/usr/share/singular/LIB/rootsmr.lib is in singular-data 4.0.3+ds-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 | /////////////////////////////////////////////////////////////////////////////
version="version rootsmr.lib 4.0.0.0 Jun_2013 "; // $Id: 5e588048d574081b63e3c749e425de3c0352f458 $
category="Teaching";
info="
LIBRARY: rootsmr.lib Counting the number of real roots of polynomial systems
AUTHOR: Enrique A. Tobis, etobis@dc.uba.ar
OVERVIEW: Routines for counting the number of real roots of a multivariate
polynomial system. Two methods are implemented: deterministic
computation of the number of roots, via the signature of a certain
bilinear form (nrRootsDeterm); and a rational univariate projection,
using a pseudorandom polynomial (nrRootsProbab). It also includes a
command to verify the correctness of the pseudorandom answer.
REFERENCES: Basu, Pollack, Roy, \"Algorithms in Real Algebraic
Geometry\", Springer, 2003.
PROCEDURES:
nrRootsProbab(I) Number of real roots of 0-dim ideal (probabilistic)
nrRootsDeterm(I) Number of real roots of 0-dim ideal (deterministic)
symsignature(m) Signature of the symmetric matrix m
sturmquery(h,B,I) Sturm query of h on V(I)
matbil(h,B,I) Matrix of the bilinear form on R/I associated to h
matmult(f,B,I) Matrix of multiplication by f (m_f) on R/I in the basis B
tracemult(f,B,I) Trace of m_f (B is an ordered basis of R/I)
coords(f,B,I) Coordinates of f in the ordered basis B
randcharpoly(B,I,n) Pseudorandom charpoly of univ. projection, n optional
verify(p,B,i) Verifies the result of randcharpoly
randlinpoly(n) Pseudorandom linear polynomial, n optional
powersums(f,B,I) Powersums of the roots of a char polynomial
symmfunc(S) Symmetric functions from the powersums S
univarpoly(l) Polynomial with coefficients from l
qbase(i) Like kbase, but the monomials are ordered
KEYWORDS: real roots, univariate projection
";
///////////////////////////////////////////////////////////////////
LIB "linalg.lib"; // We use charpoly
LIB "rootsur.lib"; // We use varsigns
proc nrRootsProbab(ideal I, list #)
"USAGE: nrRootsProbab(I,[n]); ideal I, int n
RETURN: int: the number of real roots of the ideal I by a probabilistic
algorithm
ASSUME: If I is not a Groebner basis, then a Groebner basis will be computed
by using std. If I is already a Groebner basis (i.e. if
attrib(I,"isSB"); returns 1) then this Groebner basis will be
used, hence it must be one w.r.t. (any) global ordering. This may
be useful if the ideal is known to be a Groebner basis or if it
can be computed faster by a different method.
NOTE: If n<10 is given, n is the number of digits being used for
constructing a random characteristic polynomial, a bigger n is
more safe but slower (default: n=5).
If printlevel>0 the number of complex solutions is displayed
(default: printlevel=0).
SEE ALSO: nrroots, nrRootsDeterm, randcharpoly, solve
EXAMPLE: example nrRootsProbab; shows an example"
{
//Note on complexity: Let n = no of complex roots of I (= vdim(std(I)).
//Then the algorithm needs:
//1 std(I) and ~n NF computations (of randcharpoly w.r.t. I)
if (isparam(I)) {
ERROR("This procedure cannot operate with parametric arguments");
}
int pr = printlevel-voice+2;
int v;
int n=5;
if (size(#) == 1) {
n=#[1];
}
if (attrib(I,"isSB")!=1) {
I = std(I);
}
ideal b = qbase(I);
v = size(b);
if (v == 0) {
ERROR("ideal is not 0-dimensional");
}
dbprint(pr,"//ideal has " +string(v)+ " complex solutions, counted with multiplicity");
poly p = randcharpoly(b,I,n);
return (nrroots(p));
}
example
{
echo = 2;
ring r = 0,(x,y,z),lp;
ideal i = (x-1)*(x-2),(y-1)^3*(x-y),(z-1)*(z-2)*(z-3)^2;
nrRootsProbab(i); //no of real roots (using internally std)
i = groebner(i); //using the hilbert driven GB computation
int pr = printlevel;
printlevel = 2;
nrRootsProbab(i);
printlevel = pr;
}
///////////////////////////////////////////////////////////////////////////////
proc nrRootsDeterm(ideal I)
"USAGE: nrRootsDeterm(I); ideal I
RETURN: int: the number of real roots of the ideal I by a deterministic
algorithm
ASSUME: If I is not a Groebner basis, then a Groebner basis will be computed
by using std. If I is already a Groebner basis (i.e. if
attrib(I,"isSB"); returns 1) then this Groebner basis will be
used, hence it must be one w.r.t. (any) global ordering. This may
be useful if the ideal is known to be a Groebner basis or if it
can be computed faster by a different method.
