMPLE:"; echo=2;
// The example is not shown since fetchall does not work in a procedure;
// (and hence not in the example procedure). Try the following commands:
//   ring R=0,(x,y,z),dp;
//   ideal j=x,y2,z2;
//   matrix M[2][3]=1,2,3,x,y,z;
//   j; print(M);
//   ring S=0,(a,b,c),ds;
//   fetchall(R);       //map from R to S: x->a, y->b, z->c;
//   names(S);
//   j; print(M);
//   fetchall(S,"1");   //identity map of S: copy objects, change names
//   names(S);
//   kill R,S;
}
///////////////////////////////////////////////////////////////////////////////

proc imapall (def R, list #)
"USAGE:   imapall(R[,s]);  R=ring/qring, s=string
CREATE:  map all objects of ring R (of type poly/ideal/vector/module/number/matrix)
         into the basering by applying imap to all objects of R.
         If no 2nd argument is present, the names are the same as in R. If,
         say, f is a polynomial in R and the 3rd argument is the string \"R\", then f
         is mapped to f_R etc.
RETURN:  no return value
NOTE:    As imap, this procedure maps the variables of R to the variables with
         the same name in the basering, the other variables are mapped to 0.
         The 2nd argument is useful in order to avoid conflicts of names, the
         empty string is allowed
CAUTION: imapall does not work for locally defined names.
         It does not work if R contains a map
SEE ALSO: fetchall
EXAMPLE: example imapall; shows an example
"
{
   list @L@=names(R);
   int @ii@; string @s@;
   if( size(#) > 0 ) { @s@=@s@+"_"+#[1]; }
   for( @ii@=size(@L@); @ii@>0; @ii@-- )
   {
         execute("def "+@L@[@ii@]+@s@+"=imap(R,`@L@[@ii@]`);");
         execute("export "+@L@[@ii@]+@s@+";");
   }
   return();
}
example
{  "EXAMPLE:"; echo = 2;
// The example is not shown since imapall does not work in a procedure
// (and hence not in the example procedure). Try the following commands:
//   ring R=0,(x,y,z,u),dp;
//   ideal j=x,y,z,u2+ux+z;
//   matrix M[2][3]=1,2,3,x,y,uz;
//   j; print(M);
//   ring S=0,(a,b,c,x,z,y),ds;
//   imapall(R);         //map from R to S: x->x, y->y, z->z, u->0
//   names(S);
//   j; print(M);
//   imapall(S,"1");     //identity map of S: copy objects, change names
//   names(S);
//   kill R,S;
}
///////////////////////////////////////////////////////////////////////////////

proc mapall (def R, ideal i, list #)
"USAGE:   mapall(R,i[,s]);  R=ring/qring, i=ideal of basering, s=string
CREATE:  map all objects of ring R (of type poly/ideal/vector/module/number/
         matrix, map) into the basering by mapping the j-th variable of R to
         the j-th generator of the ideal i. If no 3rd argument is present, the
         names are the same as in R. If, say, f is a polynomial in R and the 3rd
         argument is the string \"R\", then f is mapped to f_R etc.
RETURN:  no return value.
NOTE:    This procedure has the same effect as defining a map, say psi, by
         map psi=R,i; and then applying psi to all objects of R. In particular,
         maps from R to some ring S are composed with psi, creating thus a map
         from the basering to S.
         mapall may be combined with copyring to change vars for all objects.
         The 3rd argument is useful in order to avoid conflicts of names, the
         empty string is allowed.
CAUTION: mapall does not work for locally defined names.
EXAMPLE: example mapall; shows an example
"
{
   list @L@=names(R); map @psi@ = R,i;
   int @ii@; string @s@;
   if( size(#) > 0 ) { @s@=@s@+"_"+#[1]; }
   for( @ii@=size(@L@); @ii@>0; @ii@-- )
   {
      execute("def "+@L@[@ii@]+@s@+"=@psi@(`@L@[@ii@]`);");
      execute("export "+@L@[@ii@]+@s@+";");
   }
   return();
}
example
{  "EXAMPLE:"; echo = 2;
// The example is not shown since mapall does not work in a procedure
// (and hence not in the example procedure). Try the following commands:
//   ring R=0,(x,y,z),dp;
//   ideal j=x,y,z;
//   matrix M[2][3]=1,2,3,x,y,z;
//   map phi=R,x2,y2,z2;
//   ring S=0,(a,b,c),ds;
//   ideal i=c,a,b;
//   mapall(R,i);         //map from R to S: x->c, y->a, z->b
//   names(S);
//   j; print(M); phi;    //phi maps R to S: x->c2, y->a2, z->b2
//   ideal i1=a2,a+b,1;
//   mapall(R,i1,\"\");     //map from R to S: x->a2, y->a+b, z->1
//   names(S);
//   j_; print(M_); phi_;
//   changevar(\"T\",\"x()\",R);  //change vars in R and call result T
//   mapall(R,maxideal(1));   //identity map from R to T
//   names(T);
//   j; print(M); phi;
//   kill R,S,T;
}
///////////////////////////////////////////////////////////////////////////////

