/usr/share/singular/LIB/signcond.lib is in singular-data 4.0.3+ds-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 | ///////////////////////////////////////////////////////////////////////////
version="version signcond.lib 4.0.0.0 Jun_2013 "; // $Id: 5d7118844e1de435273225d8cd9cb0962cb86d8e $
category="Symbolic-numerical solving";
info="
LIBRARY: signcond.lib Routines for computing realizable sign conditions
AUTHOR: Enrique A. Tobis, etobis@dc.uba.ar
OVERVIEW: Routines to determine the number of solutions of a multivariate
polynomial system which satisfy a given sign configuration.
REFERENCES: Basu, Pollack, Roy, \"Algorithms in Real Algebraic
Geometry\", Springer, 2003.
PROCEDURES:
signcnd(P,I) The sign conditions realized by polynomials of P on a V(I)
psigncnd(P,l) Pretty prints the output of signcnd (l)
firstoct(I) The number of elements of V(I) with every coordinate > 0
KEYWORDS: real roots,sign conditions
";
LIB "rootsmr.lib";
LIB "linalg.lib";
///////////////////////////////////////////////////////////////////////////////
proc firstoct(ideal I)
"USAGE: firstoct(I); I ideal
RETURN: number: the number of points of V(I) lying in the first octant
ASSUME: I is given by a Groebner basis.
SEE ALSO: signcnd
EXAMPLE: example firstoct; shows an example"
{
ideal firstoctant;
int j;
list result;
int n;
if (isparam(I)) {
ERROR("This procedure cannot operate with parametric arguments");
}
for (j = nvars(basering);j > 0;j--) {
firstoctant = firstoctant + var(j);
}
result = signcnd(firstoctant,I);
list fst;
for (j = nvars(basering);j > 0;j--) {
fst[j] = 1;
}
n = isIn(fst,result[1]);
if (n != -1) {
return (result[2][n]);
} else {
return (0);
}
}
example
{
echo = 2;
ring r = 0,(x,y),dp;
ideal i = (x-2)*(x+3)*x,y*(y-1);
firstoct(i);
}
///////////////////////////////////////////////////////////////////////////////
proc signcnd(ideal P,ideal I)
"USAGE: signcnd(P,I); ideal P,I
RETURN: list: the sign conditions realized by the polynomials of P on V(I).
The output of signcnd is a list of two lists. Both lists have the
same length. This length is the number of sign conditions realized
by the polynomials of P on the set V(i).
Each element of the first list indicates a sign condition of the
polynomials of P.
Each element of the second list indicates how many elements of V(I)
give rise to the sign condition expressed by the same position on
the first list.
See the example for further explanations of the output.
ASSUME: I is a Groebner basis.
NOTE: The procedure psigncnd performs some pretty printing of this output.
SEE ALSO: firstoct, psigncnd
EXAMPLE: example signcnd; shows an example"
{
ideal B;
// Cumulative stuff
matrix M;
matrix SQs;
matrix C;
list Signs;
list Exponents;
// Used to store the precalculated SQs
list SQvalues;
list SQpositions;
int i;
// Variables for each step
matrix Mi;
matrix M3x3[3][3];
matrix M3x3inv[3][3]; // Constant matrices
matrix c[3][1];
matrix sq[3][1];
int j;
list exponentsi;
list signi;
int numberOfNonZero;
if (isparam(P) || isparam(I)) {
ERROR("This procedure cannot operate with parametric arguments");
}
M3x3 = matrix(1,3,3);
M3x3 = 1,1,1,0,1,-1,0,1,1; // The 3x3 matrix
M3x3inv = inverse(M3x3);
// First, we compute sturmquery(1,V(I))
I = groebner(I);
B = qbase(I);
sq[1,1] = sturmquery(1,B,I); // Number of real roots in V(I)
SQvalues = SQvalues + list(sq[1,1]);
SQpositions = SQpositions + list(1);
// We initialize the cumulative variables
M = matrix(1,1,1);
Exponents = list(list());
Signs = list(list());
i = 1;
while (i <= size(P)) { // for each poly in P
sq[2,1] = sturmquery(P[i],B,I);
sq[3,1] = sturmquery(P[i]^2,B,I);
c = M3x3inv*sq;
// We have to eliminate the 0 elements in c
exponentsi = list();
signi = list();
// We determine the list of signs which correspond to a nonzero
// number of roots
numberOfNonZero = 3;
if (c[1,1] != 0) {
signi = list(0);
} else {
numberOfNonZero--;
}
if (c[2,1] != 0) {
signi = signi + list(1);
} else {
numberOfNonZero--;
}
if (c[3,1] != 0) {
signi = signi + list(-1);
} else {
numberOfNonZero--;
}
// We now determine the little matrix we'll work with,
// and the list of exponents
if (numberOfNonZero == 3) {
Mi = M3x3;
exponentsi = list(0,1,2);
} else {if (numberOfNonZero == 2) {
Mi = matrix(1,2,2);
Mi[1,2] = 1;
if (c[1,1] != 0 && c[2,1] != 0) { // 0,1
Mi[2,1] = 0;
Mi[2,2] = 1;
} else {if (c[1,1] != 0 && c[3,1] != 0) { // 0,-1
Mi[2,1] = 0;
Mi[2,2] = -1;
} else { // 1,-1
Mi[2,1] = 1;
Mi[2,2] = -1;
}}
exponentsi = list(0,1);
} else {if (numberOfNonZero == 1) {
Mi = matrix(1,1,1);
exponentsi = list(0);
}}}
// We store the Sturm Queries we'll need later
if (numberOfNonZero == 2) {
SQvalues = SQvalues + list(sq[2,1]);
SQpositions = SQpositions + list(size(Exponents)+1);
} else {if (numberOfNonZero == 3) {
SQvalues = SQvalues + list(sq[2,1],sq[3,1]);
SQpositions = SQpositions + list(size(Exponents)+1,size(Exponents)*2+1);
}}
// Now, we accumulate information
M = tensor(Mi,M);
Signs = expprod(Signs,signi);
Exponents = expprod(Exponents,exponentsi);
i++;
}
// At this point, we have the cumulative matrix,
// the vector of exponents and the matching sign conditions.