NOTE: If printlevel>0 the number of complex solutions is displayed
(default: printlevel=0). The procedure nrRootsProbab is usually faster.
SEE ALSO: nrroots, nrRootsProbab, sturmquery, solve
EXAMPLE: example nrRootsDeterm; shows an example"
{
//Note on complexity: Let n = no of complex roots of I (= vdim(std(I)).
//Then the algotithm needs:
//1 std(I) and (1/2)n*(n+1)^2 ~ 1/2n^3 NF computations (of monomials w.r.t. I)
if (isparam(I)) {
ERROR("This procedure cannot operate with parametric arguments");
}
int pr = printlevel-voice+2;
int v;
if (attrib(I,"isSB")!=1) {
I = std(I);
}
ideal b = qbase(I);
v = size(b);
if (v == 0) {
ERROR("ideal is not 0-dimensional");
}
dbprint(pr,"//ideal has " +string(v)+ " complex solutions, counted with multiplicity");
return (sturmquery(1,b,I));
}
example
{
echo = 2;
ring r = 0,(x,y,z),lp;
ideal I = (x-1)*(x-2),(y-1),(z-1)*(z-2)*(z-3)^2;
nrRootsDeterm(I); //no of real roots (using internally std)
I = groebner(I); //using the hilbert driven GB computation
int pr = printlevel;
printlevel = 2;
nrRootsDeterm(I);
printlevel = pr;
}
///////////////////////////////////////////////////////////////////////////////
proc symsignature(matrix m)
"USAGE: symsignature(m); m matrix. m must be symmetric.
RETURN: int: the signature of m
SEE ALSO: matbil,sturmquery
EXAMPLE: example symsignature; shows an example"
{
int positive, negative, i, j;
list l;
poly variable;
if (isparam(m)) {
ERROR("This procedure cannot operate with parametric arguments");
}
if (!isSquare(m)) {
ERROR ("m must be a square matrix");
}
// We check whether m is symmetric
for (i = 1;i <= nrows(m);i++) {
for (j = i;j <= nrows(m);j++) {
if (m[i,j] != m[j,i]) {
ERROR ("m must be a symmetric matrix");
}
}
}
poly f = charpoly(m); // Uses the last variable of the ring
for (i = size(f);i >= 1;i--) {
l[i] = leadcoef(f[i]);
}
positive = varsigns(l);
variable = var(nvars(basering)); // charpoly uses the last variable
f = subst(f,variable,-variable);
for (i = size(f);i >= 1;i--) {
l[i] = leadcoef(f[i]);
}
negative = varsigns(l);
return (positive - negative);
}
example
{
echo = 2;
ring r = 0,(x,y),dp;
ideal i = x4-y2x,y2-13;
i = std(i);
ideal b = qbase(i);
matrix m = matbil(1,b,i);
symsignature(m);
}
///////////////////////////////////////////////////////////////////////////////
proc sturmquery(poly h,ideal B,ideal I)
"USAGE: sturmquery(h,b,i); h poly, b,i ideal
RETURN: int: the Sturm query of h in V(i)
ASSUME: i is a Groebner basis, b is an ordered monomial basis
of r/i, r = basering.