proc ord_test (def r)
"USAGE:   ord_test(r);  r ring/qring
RETURN:  int 1 (resp. -1, resp. 0) if ordering of r is global (resp. local,
         resp. mixed)
SEE ALSO: attrib
EXAMPLE: example ord_test; shows an example
"
{
   if (typeof(r) != "ring")
   {
      ERROR("ord_test requires a ring/qring as input");
   }
   if (attrib(r,"global")==1) { return(1);}
   def BAS = basering;
   setring r;
   poly f;
   int n,o,u = nvars(r),1,1;
   int ii;
   for ( ii=1; ii<=n; ii++ )
   {
      f = 1+var(ii);
      o = o*(lead(f) == var(ii));
      u = u*(lead(f) == 1);
   }
   setring BAS;
   if ( o==1 ) { return(1); }
   if ( u==1 ) { return(-1); }
   else { return(0); }
}
example
{ "EXAMPLE:"; echo = 2;
   ring R = 0,(x,y),dp;
   ring S = 0,(u,v),ls;
   ord_test(R);
   ord_test(S);
   ord_test(R+S);
}
///////////////////////////////////////////////////////////////////////////////

proc ringtensor (list #)
"USAGE:   ringtensor(r1,r2,...);  r1,r2,...=rings
RETURN:  ring R whose variables are the variables from all rings r1,r2,...
         and whose monomial ordering is the block (product) ordering of the
         respective monomial orderings of r1,r2,... . Hence, R
         is the tensor product of the rings r1,r2,... with ordering matrix
         equal to the direct sum of the ordering matrices of r1,r2,...
NOTE:    The characteristic of the new ring will be p if one ring has
         characteristic p. The names of variables in the rings r1,r2,...
         must differ.
         The procedure works also for quotient rings ri, if the characteristic
         of ri is compatible with the characteristic of the result
         (i.e. if imap from ri to the result is implemented)
SEE ALSO: ring operations
EXAMPLE: example ringtensor; shows an example
"
{
   int @i;
   int @n = size(#);
   if (@n<=1) { ERROR("at least 2 rings required"); }
   def @s=#[1]+#[2];
   for (@i=3; @i<=@n;@i++)
   {
     def @ss=@s+#[@i];
     kill @s;
     def @s=@ss;
     kill @ss;
   }
   dbprint(printlevel-voice+2,"
// 'ringtensor' created a ring. To see the ring, type (if the name R was
// assigned to the return value):
    show(R);
// To make the ring the active basering, type
    setring R; ");
   return(@s);
}
example
{ "EXAMPLE:"; echo = 2;
   ring r=32003,(x,y,u,v),dp;
   ring s=0,(a,b,c),wp(1,2,3);
   ring t=0,x(1..5),(c,ls);
   def R=ringtensor(r,s,t);
   type R;
   setring s;
   ideal i = a2+b3+c5;
   def S=changevar("x,y,z");       //change vars of s
   setring S;
   qring qS =std(fetch(s,i));      //create qring of S mod i (mapped to S)
   def T=changevar("d,e,f,g,h",t); //change vars of t
   setring T;
   qring qT=std(d2+e2-f3);         //create qring of T mod d2+e2-f3
   def Q=ringtensor(s,qS,t,qT);
   setring Q; type Q;
   kill R,S,T,Q;
}
///////////////////////////////////////////////////////////////////////////////

