/usr/share/singular/LIB/sing4ti2.lib is in singular-data 4.0.3+ds-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 | ///////////////////////////////////////////////////////////////
version="version sing4ti2.lib 4.0.0.0 Jun_2013 "; // $Id: 4c5fdd58e77e766b35c586fa6765e7a9fde9a64f $
category="Commutative Algebra";
info="
LIBRARY: sing4ti2.lib Communication Interface to 4ti2
AUTHORS: Thomas Kahle , kahle@mis.mpg.de
@* Anne Fruehbis-Krueger, anne@math.uni-hannover.de
NOTE: This library uses the external program 4ti2 for calculations
@* and the standard unix tools sed and awk for conversion of
@* the returned result
PROCEDURES:
markov4ti2(A[,i]) compute Markov basis of given lattice
hilbert4ti2(A[,i]) compute Hilbert basis of given lattice
graver4ti2(A[,i]) compute Graver basis of given lattice
";
proc markov4ti2(matrix A, list #)
"USAGE: markov4ti2(A[,i]);
@* A=intmat
@* i=int
ASSUME: - A is a matrix with integer entries which describes the lattice
@* as ker(A), if second argument is not present,
@* as left image Im(A) = {zA, z \in ZZ^k}(!), if second argument is a positive integer
@* - number of variables of basering equals number of columns of A
@* (for ker(A)) resp. of rows of A (for Im(A))
CREATE: files sing4ti2.mat, sing4ti2.lat, sing4ti2.mar in the current
@* directory (I/O files for communication with 4ti2)
NOTE: input rules for 4ti2 also apply to input to this procedure
@* hence ker(A)={x|Ax=0} and Im(A)={xA}
RETURN: toric ideal specified by Markov basis thereof
EXAMPLE: example markov4ti2; shows an example
"
{
//--------------------------------------------------------------------------
// Initialization and Sanity Checks
//--------------------------------------------------------------------------
int i,j;
int nr=nrows(A);
int nc=ncols(A);
string fileending="mat";
if (size(#)!=0)
{
//--- default behaviour: use ker(A) as lattice
//--- if #[1]!=0 use Im(A) as lattice
if(typeof(#[1])!="int")
{
ERROR("optional parameter needs to be integer value");\
}
if(#[1]!=0)
{
fileending="lat";
}
}
//--- we should also be checking whether all entries are indeed integers
//--- or whether there are fractions, but in this case the error message
//--- of 4ti2 is printed directly
if(nvars(basering)!=ncols(A))
{
ERROR("number of columns needs to match number of variables");
}
//--------------------------------------------------------------------------
// preparing input file for 4ti2
//--------------------------------------------------------------------------
link eing=":w sing4ti2."+fileending;
string eingstring=string(nr)+" "+string(nc);
write(eing,eingstring);
for(i=1;i<=nr;i++)
{
kill eingstring;
string eingstring;
for(j=1;j<=nc;j++)
{
if((deg(A[i,j])>0)||(char(basering)!=0)||(npars(basering)>0))
{
ERROR("Input to markov4ti2 needs to be a matrix with integer entries");
}
eingstring=eingstring+string(A[i,j])+" ";
}
write(eing, eingstring);
}
close(eing);
//----------------------------------------------------------------------
// calling 4ti2 and converting output
// Singular's string is too clumsy for this, hence we first prepare
// using standard unix commands
//----------------------------------------------------------------------
j=system("sh","4ti2-markov sing4ti2 >/dev/null 2>&1");
j=system("sh","awk \'BEGIN{ORS=\",\";}{print $0;}\' sing4ti2.mar | sed s/[\\\ \\\t\\\v\\\f]/,/g | sed s/,+/,/g|sed s/,,/,/g|sed s/,,/,/g > sing4ti2.converted");
if(!defined(keepfiles))
{
j=system("sh",("rm -f sing4ti2.mar sing4ti2."+fileending));
}
//----------------------------------------------------------------------
// reading output of 4ti2
//----------------------------------------------------------------------
link ausg=":r sing4ti2.converted";
//--- last entry ideal(0) is used to tie the list to the basering
//--- it will not be processed any further
string ergstr="list erglist="+read(ausg)+ string(ideal(0))+";";
execute(ergstr);
ideal toric;
poly temppol1,temppol2;
for(i=1;i<=erglist[1];i++)
{
temppol1=1;
temppol2=1;
for(j=1;j<=erglist[2];j++)
{