SEE ALSO: symsignature,matbil
EXAMPLE: example sturmquery; shows an example"
{
if (isparam(h) || isparam(B) || isparam(I)) {
ERROR("This procedure cannot operate with parametric arguments");
}
return (mysymmsig(matbil(h,B,I)));
}
example
{
echo = 2;
ring r = 0,(x,y),dp;
ideal i = x4-y2x,y2-13;
i = std(i);
ideal b = qbase(i);
sturmquery(1,b,i);
}
///////////////////////////////////////////////////////////////////////////////
static proc mysymmsig(matrix m)
// returns the signature of a square symmetric matrix m
{
int positive, negative, i;
list l;
poly variable;
poly f = charpoly(m); // Uses the last variable of the ring
for (i = size(f);i >= 1;i--) {
l[i] = leadcoef(f[i]);
}
positive = varsigns(l);
variable = var(nvars(basering)); // charpoly uses the last variable
f = subst(f,variable,-variable);
for (i = size(f);i >= 1;i--) {
l[i] = leadcoef(f[i]);
}
negative = varsigns(l);
return (positive - negative);
}
///////////////////////////////////////////////////////////////////////////////
proc matbil(poly h,ideal B,ideal I)
"USAGE: matbil(h,b,i); h poly, b,i ideal
RETURN: matrix: the matrix of the bilinear form (f,g) |-> trace(m_fhg),
m_fhg = multiplication with fhg on r/i
ASSUME: i is a Groebner basis and b is an ordered monomial basis of r/i,
r = basering
SEE ALSO: matmult,tracemult
EXAMPLE: example matbil; shows an example"
{
matrix m[size(B)][size(B)];
poly f;
int k,l;
//h = reduce(h,I);
for (k = 1; k <= size(B); k++) {
for (l = 1; l <= k; l++) {
m[k,l] = tracemult(h*B[k]*B[l],B,I)[1];
m[l,k] = m[k,l]; // The matrix we are trying to compute is symmetric
}
}
return(m);
}
example
{
echo = 2;
ring r = 0,(x,y),dp;
ideal i = x4-y2x,y2-13;
i = std(i);
ideal b = qbase(i);
poly f = x3-xy+y-13+x4-y2x;
matrix m = matbil(f,b,i);
print(m);
}
///////////////////////////////////////////////////////////////////////////////
proc tracemult(poly f,ideal B,ideal I)
"USAGE: tracemult(f,B,I);f poly, B,I ideal
RETURN: number: the trace of the multiplication by f (m_f) on r/I, written in
the monomial basis B of r/I, r = basering (faster than matmult + trace)
ASSUME: I is given by a Groebner basis and B is an ordered monomial basis of r/I
SEE ALSO: matmult,trace
EXAMPLE: example tracemult; shows an example"
{
int k; // Iterates over the basis monomials
int l; // Iterates over the rows of the matrix
list coordinates;
number m;
poly g;
//f = reduce(f,I);
for (k = 1; k <= size(B); k++) {
l=1;
g = reduce(f*B[k],I);
while (l <= k) {
if (leadmonom(g[l]) == B[k]) {
m = m + leadcoef(g[l]);
break;
}
l++;
}
}
return (m);
}
example
{
echo = 2;
ring r = 0,(x,y),dp;
ideal i = x4-y2x,y2-13;
i = std(i);
ideal b = qbase(i);
poly f = x3-xy+y-13+x4-y2x;
matrix m = matmult(f,b,i);
print(m);
tracemult(f,b,i); //the trace of m
}
///////////////////////////////////////////////////////////////////////////////
proc matmult(poly f, ideal B, ideal I)
"USAGE: matmult(f,b,i); f poly, b,i ideal
RETURN: matrix: the matrix of the multiplication map by f (m_f) on r/i
w.r.t. to the monomial basis b of r/i (r = basering)
ASSUME: i is a Groebner basis and b is an ordered monomial basis of r/i,
as given by qbase(i)
SEE ALSO: coords,matbil
EXAMPLE: example matmult; shows an example"
{
int k; // Iterates over the basis monomials
int l; // Iterates over the rows of the matrix
list coordinates;
matrix m[size(B)][size(B)];
//f = reduce(f,I);
for (k = 1;k <= size(B);k++) {
coordinates = coords(f*(B[k]),B,I); // f*x_k written on the basis B
for (l = 1;l <= size(B);l++) {
m[l,k] = coordinates[l];
}
}
return (m);
}
example
{
echo = 2;
ring r = 0,(x,y),dp;
ideal i = x4-y2x,y2-13;
i = std(i);
ideal b = qbase(i);
poly f = x3-xy+y-13+x4-y2x;
matrix m = matmult(f,b,i);
print(m);
}
///////////////////////////////////////////////////////////////////////////////
proc coords(poly f,ideal B,ideal I)
"USAGE: coords(f,b,i), f poly, b,i ideal
RETURN: list of numbers: the coordinates of the class of f (mod i)
in the monomial basis b
ASSUME: i is a Groebner basis and b is an ordered monomial basis of r/i,
r = basering
SEE ALSO: matmult,matbil
KEYWORDS: coordinates
EXAMPLE: example coords; shows an example"
{
// We assume the basis is sorted according to the ring order
poly g;
int k,l=1,1;
list coordinates;
int N = size(B);
// We first compute the normal form of f w.r.t. I
g = reduce(f,I);
int n = size(g); //allways n <= N
while (k <= N) {
if (leadmonom(g[l]) == B[k]) {
coordinates[k] = leadcoef(g[l]);
l++;
} else {
coordinates[k] = number(0);
}
k++;
}
return (coordinates);
}
example
{
echo = 2;
ring r = 0,(x,y),dp;
ideal i = x4-y2x,y2-13;
poly f = x3-xy+y-13+x4-y2x;
i = std(i);
ideal b = qbase(i);
b;
coords(f,b,i);
}
///////////////////////////////////////////////////////////////////////////////
static proc isSquare(matrix m)
// returns 1 if and only if m is a square matrix
{
return (nrows(m)==ncols(m));
}
///////////////////////////////////////////////////////////////////////////////
proc randcharpoly(ideal B,ideal I,list #)
"USAGE: randcharpoly(b,i); randcharpoly(b,i,n); b,i ideal; n int
RETURN: poly: the characteristic polynomial of a pseudorandom
rational univariate projection having one zero per zero of i.