proc ringweights (def P)
"USAGE:   ringweights(P); P=name of an existing ring (true name, not a string)
RETURN:  intvec consisting of the weights of the variables of P, as they
         appear when typing P;.
NOTE:    This is useful when enlarging P but keeping the weights of the old
         variables.
EXAMPLE: example ringweights; shows an example
"
{
   int i;
   intvec rw;
//------------------------- find weights  -------------------------
   for(i=nvars(P);i>0;i--)
   { rw[i]=ord(var(i)); }
   return(rw);
}
example
{"EXAMPLE:";  echo = 2;
  ring r0 = 0,(x,y,z),dp;
  ringweights(r0);
  ring r1 = 0,x(1..5),(ds(3),wp(2,3));
  ringweights(r1);"";
  // an example for enlarging the ring, keeping the first weights:
  intvec v = ringweights(r1),6,2,3,4,5;
  ring R = 0,x(1..10),(a(v),dp);
  ordstr(R);
}
///////////////////////////////////////////////////////////////////////////////
proc preimageLoc(string R_name,string phi_name,string Q_name )
"USAGE: preimageLoc ( ring_name, map_name, ideal_name );
        all input parameters of type string
RETURN:  ideal
PURPOSE: compute the preimage of an ideal under a given map for non-global
         orderings.
         The 2nd argument has to be the name of a map from the basering to
         the given ring (or the name of an ideal defining such a map), and
         the ideal has to be an ideal in the given ring.
SEE ALSO: preimage
KEYWORDS: preimage under a map between local rings, map between local rings, map between local and global rings
EXAMPLE: example preimageLoc ; shows an example
"{
  def S=basering;
  int i;
  string newRing,minpoly_string;
  if(attrib(S,"global")!=1)
  {
    if(size(ideal(S))>0) /*qring*/
    {
      ideal I=ideal(S);
      newRing="ring S0=("+charstr(S)+"),("+varstr(S)+"),dp;";
      minpoly_string=string(minpoly);
      execute(newRing);
      execute("minpoly="+minpoly_string+";");
      ideal I=imap(S,I);
      list pr=primdecGTZ(I);
      newRing="ring SL=("+charstr(S)+"),("+varstr(S)+"),("+ordstr(S)+");";
      execute(newRing);
      execute("minpoly="+minpoly_string+";");
      list pr=imap(S0,pr);
      ideal I0=std(pr[1][1]);
      for(i=2;i<=size(pr);i++)
      {
         I0=intersect(I0,std(pr[i][1]));
      }
      setring S0;
      ideal I0=imap(SL,I0);
      qring S1=std(I0);
    }
    else
    {
      def S1=S;
    }
  }
  else
  {
    def S1=S;
  }
  def @R=`R_name`;
  setring @R;
  def @phi=`phi_name`;
  ideal phiId=ideal(@phi);
  def Q=`Q_name`;
  if(attrib(@R,"global")!=1)
  {
    if(size(ideal(@R))>0) /*qring*/
    {
      ideal J=ideal(@R);
      newRing="ring R0=("+charstr(@R)+"),("+varstr(@R)+"),dp;";
      minpoly_string=string(minpoly);
      execute(newRing);
      execute("minpoly="+minpoly_string+";");
      ideal J=imap(@R,J);
      list pr=primdecGTZ(J);
      newRing="ring RL=("+charstr(@R)+"),("+varstr(@R)+"),("+ordstr(@R)+");";
      execute(newRing);
      execute("minpoly="+minpoly_string+";");
      list pr=imap(R0,pr);
      ideal J0=std(pr[1][1]);
      for(i=2;i<=size(pr);i++)
      {
         J0=intersect(J0,std(pr[i][1]));
      }
      setring R0;
      ideal J0=imap(RL,J0);
      qring R1=std(J0);
      ideal Q=imap(@R,Q);
      map @phi=S1,imap(@R,phiId);
    }
    else
    {
      def R1=@R;
    }
  }
  else
  {
    def R1=@R;
  }
  setring S1;
  ideal preQ=preimage(R1,@phi,Q);
  setring S;
  ideal prQ=imap(S1,preQ);
  return(prQ);
}
example
{ "EXAMPLE:"; echo=2;
  ring S =0,(x,y,z),dp;
  ring R0=0,(x,y,z),ds;
  qring R=std(x+x2);
  map psi=S,x,y,z;
  ideal null;
  setring S;
  ideal nu=preimageLoc("R","psi","null");
  nu;
}