// We have to solve the big linear system to finish.
M = inverse(M);
// We have to compute the constants vector (the Sturm Queries)
SQs = matrix(1,size(Exponents),1);
j = 1; // We'll iterate over the presaved SQs
for (i = 1;i <= size(Exponents);i++) {
if (j <= size(SQvalues)) {
if (SQpositions[j] == i) {
SQs[i,1] = SQvalues[j];
j++;
} else {
SQs[i,1] = sturmquery(evalp(Exponents[i],P),B,I);
}
} else {
SQs[i,1] = sturmquery(evalp(Exponents[i],P),B,I);
}
}
C = M*SQs;
list result;
result[2] = list();
result[1] = list();
// We have to filter the 0 elements of C
for (i = 1;i <= size(Signs);i++) {
if (C[i,1] != 0) {
result[1] = result[1] + list(Signs[i]);
result[2] = result[2] + list(C[i,1]);
}
}
return (result);
}
example
{ echo = 2;
ring r = 0,(x,y),dp;
ideal i = (x-2)*(x+3)*x,y*(y-1);
ideal P = x,y;
list l = signcnd(P,i);
size(l[1]); // = the number of sign conditions of P on V(i)
//Each element of l[1] indicates a sign condition of the polynomials of P.
//The following means P[1] > 0, P[2] = 0:
l[1][2];
//Each element of l[2] indicates how many elements of V(I) give rise to
//the sign condition expressed by the same position on the first list.
//The following means that exactly 1 element of V(I) gives rise to the
//condition P[1] > 0, P[2] = 0:
l[2][2];
}
///////////////////////////////////////////////////////////////////////////////
proc psigncnd(ideal P,list l)
"USAGE: psigncnd(P,l); ideal P, list l
RETURN: list: a formatted version of l
SEE ALSO: signcnd
EXAMPLE: example psigncnd; shows an example"
{
string s;
int n = size(l[1]);
int i;
for (i = 1;i <= n;i++) {
s = s + string(l[2][i]) + " elements of V(I) satisfy " + psign(P,l[1][i])
+ sprintf("%n",12);
}
return(s);
}
example
{
echo = 2;
ring r = 0,(x,y),dp;
ideal i = (x-2)*(x+3)*x,(y-1)*(y+2)*(y+4);
ideal P = x,y;
list l = signcnd(P,i);
psigncnd(P,l);
}
///////////////////////////////////////////////////////////////////////////////
static proc psign(ideal P,list s)
{
int i;
int n = size(P);
string output;
output = "{P[1]";
if (s[1] == -1) {
output = output + " < 0";
}
if (s[1] == 0) {
output = output + " = 0";
}
if (s[1] == 1) {
output = output + " > 0";
}
for (i = 2;i <= n;i++) {
output = output + ",";
output = output + "P[" + string(i) + "]";
if (s[i] == -1) {
output = output + " < 0";
}
if (s[i] == 0) {
output = output + " = 0";
}
if (s[i] == 1) {
output = output + " > 0";
}
}
output = output + "}";
return (output);
}
///////////////////////////////////////////////////////////////////////////////
static proc isIn(list a,list b) //a is a list. b is a list of lists
{
int i,j;
int found;
found = 0;
i = 1;
while (i <= size(b) && !found) {
j = 1;
found = 1;
if (size(a) != size(b[i])) {
found = 0;
} else {
while(j <= size(a)) {
found = found && a[j] == b[i][j];
j++;
}
}
i++;
}
if (found) {
return (i-1);
} else {
return (-1);
}
}
///////////////////////////////////////////////////////////////////////////////
static proc expprod(list A,list B) // Computes the product of the list of lists A and the list B.
{
int i,j;
list result;
int la,lb;
if (size(A) == 0) {
A = list(list());
}
la = size(A);
lb = size(B);
result[la*lb] = 0;
for (i = 0;i < lb;i++) {
for (j = 0;j < la;j++) {
result[i*la+j+1] = A[j+1] + list(B[i+1]);
}
}
return (result);
}
///////////////////////////////////////////////////////////////////////////////
static proc initlist(int n) // Returns an n-element list of 0s.
{
list l;
int i;
l[n] = 0;
for (i = 1;i < n;i++) {
l[i] = 0;
}
return(l);
}
///////////////////////////////////////////////////////////////////////////////
static proc evalp(list exp,ideal P) // Elevates each polynomial in P to the appropriate
{
int i;
int n;
poly result;
n = size(exp);
result = 1;
for (i = 1;i <= n; i++) {
result = result * (P[i]^exp[i]);
}
return (result);
}
///////////////////////////////////////////////////////////////////////////////
static proc incexp(list exp)
{
int k;
k = 1;
while (exp[k] == 2) { // We assume exp is not the last exponent (i.e. 2,...,2)
exp[k] = 0;
k++;
}
// exp[k] < 2
exp[k] = exp[k] + 1;
return (exp);
}
///////////////////////////////////////////////////////////////////////////////
|