/usr/share/singular/LIB/rootsur.lib is in singular-data 4.0.3+ds-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 | /////////////////////////////////////////////////////////////////////////////
version="version rootsur.lib 4.0.0.0 Jun_2013 "; // $Id: 7a8d2af54e1e0979f68d97e96677fb413b84725c $
category="Teaching";
info="
LIBRARY: rootsur.lib Counting number of real roots of univariate polynomial
AUTHOR: Enrique A. Tobis, etobis@dc.uba.ar
OVERVIEW: Routines for bounding and counting the number of real roots of a
univariate polynomial, by means of several different methods, namely
Descartes' rule of signs, the Budan-Fourier theorem, Sturm sequences
and Sturm-Habicht sequences. The first two give bounds on the number
of roots. The other two compute the actual number of roots of the
polynomial. There are several wrapper functions, to simplify the
application of the aforesaid theorems and some functions
to determine whether a given polynomial is univariate.
REFERENCES: Basu, Pollack, Roy, \"Algorithms in Real Algebraic
Geometry\", Springer, 2003.
PROCEDURES:
isuni(p) Checks whether a polynomial is univariate
whichvariable(p) The only variable of a univariate monomial (or 0)
varsigns(p) Number of sign changes in a list
boundBuFou(p,a,b) Bound for number of real roots of polynomial p in interval (a,b)
boundposDes(p) Bound for the number of positive real roots of polynomial p
boundDes(p) Bound for the number of real roots of polynomial p
allrealst(p) Checks whether all the roots of a polynomial are real (via Sturm)
maxabs(p) A bound for the maximum absolute value of a root of a poly
allreal(p) Checks whether all the roots of a polynomial are real (via St-Ha)
sturm(p,a,b) Number of real roots of a polynomial on an interval (via Sturm)
sturmseq(p) Sturm sequence of a polynomial
sturmha(p,a,b) Number of real roots of a polynomial in (a,b) (via Sturm-Habicht)
sturmhaseq(p) A Sturm-Habicht Sequence of a polynomial
reverse(l) Reverses a list
nrroots(p) The number of real roots of p
isparam(p) Returns 0 if and only if the polynomial has non-parametric coefficients
KEYWORDS: real roots, univariate polynomial
";
///////////////////////////////////////////////////////////////////////////////
static proc isparametric(poly p)
{
int ispar;
def ba = basering;
// If the basering has parameters declared
if (npars(basering) != 0) {
// If we were given just a polynomial
list lba = ringlist(ba);
lba[1]=0;
def rba = ring(lba); setring rba;
poly p1 = imap(ba,p);
setring ba;
poly p1 = imap(rba,p1);
ispar = (size(p-p1)!=0);
}
return (ispar);
}
///////////////////////////////////////////////////////////////////////////////
proc isparam(list #)
"USAGE: isparam(ideal/module/poly/list);
RETURN: int: 0 if the argument has non-parametric coefficients and 1 if it
has parametric coefficients
EXAMPLE: example isparam; shows an example"
{
int i;
int ispar;
def ar = #[1];
// It we were given only one argument (not a list)
if (size(#) == 1) {
if (typeof(ar) == "number") {
ispar = (pardeg(ar) > 0);
} else {
if (typeof(ar) == "poly") {
ispar = isparametric(ar);
} else {
if (typeof(ar) == "ideal" || typeof(ar) == "module") {
// Ciclo que revisa cada polinomio
i = size(ar);
while (!ispar && (i >= 1)) {
ispar = ispar || (isparametric(ar[i]));
i--;
}
} else {
if (typeof(ar) == "matrix" || typeof(ar) == "intmat") {
int j;
i = nrows(ar);
while (!ispar && (i >= 1)) {
j = nrows(ar);
while (!ispar && (j >= 1)) {
ispar = ispar || (isparametric(ar[i,j]));
j--;
}
i--;
}
}
}}}} else {
if (size(#) > 1) {
i = size(#);
while (!ispar && (i >= 1)) {
if ((typeof(#[i]) != "poly") && (typeof(#[i]) != "number") &&
typeof(#[i]) != "int") {
ERROR("This procedure only works with lists of polynomials");
}
ispar = ispar || (isparametric(#[i]));
i--;
}
}}
return (ispar);
}
example
{
echo = 2;
ring r = 0,x,dp;
isparam(2x3-56x+2);
ring s = (0,a,b,c),x,dp;
isparam(2x3-56x+2);
isparam(2x3-56x+abc);
}
///////////////////////////////////////////////////////////////////////////////
proc isuni(poly p)
"USAGE: isuni(p); poly p;
RETURN: poly: if p is a univariate polynomial, it returns the variable. If
not, zero.