if(erglist[2+(i-1)*erglist[2]+j]>=0)
{
//--- positive exponents
temppol1=temppol1*(var(j)^erglist[2+(i-1)*erglist[2]+j]);
}
else
{
//--- negative exponents
temppol2=temppol2*(var(j)^(-erglist[2+(i-1)*erglist[2]+j]));
}
}
toric=toric,temppol1-temppol2;
}
//--- get rid of leading entry 0;
toric=toric[2..ncols(toric)];
return(toric);
}
example
{"EXAMPLE:";
echo=2;
ring r=0,(x,y,z),dp;
matrix M[2][3]=0,1,2,2,1,0;
markov4ti2(M);
matrix N[1][3]=1,2,1;
markov4ti2(N,1);
}
///////////////////////////////////////////////////////////////////////////////
proc graver4ti2(matrix A, list #)
"USAGE: graver4ti2(A[,i]);
@* A=intmat
@* i=int
ASSUME: - A is a matrix with integer entries which describes the lattice
@* as ker(A), if second argument is not present,
@* as the left image Im(A) = {zA : z \in ZZ^k}, if second argument is a positive integer
@* - number of variables of basering equals number of columns of A
@* (for ker(A)) resp. of rows of A (for Im(A))
CREATE: temporary files sing4ti2.mat, sing4ti2.lat, sing4ti2.gra
@* in the current directory (I/O files for communication with 4ti2)
NOTE: input rules for 4ti2 also apply to input to this procedure
@* hence ker(A)={x|Ax=0} and Im(A)={xA}
RETURN: toric ideal specified by Graver basis thereof
EXAMPLE: example graver4ti2; shows an example
"
{
//--------------------------------------------------------------------------
// Initialization and Sanity Checks
//--------------------------------------------------------------------------
int i,j;
int nr=nrows(A);
int nc=ncols(A);
string fileending="mat";
if (size(#)!=0)
{
//--- default behaviour: use ker(A) as lattice
//--- if #[1]!=0 use Im(A) as lattice
if(typeof(#[1])!="int")
{
ERROR("optional parameter needs to be integer value");\
}
if(#[1]!=0)
{
fileending="lat";
}
}
//--- we should also be checking whether all entries are indeed integers
//--- or whether there are fractions, but in this case the error message
//--- of 4ti2 is printed directly
if(nvars(basering)!=ncols(A))
{
ERROR("number of columns needs to match number of variables");
}
//--------------------------------------------------------------------------
// preparing input file for 4ti2
//--------------------------------------------------------------------------
link eing=":w sing4ti2."+fileending;
string eingstring=string(nr)+" "+string(nc);
write(eing,eingstring);
for(i=1;i<=nr;i++)
{
kill eingstring;
string eingstring;
for(j=1;j<=nc;j++)
{
if((deg(A[i,j])>0)||(char(basering)!=0)||(npars(basering)>0))
{
ERROR("Input to graver4ti2 needs to be a matrix with integer entries");
}
eingstring=eingstring+string(A[i,j])+" ";
}
write(eing, eingstring);
}
close(eing);
//----------------------------------------------------------------------
// calling 4ti2 and converting output
// Singular's string is too clumsy for this, hence we first prepare
// using standard unix commands
//----------------------------------------------------------------------
j=system("sh","4ti2-graver sing4ti2 >/dev/null 2>&1");
j=system("sh","awk \'BEGIN{ORS=\",\";}{print $0;}\' sing4ti2.gra | sed s/[\\\ \\\t\\\v\\\f]/,/g | sed s/,+/,/g |sed s/,,/,/g|sed s/,,/,/g > sing4ti2.converted");
if(!defined(keepfiles))
{
j=system("sh",("rm -f sing4ti2.gra sing4ti2."+fileending));
}
//----------------------------------------------------------------------
// reading output of 4ti2
//----------------------------------------------------------------------
link ausg=":r sing4ti2.converted";
//--- last entry ideal(0) is used to tie the list to the basering
//--- it will not be processed any further
string ergstr="list erglist="+read(ausg)+ string(ideal(0))+";";
execute(ergstr);
ideal toric;
poly temppol1,temppol2;
for(i=1;i<=erglist[1];i++)
{
temppol1=1;
temppol2=1;
for(j=1;j<=erglist[2];j++)
{
if(erglist[2+(i-1)*erglist[2]+j]>=0)
{
//--- positive exponents
temppol1=temppol1*(var(j)^erglist[2+(i-1)*erglist[2]+j]);
}
else
{
//--- negative exponents
temppol2=temppol2*(var(j)^(-erglist[2+(i-1)*erglist[2]+j]));
}
}
toric=toric,temppol1-temppol2;
}
//--- get rid of leading entry 0;