//////////////////////////////////////////////////////////////////////////////
/* moved here from the nctools.lib */
///////////////////////////////////////////////////////////////////////////////
proc rootofUnity(int n)
"USAGE:  rootofUnity(n); n an integer
RETURN:  number
PURPOSE: compute the minimal polynomial for the n-th primitive root of unity
NOTE: works only in field extensions by one element
EXAMPLE: example rootofUnity; shows examples
"
{
  if ( npars(basering) !=1 )
  {
    ERROR(" the procedure works only with one ring parameter variable");
  }
  if (n<0) {  ERROR(" cannot compute ("+string(n)+")-th primitive root of unity"); }
  if (n==0) { return(number(0));}
  number mp = par(1);
  if (n==1) { return(mp-1); }
  if (n==2) { return(mp+1); }
  def OldRing = basering;
  string CH = charstr(basering);
  string MCH;
  int j=1;
  while ( (CH[j] !=",") && (j<=size(CH)))
  {
    MCH=MCH+CH[j]; j++;
  }
  string SR = "ring @@rR="+MCH+","+parstr(basering)+",dp;";
  execute(SR);
  poly @t=var(1)^n-1; // (x^2i-1)=(x^i-1)(x^i+1)
  list l=factorize(@t);
  ideal @l=l[1];
  list @d;
  int s=size(@l);
  int d=deg(@l[s]);
  int cnt=1;
  poly res;
  for (j=s-1; j>=1; j--)
  {
    if ( deg(@l[j]) > d) { d=deg(@l[j]); }
  }
  for (j=1; j<=s; j++)
  {
    if ( deg(@l[j]) == d) { @d[cnt]=@l[j]; cnt++; }
  }

  j=1;
  int i;
  number pw;

  int @sized = size(@d);

  if (@sized==1)
  {
       setring OldRing;
       list @rl = imap(@@rR,@d);
       mp = number(@rl[1]);
       kill @@rR;
       return(mp);
  }
  def @rng;

  setring OldRing;

  list rl = ringlist( OldRing);
  while ( j<=@sized )
  {
     ASSUME(0, n%2 ==0);
     setring OldRing;
     @rng = ring(rl);
     setring @rng;
     list @rl = imap(@@rR,@d);
     number mp = leadcoef( @rl[j] );
     minpoly = mp;
     number mp = minpoly;
     number pw = par(1)^(n div 2);
     if ( (pw != 1) || n==1 )  {  break;  }
     j = j+1;
  }
  setring OldRing;
  list @rl=imap(@@rR,@d);
  mp = leadcoef( @rl[j] );
  kill @@rR;
  return(mp);
}
example
{
  "EXAMPLE:";echo=2;
  ring r = (0,q),(x,y,z),dp;
  rootofUnity(6);
  rootofUnity(7);
  minpoly = rootofUnity(8);
  r;
}

proc isQuotientRing(def rng )
"USAGE: isQuotientRing ( rng );
RETURN:  1 if rng is a quotient ring, 0 otherwise.
PURPOSE: check if typeof a rng "qring"
KEYWORDS: qring ring ideal 'factor ring'
EXAMPLE: example isQuotientRing ; shows an example
"
{
    if ( defined(basering) )  {   def BAS=basering;  }
    else { return (0); }