SEE ALSO: whichvariable
EXAMPLE: example isuni; shows an example"
{
int v=univariate(p);
if (v== -1) { v=1; }
if (v>0) { return(var(v)); }
else { return(0); }
}
example
{
echo = 2;
ring r = 0,(x,y),dp;
poly p = 6x7-3x2+2x-15/7;
isuni(p);
isuni(p*y);
}
///////////////////////////////////////////////////////////////////////////////
proc whichvariable(poly p)
"USAGE: whichvariable(p); poly p
RETURN: poly: if p is a univariate monomial, the variable. Otherwise 0.
ASSUME: p is a monomial
SEE ALSO: isuni
EXAMPLE: example whichvariable; shows an example"
{
if (size(p) != 1)
{ ERROR("p must be a monomial"); }
int v=univariate(p);
if (v== -1) { v=1; }
if (v>0) { return(var(v)); }
else { return(0); }
}
example
{
echo = 2;
ring r = 0,(x,y),dp;
whichvariable(x5);
whichvariable(x3y);
}
///////////////////////////////////////////////////////////////////////////////
proc varsigns(list l)
"USAGE: varsigns(l); list l.
RETURN: int: the number of sign changes in the list l
SEE ALSO: boundposDes
EXAMPLE: example varsigns; shows an example"
{
int lastsign;
int numberofchanges = 0;
if (isparam(l)) {
ERROR("This procedure cannot operate with parametric arguments");
}
lastsign = sign(l[1]);
for (int i = 1; i <= size(l); i++)
{
if (sign(l[i]) != lastsign && sign(l[i]) != 0)
{
numberofchanges++;
lastsign = sign(l[i]);
}
}
return (numberofchanges);
}
example
{
echo = 2;
ring r = 0,x,dp;
list l = 1,2,3;
varsigns(l);
l = 1,-1,2,-2,3,-3;
varsigns(l);
}
///////////////////////////////////////////////////////////////////////////////
proc boundBuFou(poly p,number a,number b)
"USAGE: boundBuFou(p,a,b); p poly, a,b number
RETURN: int: an upper bound for the number of real roots of p in (a,b],
with the same parity as the actual number of roots (using the
Budan-Fourier Theorem)
ASSUME: - p is a univariate polynomial with rational coefficients@*
- a, b are rational numbers with a < b
SEE ALSO: boundposDes,varsigns
EXAMPLE: example boundBuFou; shows an example"
{
int i;
poly variable;
list Der;
list Dera,Derb;
int d;
number bound;
variable = isuni(p);
if (isparam(p) || isparam(a) || isparam(b)) {
ERROR("This procedure cannot operate with parametric arguments");
}
// p must be a univariate polynomial
if (variable == 0) {
ERROR("p must be a univariate polynomial");
}
if (a >= b) {
ERROR("a must be smaller than b");
}
d = deg(p);
// We calculate the list of derivatives
Der[d+1] = p;
for (i = 0;i < d;i++) {
Der[d-i] = diff(Der[d-i+1],variable);
}
// Then evaluate that list
for (i = d+1;i >= 1;i--) {
Dera [i] = leadcoef(subst(Der[i],variable,a));
Derb [i] = leadcoef(subst(Der[i],variable,b));
}
// Finally we calculate the sign variations
bound = varsigns(Dera) - varsigns(Derb);
return(bound);
}
example
{
echo = 2;
ring r = 0,x,dp;
poly p = (x+2)*(x-1)*(x-5);
boundBuFou(p,-3,5);
boundBuFou(p,-2,5);
}
///////////////////////////////////////////////////////////////////////////////
proc boundposDes(poly p)
"USAGE: boundposDes(p); poly p
RETURN: int: an upper bound for the number of positive roots of p, with
the same parity as the actual number of positive roots of p.