If n<10 is given, it is the number of digits being used for the
pseudorandom coefficients (default: n=5)
ASSUME: i is a Groebner basis and b is an ordered monomial basis of r/i,
r = basering
NOTE: shows a warning if printlevel>0 (default: printlevel=0)
KEYWORDS: rational univariate projection
EXAMPLE: example randcharpoly; shows an example"
{
int pr = printlevel - voice + 2;
poly p;
poly generic;
list l;
matrix m;
poly q;
if (size(#) == 1) {
generic = randlinpoly(#[1]);
} else {
generic = randlinpoly();
}
p = reduce(generic,I);
m = matmult(p,B,I);
q = charpoly(m);
dbprint(pr,"*********************************************************************");
dbprint(pr,"* WARNING: This polynomial was obtained using pseudorandom numbers.*");
dbprint(pr,"* If you want to verify the result, please use the command *");
dbprint(pr,"* *");
dbprint(pr,"* verify(p,b,i) *");
dbprint(pr,"* *");
dbprint(pr,"* where p is the polynomial I returned, b is the monomial basis *");
dbprint(pr,"* used, and i the Groebner basis of the ideal *");
dbprint(pr,"*********************************************************************");
return(q);
}
example
{
echo = 2;
ring r = 0,(x,y,z),dp;
ideal i = (x-1)*(x-2),(y-1),(z-1)*(z-2)*(z-3)^2;
i = std(i);
ideal b = qbase(i);
poly p = randcharpoly(b,i);
p;
nrroots(p); // See nrroots in urrcount.lib
int pr = printlevel;
printlevel = pr+2;
p = randcharpoly(b,i,5);
nrroots(p);
printlevel = pr;
}
///////////////////////////////////////////////////////////////////////////////
proc verify(poly p,ideal B,ideal I)
"USAGE: verify(p,B,I); p poly, B,I,ideal
RETURN: integer: 1 if and only if the polynomial p splits the points of V(I).
It's used to check the result of randcharpoly
ASSUME: I is given by a Groebner basis and B is an ordered monomial basis of r/I,
r = basering
NOTE: comments the result if printlevel>0 (default: printlevel=0)
SEE ALSO: randcharpoly
EXAMPLE: example verify; shows an example"
{
int pr = printlevel - voice + 2;
poly sqr_free;
int correct;
poly variable;
if (isparam(p) || isparam(B) || isparam(I)) {
ERROR("This procedure cannot operate with parametric arguments");
}
variable = isuni(p);
sqr_free = p/gcd(p,diff(p,variable));
correct = (mat_rk(matbil(1,B,I)) == deg(sqr_free));
if (correct) {
dbprint(pr,"//Verification successful");
} else {
dbprint(pr,"//The choice of random numbers was not useful");
dbprint(pr,"//You might want to try randcharpoly with a larger number of digits");
}
return (correct);
}
example
{
echo = 2;
ring r = 0,(x,y),dp;
poly f = x3-xy+y-13+x4-y2x;
ideal i = x4-y2x,y2-13;
i = std(i);
ideal b = qbase(i);
poly p = randcharpoly(b,i);
verify(p,b,i);
}
///////////////////////////////////////////////////////////////////////////////
proc randlinpoly(list #)
"USAGE: randlinpoly(); randlinpoly(n); n int
RETURN: poly: linear combination of the variables of the ring, with
pseudorandom coefficients. If n<10 is given, it is the number of
digits being used for the range of the coefficients (default: n=5)
SEE ALSO: randcharpoly;
EXAMPLE: example randlinpoly; shows an example"
{
int n,i;
poly p = 0;
int ndigits = 5;
if (size(#) == 1) {
ndigits = #[1];
}
n = nvars(basering);
for (i = 1;i <= n;i++) {