    //access to quotient ideal will fail, if basering and rng differs.
    setring rng;
    int result =  ( size(ideal(rng)) != 0);

    setring BAS;
    return (result);
}
example
{
  "EXAMPLE:";echo=2;
  ring rng = 0,x,dp;
  isQuotientRing(rng); //no
  // if a certain method does not support quotient rings,
  // then a parameter test could be performed:
   ASSUME( 0, 0==isQuotientRing(basering));

  qring q= ideal(x);  // constructs rng/ideal(x)
  isQuotientRing(q);  // yes
}

static proc testIsQuotientRing()
{
   ring rng7 = 7, x, dp;

   ring rng = real,x,dp;
   ASSUME(0, 0== isQuotientRing(rng) ) ;
   ASSUME(0, 0== isQuotientRing(rng7) ) ;
   ASSUME(0, char(basering)==0); // check that basering was not changed

   qring qrng = 1;
   ASSUME(0, isQuotientRing(qrng) ) ;

   ring rng2 = integer,x,dp;
   ASSUME(0, 0 == isQuotientRing(rng2) ) ;

   qring qrng2=0;
   ASSUME(0, not isQuotientRing(qrng2) ) ;

   ring rng3 = 0,x,dp;
   ASSUME(0, 0 == isQuotientRing(rng3) ) ;

   qring qrng3=1;
   ASSUME(0, isQuotientRing(qrng3) ) ;
}

proc hasFieldCoefficient(def rng )
"USAGE: hasFieldCoefficient ( rng );
RETURN:  1 if the coefficients form  (and are considered to be) a field, 0 otherwise.
KEYWORDS: ring coefficients
EXAMPLE: example hasFieldCoefficient; shows an example
SEE ALSO: attrib
"
{
  return (attrib(rng,"ring_cf")==0);
}
example
{
  "EXAMPLE:";echo=2;
  ring rng = integer,x,dp;
  hasFieldCoefficient(rng); //no
  // if a certain method supports only rings with integer coefficients,
  // then a parameter test could be performed:
  ring rng2 = 0, x, dp;
  hasFieldCoefficient(rng2);  // yes
}

proc hasAlgExtensionCoefficient(def rng )
"USAGE: hasAlgExtensionCoefficient ( rng );
RETURN:  1 if the coeffcients are an gelebrai extension, 0 otherwise.
KEYWORDS: ring coefficients
EXAMPLE: example hasAlgExtensionCoefficient; shows an example
"
{
  def savering=basering;
  setring rng;
  int r=(string(minpoly)!="0");
  setring savering;
  return(r);
}
example
{
  "EXAMPLE:";echo=2;
  ring rng = integer,x,dp;
  hasAlgExtensionCoefficient(rng); //no
  ring rng2 = (0,a), x, dp; minpoly=a2-1;
  hasAlgExtensionCoefficient(rng2);  // yes
}

proc hasGFCoefficient(def rng )
"USAGE: hasGFCoefficient ( rng );
RETURN:  1 if the coeffcients form GF(p,k), 0 otherwise.
KEYWORDS: ring coefficients
EXAMPLE: example hasGFCoefficient; shows an example
"
{
  return((charstr(rng)!=string(char(rng))) &&
  (npars(rng)==1) &&
  (find(charstr(rng),string(char(rng)))!=1) &&
  (charstr(basering)<>"real")&&
  (charstr(basering)<>"complex") );
}
example
{
  ring r1 = integer,x,dp;
  hasGF(r1);
  ring r2 = (4,a),x,dp;
  hasGF(r2);
}

proc hasGlobalOrdering (def rng)
"USAGE: hasGlobalOrdering ( rng );
RETURN:  1 if rng has a global monomial ordering, 0 otherwise.
KEYWORDS: monomial ordering
EXAMPLE: example hasGlobalOrdering; shows an example
"
{
  return (attrib(rng,"global")==1);
}
example
{
  ring rng = integer,x,dp;
  hasGlobalOrdering(rng); //yes
  ring rng2 = 0, x, ds;
  hasGlobalOrdering(rng2);  // no
}

proc hasCommutativeVars (def rng)
"USAGE: hasCommutativeVars ( rng );
RETURN:  1 if rng is a commutative polynomial ring, 0 otherwise.
KEYWORDS: plural
EXAMPLE: example hasCommutativeVars; shows an example
"
{
  list rl=ringlist(rng);
  return (size(rl)==4);
}
example
{
 ring r=0,(x,y,z),dp;
 hasCommutativeVars(r);
}

proc hasNumericCoeffs(def rng)
"USAGE: hasNumericCoeffs ( rng );
RETURN:  1 if rng has inexact coeffcients, 0 otherwise.
KEYWORDS: floating point
EXAMPLE: example hasNumericCoeffs; shows an example
"
{
  ERROR("not yet implemented");
}