ASSUME: p is a univariate polynomial with rational coefficients
SEE ALSO: boundBuFou
EXAMPLE: example boundposDes; shows an example"
{
poly g;
number nroots;
poly variable;
list coefficients;
int i;
variable = isuni(p);
if (isparam(p)) {
ERROR("This procedure cannot operate with parametric arguments");
}
// p must be a univariate polynomial
if (variable == 0) {
ERROR("p must be a univariate polynomial");
}
g = p; // We will work with g
// We check whether 0 is a root of g, and if so, remove it
if (subst(g,variable,0) == 0) {
g = g/variable^(deg(g[size[g]]));
}
// We count the number of positive roots
i = size(g);
while (i >= 1) {
coefficients[i] = leadcoef(g[i]);
i--;
}
nroots = varsigns(coefficients);
return(nroots);
}
example
{
echo = 2;
ring r = 0,x,dp;
poly p = (x+2)*(x-1)*(x-5);
boundposDes(p);
p = p*(x2+1);
boundposDes(p);
}
///////////////////////////////////////////////////////////////////////////////
proc boundDes(poly p)
"USAGE: boundDes(p); poly p
RETURN: int: an upper bound for the number of real roots of p, with
the same parity as the actual number of real roots of p.
ASSUME: p is a univariate polynomial with rational coefficients
SEE ALSO: boundBuFou
EXAMPLE: example boundDes; shows an example"
{
poly g;
number nroots;
poly variable;
list coefficients;
int i;
variable = isuni(p);
if (isparam(p)) {
ERROR("This procedure cannot operate with parametric arguments");
}
// p must be a univariate polynomial
if (variable == 0) {
ERROR("p must be a univariate polynomial");
}
g = p; // We will work with g
nroots = 0;
// We check whether 0 is a root of g, and if so, remove it
if (subst(g,variable,0) == 0) {
g = g/variable^(deg(g[size[g]]));
nroots++;
}
// We count the number of positive roots
i = size(g);
while (i >= 1) {
coefficients[i] = leadcoef(g[i]);
i--;
}
nroots = nroots + varsigns(coefficients);
// We count the number of negative roots
g = subst(g,variable,-variable);
i = size(g);
while (i >= 1) {
coefficients[i] = leadcoef(g[i]);
i--;
}
nroots = nroots + varsigns(coefficients);
return(nroots);
}
example
{
echo = 2;
ring r = 0,x,dp;
poly p = (x+2)*(x-1)*(x-5);
boundDes(p);
p = p*(x2+1);
boundDes(p);
}
///////////////////////////////////////////////////////////////////////////////
proc allrealst(poly p)
"USAGE: allrealst(p); poly p
RETURN: int: 1 if and only if all the roots of p are real, 0 otherwise.
Checks by using Sturm's Theorem whether all the roots of p are real
ASSUME: p is a univariate polynomial with rational coefficients
SEE ALSO: allreal,sturm,sturmha
EXAMPLE: example allrealst; shows an example"
{
number upper,lower;
poly sqfp; // The square-free part of p
poly variable;
variable = isuni(p);
if (isparam(p)) {
ERROR("This procedure cannot operate with parametric arguments");
}
if (variable == 0) {
ERROR ("p must be a univariate polynomial");
}
sqfp = p/gcd(p,diff(p,variable));
upper = maxabs(sqfp); // By adding one we ensure that sqfp(upper) != 0
lower = -upper;
return (sturm(sqfp,lower,upper) == deg(sqfp));
}
example
{
echo = 2;
ring r = 0,x,dp;
poly p = (x+2)*(x-1)*(x-5);
allrealst(p);
p = p*(x2+1);
allrealst(p);
}
///////////////////////////////////////////////////////////////////////////////
proc maxabs(poly p)
"USAGE: maxabs(p); poly p
RETURN: number: an upper bound for the largest absolute value of a root of p
ASSUME: p is a univariate polynomial with rational coefficients
SEE ALSO: sturm
EXAMPLE: example maxabs; shows an example"
{