p = p + var(i)*random(1,10^ndigits);
}
return (p);
}
example
{
echo = 2;
ring r = 0,(x,y,z,w),dp;
poly p = randlinpoly();
p;
randlinpoly(5);
}
///////////////////////////////////////////////////////////////////////////////
proc powersums(poly f,ideal B,ideal I)
"USAGE: powersums(f,b,i); f poly; b,i ideal
RETURN: list: the powersums of the results of evaluating f at the zeros of I
ASSUME: i is a Groebner basis and b is an ordered monomial basis of r/i,
r = basering
SEE ALSO: symmfunc
EXAMPLE: example symmfunc; shows an example"
{
int N,k;
list sums;
N = size(B);
for (k = 1;k <= N;k++) {
sums = sums + list(leadcoef(trace(matmult(f^k,B,I))));
}
return (sums);
}
example
{
echo = 2;
ring r = 0,(x,y,z),dp;
ideal i = (x-1)*(x-2),(y-1),(z+5); // V(I) = {(1,1,-5),(2,1,-5)}
i = std(i);
ideal b = qbase(i);
poly f = x+y+z;
list psums = list(-2-3,4+9); // f evaluated at V(I) gives {-3,-2}
list l = powersums(f,b,i);
psums;
l;
}
///////////////////////////////////////////////////////////////////////////////
proc symmfunc(list S)
"USAGE: symmfunc(s); s list
RETURN: list: the symmetric functions of the roots of a polynomial, given
the power sums of those roots.
SEE ALSO: powersums
EXAMPLE: example symmfunc; shows an example"
{
// Takes the list of power sums and returns the symmetric functions
list a;
int j,l,N;
number sum;
N = size(S);
a[N+1] = 1; // We set the length of the list and initialize its last element.
for (l = N - 1;l >= 0;l--) {
sum = 0;
for (j = l + 1;j <= N;j++) {
sum = sum + ((a[j+1])*(S[j-l]));
}
sum = -sum;
a[l+1] = sum/(N-l);
}
a = reverse(a);
return (a);
}
example
{
echo = 2;
ring r = 0,x,dp;
poly p = (x-1)*(x-2)*(x-3);
list psums = list(1+2+3,1+4+9,1+8+27);
list l = symmfunc(psums);
l;
p; // Compare p with the elements of l
}
///////////////////////////////////////////////////////////////////////////////
proc univarpoly(list l)
"USAGE: univarpoly(l); l list
RETURN: poly: a polynomial p on the first variable of basering, say x,
with p = l[1] + l[2]*x + l[3]*x^2 + ...
EXAMPLE: example univarpoly; shows an example"
{
poly p;
int i,n;
n = size(l);
for (i = 1;i <= n;i++) {
p = p + l[i]*var(1)^(n-i);
}
return (p);
}
example
{
echo = 2;
ring r = 0,x,dp;
list l = list(1,2,3,4,5);
poly p = univarpoly(l);
p;
}
///////////////////////////////////////////////////////////////////////////////
proc qbase(ideal i)
"USAGE: qbase(I); I zero-dimensional ideal
RETURN: ideal: A monomial basis of the quotient between the basering and the
ideal I, sorted according to the basering order.
SEE ALSO: kbase
KEYWORDS: zero-dimensional
EXAMPLE: example qbase; shows an example"
{
ideal b;
b = kbase(i);
b = reverseideal(sort(b)[1]); // sort sorts in ascending order
return (b);
}
example
{
echo = 2;
ring r = 0,(x,y,z),dp;
ideal i = 2x2,-y2,z3;
i = std(i);
ideal b = qbase(i);
b;
b = kbase(i);
b; // Compare this with the result of qbase
}
///////////////////////////////////////////////////////////////////////////////
static proc reverseideal(ideal b) // Returns b reversed
{
int i;
ideal result;
result = b[1];
for (i = 2;i <= size(b);i++) {
result = b[i], result;
}
return (result);
}
///////////////////////////////////////////////////////////////////////////////
|