proc isSubModule(def I,def J)
"USAGE: isSubModule(I,J): I, J: ideal or module
RETURN: 1 if module(I) is in module(J), 0 otherwise
EXAMPLE: isSubModule; shows an example
{
  if (attrib(J,"isSB"))
  { return(size(reduce(I,J,1))==0); }
  else
  { return(size(reduce(I,groebner(J),1))==0); }
}
example
{
  "EXAMPLE:"; echo = 2;
  ring r=0,x,dp;
  ideal I1=x2;
  ideal I2=x3;
  isSubModule(I1, I2);
  isSubModule(I2, I1);
}

proc hasMixedOrdering()
"USAGE:  hasMixedOrdering();
RETURN:  1 if ordering of basering is mixed, 0 else
EXAMPLE: example hasMixedOrdering(); shows an example
"
{
   int i,p,m;
   for(i = 1; i <= nvars(basering); i++)
   {
      if(var(i) > 1)
      {
         p++;
      }
      else
      {
         m++;
      }
   }
   if((p > 0) && (m > 0)) { return(1); }
   return(0);
}
example
{ "EXAMPLE:"; echo = 2;
   ring R1 = 0,(x,y,z),dp;
   hasMixedOrdering();
   ring R2 = 31,(x(1..4),y(1..3)),(ds(4),lp(3));
   hasMixedOrdering();
   ring R3 = 181,x(1..9),(dp(5),lp(4));
   hasMixedOrdering();
}

proc changeordTo(def r,string o)
"USAGE:  changeordTo(ring, string s);
RETURN:  a ring with the oderinging changed to the (simple) ordering s
EXAMPLE: example changeordTo(); shows an example
"
{
  list rl=ringlist(r);
  rl[3]=list(list("C",0),list(o,1:nvars(r)));
  def rr=ring(rl);
  return(rr);
}
example
{
  "EXAMPLE:"; echo = 2;
  ring r=0,(x,y),lp;
  def rr=changeordTo(r,"dp");
  rr;
}

proc addvarsTo(def r,list vars,int blockorder)
"USAGE:  addvarsTo(ring,list_of_strings, int);
         int may be: 0:ordering: dp
                     1:ordering dp,dp
                     2:oring.ordering,dp
RETURN:  a ring with the addtional variables
EXAMPLE: example addvarsTo(); shows an example
"
{
  list rl=ringlist(r);
  int n=nvars(r);
  rl[2]=rl[2]+vars;
  if (blockorder==0)
  {
    rl[3]=list(list("C",0),list("dp",1:(nvars(r)+size(vars))));
  }
  else
  {
    if (blockorder==2)
    {
      rl[3]=rl[3]+list(list("dp",1:size(vars)));
    }
    else
    {
      rl[3]=list(list("C",0),list("dp",1:nvars(r)),list("dp",1:size(vars)));
    }
  }
  def rr=ring(rl);
  return(rr);
}
example
{
  "EXAMPLE:"; echo = 2;
  ring r=0,(x,y),lp;
  def rr=addvarsTo(r,list("a","b"),0);
  rr; kill rr;
  def rr=addvarsTo(r,list("a","b"),1);
  rr; kill rr;
  def rr=addvarsTo(r,list("a","b"),2);
  rr;
}
proc addNvarsTo(def r,int N,string n,int blockorder)
"USAGE:  addNvarsTo(ring,int N, string name, int b);
         b may be: 0:ordering: dp
                   1:ordering dp,dp
                   2:oring.ordering,dp
RETURN:  a ring with N addtional variables
EXAMPLE: example addNvarsTo(); shows an example
"
{
  list v;
  for(int i=N;i>0;i--) { v[i]=n+"("+string(i)+")"; }
  return(addvarsTo(r,v,blockorder));
}
example
{
  "EXAMPLE:"; echo = 2;
  ring r=0,(x,y),lp;
  def rr=addNvarsTo(r,2,"@",0);
  rr; kill rr;
  def rr=addNvarsTo(r,2,"@",1);
  rr; kill rr;
  def rr=addNvarsTo(r,2,"@",2);
  rr;
}