number maximum;
poly monic;
int i;
if (isparam(p)) {
ERROR("This procedure cannot operate with parametric arguments");
}
monic = simplify(p,1);
maximum = 0;
for (i = 1; i <= size(monic); i++)
{
maximum = max(abs(leadcoef(p[i])),maximum);
}
return (maximum + 1);
}
example
{
echo = 2;
echo = 2;
ring r = 0,x,dp;
poly p = (x+2)*(x-1)*(x-5);
maxabs(p);
}
///////////////////////////////////////////////////////////////////////////////
proc sturm(poly p,number a,number b)
"USAGE: sturm(p,a,b); poly p, number a,b
RETURN: int: the number of real roots of p in (a,b]
ASSUME: p is a univariate polynomial with rational coefficients,@*
a, b are rational numbers with a < b
SEE ALSO: sturmha,allrealst,allreal
EXAMPLE: example sturm; shows an example"
{
list l;
list pa;
list pb;
int signsA,signsB;
int i;
int nroots;
poly variable;
if (isparam(p)) {
ERROR("This procedure cannot operate with parametric arguments");
}
variable = isuni(p);
if (variable == 0) {
ERROR ("p must be a univariate polynomial");
}
if (a >= b) {
ERROR("a must be lower than b");
}
if (subst(p,variable,a) == 0 || subst(p,variable,b) == 0) {
ERROR ("Neither a nor b can be roots of P");
}
l = sturmseq(p);
i = size(l);
while (i >= 1) { // We build the sequences
pa[i] = leadcoef(subst(l[i],variable,a));
pb[i] = leadcoef(subst(l[i],variable,b));
i--;
}
signsA = varsigns(pa);
signsB = varsigns(pb);
nroots = signsA - signsB + nroots;
return (nroots);
}
example
{
echo = 2;
ring r = 0,x,dp;
poly p = (x+2)*(x-1)*(x-5);
sturm(p,-3,6);
p = p*(x2+1);
sturm(p,-3,6);
p = p*(x+2);
sturm(p,-3,6);
}
///////////////////////////////////////////////////////////////////////////////
proc sturmseq(poly p)
"USAGE: sturmseq(p); p poly
RETURN: list: a Sturm sequence of p
ASSUME: p is a univariate polynomial with rational coefficients
THEORY: The Sturm sequence of p (also called remainder sequence) is the
sequence beginning with p, p' and goes on with the negative part of
the remainder of the two previous polynomials, until the remainder
is zero.
See: Basu, Pollack, Roy, Algorithms in Real Algebraic Geometry,
Springer, 2003.
SEE ALSO: sturm,sturmhaseq
EXAMPLE: example sturmseq; shows an example"
{
list stseq;
poly variable;
int i;
variable = isuni(p);
if (isparam(p)) {
ERROR("This procedure cannot operate with parametric arguments");
}
if (variable == 0) {
ERROR ("p must be a univariate polynomial");
}
// The two first polynomials in Sturm's sequence
stseq = list();
stseq[1] = p;
stseq[2] = diff(p,variable);
poly q = -reduce(stseq[1],std(stseq[2]));
i = 3;
while (q <> 0) {
stseq[i] = q;
q = -reduce(stseq[i-1],std(stseq[i]));
i++;
}
// Right now, we have gcd(P,P') in stseq[size(stseq)];
for (i = size(stseq)-1;i >= 1;i--) {
stseq[i] = stseq[i]/(sign(leadcoef(stseq[size(stseq)]))*stseq[size(stseq)]);
stseq[i] = stseq[i]/abs(leadcoef(stseq[i]));
}
// We divide the gcd by itself
stseq[size(stseq)] = sign(leadcoef(stseq[size(stseq)]));
return (stseq);
}
example
{
echo = 2;
ring r = 0,(z,x),dp;
poly p = x5-3x4+12x3+7x-153;
sturmseq(p);
}
///////////////////////////////////////////////////////////////////////////////
proc allreal(poly p)
"USAGE: allreal(p);
RETURN: int: 1 if and only if all the roots of p are real, 0 otherwise
SEE ALSO: allrealst
EXAMPLE: example allreal; shows an example"
{
number upper,lower;
poly sqfp; // The square-free part of p
poly variable;
if (isparam(p)) {
ERROR("This procedure cannot operate with parametric arguments");
}
variable = isuni(p);
if (variable == 0) {
ERROR ("p must be a univariate polynomial");
}
sqfp = p/gcd(p,diff(p,variable));
return (sturmha(sqfp,-maxabs(p),maxabs(p)) == deg(sqfp));
}
example
{
echo = 2;
ring r = 0,x,dp;
poly p = (x+2)*(x-1)*(x-5);
allreal(p);
p = p*(x2+1);
allreal(p);
}
///////////////////////////////////////////////////////////////////////////////
proc sturmha(poly P,number a,number b)
"USAGE: sturmha(p,a,b); poly p, number a,b
RETURN: int: the number of real roots of p in (a,b) (using a Sturm-Habicht sequence)
SEE ALSO: sturm,allreal
EXAMPLE: example sturmha; shows an example"
{
list seq;
int i;
list seqa,seqb;
poly variable;
number bound;
//number result;
int result;
if (isparam(P) || isparam(a) || isparam(b))
{ ERROR("This procedure cannot operate with parametric arguments"); }
if (!attrib(basering,"global"))
{ ERROR("This procedure requires a global ordering"); }
variable = isuni(P);
if (variable == 0) { ERROR ("P must be a univariate polynomial"); }
if (a >= b) { ERROR("a must be lower than b"); }
if (subst(P,variable,a) == 0 || subst(P,variable,b) == 0) {
ERROR ("Neither a nor b can be roots of P");
}
seq = sturmhaseq(P);
bound = maxabs(P);
if (a < -bound) { a = -bound; }
if (b > bound) { b = bound; }
// if (a == -bound && b == bound) {
// for (i = size(seq);i >= 1;i--) {
// seq[i] = leadcoef(seq[i]);
// }
// result = D(seq);
// } else {
for (i = size(seq);i >= 1;i--) {
seqa[i] = leadcoef(subst(seq[i],variable,a));
seqb[i] = leadcoef(subst(seq[i],variable,b));
}
result = (W(seqa) - W(seqb));
// }
return (result);
}
example
{
echo = 2;
ring r = 0,x,dp;
poly p = (x+2)*(x-1)*(x-5);
sturmha(p,-3,6);
p = p*(x2+1);
sturmha(p,-3,6);
}
///////////////////////////////////////////////////////////////////////////////
proc sturmhaseq(poly P)
"USAGE: sturmhaseq(P); P poly.
RETURN: list: the non-zero polynomials of the Sturm-Habicht sequence of P
ASSUME: P is a univariate polynomial.
THEORY: The Sturm-Habicht sequence (also subresultant sequence) is closely
related to the Sturm sequence, but behaves better with respect to
the size of the coefficients. It is defined via subresultants.
See: Basu, Pollack, Roy, Algorithms in Real Algebraic Geometry,
Springer, 2003.
SEE ALSO: sturm,sturmseq,sturmha
EXAMPLE: example sturmhaseq; shows an example"
{
poly Q;
poly variable;
int p,q,i,j,k,l;
list SR;
list sr;
list srbar;
list T;
if (isparam(P)) {
ERROR("This procedure cannot operate with parametric arguments");
}
variable = isuni(P);
if (variable == 0) {
ERROR ("P must be a univariate polynomial");
}
p = deg(P);
Q = diff(P,variable);
q = deg(Q);
// Initialization
SR[p+2] = sign(leadcoef(P)^(p-q-1))*P;
// T[p+2] = SR[p+2];
srbar[p+2] = sign(leadcoef(P)^(p-q));
sr[p+2] = srbar[p+2];
SR[p-1+2] = sign(leadcoef(P)^(p-q+1))*Q;
// T[p-1+2] = SR[p-1+2];
srbar[p-1+2] = sign(leadcoef(P)^(p-q+1))*leadcoef(Q);
i = p+1;
j = p;
while (SR[j-1+2] != 0) {
k = deg(SR[j-1+2]);
if (k == j-1) {
sr[j-1+2] = srbar[j-1+2];
SR[k-1+2] = -(reduce(sr[j-1+2]^2*SR[i-1+2],
std(SR[j-1+2])))/(sr[j+2]*srbar[i-1+2]);
// T[k-1+2] = SR[k-1+2];
srbar[k-1+2] = leadcoef(SR[k-1+2]);
}
if (k < j-1) {
// Computation of sr[k+2]
for (l = 1;l <= j-k-1;l++) {
srbar[j-l-1+2] = ((-1)^l)*(srbar[j-1+2]*srbar[j-l+2])/sr[j+2];
}
sr[k+2] = srbar[k+2];
// Computation of SR[k-1+2]
SR[k-1+2] = -reduce(srbar[j-1+2]*sr[k+2]*SR[i-1+2],
std(SR[j-1+2]))/(sr[j+2]*srbar[i-1+2]);
srbar[k-1+2] = leadcoef(SR[k-1+2]);
SR[k+2] = SR[j-1+2] * ( sr[k+2] / leadcoef(SR[j-1+2]));
}
i = j;
j = k;
}
// We build a new list, discarding the undefined and zero elements
// Plus, we reverse the elements
list filtered;
i = size(SR);
while (i >= 1) {
if (typeof(SR[i]) != "none") {
if (SR[i] != 0) {
filtered = insert(filtered,SR[i]);
}
}
i--;
}
return (filtered);
}
example
{
echo = 2;
ring r = 0,x,dp;
poly p = x5-x4+x-3/2;
list l = sturmhaseq(p);
l;
}
///////////////////////////////////////////////////////////////////////////////
proc nrroots(poly p)
"USAGE: nrroots(p); poly p
RETURN: int: the number of real roots of p
SEE ALSO: boundposDes, sturm, sturmha
EXAMPLE: example nrroots; shows an example"
{
if (isparam(p))
{ ERROR("This procedure cannot operate with parametric arguments"); }
number a = maxabs(p);
return (sturmha(p,-a,a));
}
example
{
echo = 2;
ring r = 0,x,dp;
poly p = (x+2)*(x-1)*(x-5);
nrroots(p);
p = p*(x2+1);
nrroots(p);
}
///////////////////////////////////////////////////////////////////////////////
static proc abs(number x)
// Returns the absolute value of x
{
number av;
if (x >= 0) {
av = x;
} else {
av = -x;
}
return (av);
}
///////////////////////////////////////////////////////////////////////////////
proc sign(number x)
{
int sgn;
if (isparam(x)) {
print(x);
ERROR("This procedure cannot operate with parameters");
}
if (x > 0) {
sgn = 1;
} else { if (x < 0) {
sgn = -1;
} else {
sgn = 0;
}}
return (sgn);
}
///////////////////////////////////////////////////////////////////////////////
proc reverse(list l)
"USAGE: reverse(l); l list
RETURN: list: l reversed.
EXAMPLE: example reverse; shows an example"
{
int i;
list result;
for (i = 1;i <= size(l);i++) {
result = list(l[i]) + result;
}
return (result);
}
example
{
echo = 2;
ring r = 0,x,dp;
list l = 1,2,3,4,5;
list rev = reverse(l);
l;
rev;
}
///////////////////////////////////////////////////////////////////////////////
static proc D(list l)
{
int p;
int q;
int i;
int sc; // The modified number of sign changes
if (l[size(l)] == 0) {
ERROR("l[size(l)] cannot be 0");
}
sc = 0;
// We know that l[size(l)]] != 0
p = size(l);
q = p - 1;
while (searchnot(l,q,-1,0)) {
q = searchnot(l,q,-1,0);
if ((p - q) % 2 == 1) { // if p-q is odd
sc = sc + ((-1)^(((p-q)*(p-q-1)) / 2))*sign(l[p]*l[q]);
}
p = q;
q = p - 1;
}
return (sc);
}
///////////////////////////////////////////////////////////////////////////////
static proc search(list l,int from,int dir,number element)
{
int i;
int result;
i = from;
result = 0;
while (i + dir >= 0 && i + dir <= size(l) + 1 && !result)
{
if (l[i] == element) { result = i; }
i = i + dir;
}
return (result);
}
///////////////////////////////////////////////////////////////////////////////
static proc searchnot(list l,int from,int dir,number element)
{
int i;
int result;
i = from;
result = 0;
while (i + dir >= 0 && i + dir <= size(l) + 1 && !result)
{
if (l[i] != element) { result = i; }
i = i + dir;
}
return (result);
}
///////////////////////////////////////////////////////////////////////////////
static proc W(list l)
{
int i,temp,sc,lastsign,nofzeros,n;
n = size(l);
sc = 0;
nofzeros = 0;
i = 1;
lastsign = sign(l[i]);
i++;
while (i <= n) {
if (l[i] == 0) {
nofzeros++;
} else {
temp = lastsign * sign(l[i]);
if (temp < 0) {
sc++;
} else {
if (nofzeros == 2) {
sc = sc + 2;
}
}
nofzeros = 0;
lastsign = temp div lastsign;
}
i++;
}
return (sc);
}
///////////////////////////////////////////////////////////////////////////////
|