toric=toric[2..ncols(toric)];
return(toric);
}
example
{"EXAMPLE:";
echo=2;
ring r=0,(x,y,z,w),dp;
matrix M[2][4]=0,1,2,3,3,2,1,0;
graver4ti2(M);
}
///////////////////////////////////////////////////////////////////////////////
proc hilbert4ti2(matrix A, list #)
"USAGE: hilbert4ti2(A[,i]);
@* A=intmat
@* i=int
ASSUME: - A is a matrix with integer entries which describes the lattice
@* as ker(A), if second argument is not present,
@* as the left image Im(A) = {zA : z \in ZZ^k}, if second argument is a positive integer
@* - number of variables of basering equals number of columns of A
@* (for ker(A)) resp. of rows of A (for Im(A))
CREATE: temporary files sing4ti2.mat, sing4ti2.lat, sing4ti2.mar
@* in the current directory (I/O files for communication with 4ti2)
NOTE: input rules for 4ti2 also apply to input to this procedure
@* hence ker(A)={x|Ax=0} and Im(A)={xA}
RETURN: toric ideal specified by Hilbert basis thereof
EXAMPLE: example graver4ti2; shows an example
"
{
//--------------------------------------------------------------------------
// Initialization and Sanity Checks
//--------------------------------------------------------------------------
int i,j;
int nr=nrows(A);
int nc=ncols(A);
string fileending="mat";
if (size(#)!=0)
{
//--- default behaviour: use ker(A) as lattice
//--- if #[1]!=0 use Im(A) as lattice
if(typeof(#[1])!="int")
{
ERROR("optional parameter needs to be integer value");\
}
if(#[1]!=0)
{
fileending="lat";
}
}
//--- we should also be checking whether all entries are indeed integers
//--- or whether there are fractions, but in this case the error message
//--- of 4ti2 is printed directly
if(nvars(basering)!=ncols(A))
{
ERROR("number of columns needs to match number of variables");
}
//--------------------------------------------------------------------------
// preparing input file for 4ti2
//--------------------------------------------------------------------------
link eing=":w sing4ti2."+fileending;
string eingstring=string(nr)+" "+string(nc);
write(eing,eingstring);
for(i=1;i<=nr;i++)
{
kill eingstring;
string eingstring;
for(j=1;j<=nc;j++)
{
if((deg(A[i,j])>0)||(char(basering)!=0)||(npars(basering)>0))
{
ERROR("Input to hilbert4ti2 needs to be a matrix with integer entries");
}
eingstring=eingstring+string(A[i,j])+" ";
}
write(eing, eingstring);
}
close(eing);
//----------------------------------------------------------------------
// calling 4ti2 and converting output
// Singular's string is too clumsy for this, hence we first prepare
// using standard unix commands
//----------------------------------------------------------------------
j=system("sh","4ti2-hilbert sing4ti2 >/dev/null 2>&1");
j=system("sh","awk \'BEGIN{ORS=\",\";}{print $0;}\' sing4ti2.hil | sed s/[\\\ \\\t\\\v\\\f]/,/g | sed s/,+/,/g |sed s/,,/,/g|sed s/,,/,/g > sing4ti2.converted");
if(!defined(keepfiles))
{
j=system("sh",("rm -f sing4ti2.hil sing4ti2."+fileending));
}
//----------------------------------------------------------------------
// reading output of 4ti2
//----------------------------------------------------------------------
link ausg=":r sing4ti2.converted";
//--- last entry ideal(0) is used to tie the list to the basering
//--- it will not be processed any further
string ergstr="list erglist="+read(ausg)+ string(ideal(0))+";";
execute(ergstr);
ideal toric;
poly temppol1,temppol2;
for(i=1;i<=erglist[1];i++)
{
temppol1=1;
temppol2=1;
for(j=1;j<=erglist[2];j++)
{
if(erglist[2+(i-1)*erglist[2]+j]>=0)
{
//--- positive exponents
temppol1=temppol1*(var(j)^erglist[2+(i-1)*erglist[2]+j]);
}
else
{
//--- negative exponents
temppol2=temppol2*(var(j)^(-erglist[2+(i-1)*erglist[2]+j]));
}
}
toric=toric,temppol1-temppol2;
}
//--- get rid of leading entry 0;
toric=toric[2..ncols(toric)];
return(toric);
}
// A nice example here is the 3x3 Magic Squares
example
{"EXAMPLE:";
echo=2;
ring r=0,(x1,x2,x3,x4,x5,x6,x7,x8,x9),dp;
matrix M[7][9]=1,1,1,-1,-1,-1,0,0,0,1,1,1,0,0,0,-1,-1,-1,0,1,1,-1,0,0,-1,0,0,1,0,1,0,-1,0,0,-1,0,1,1,0,0,0,-1,0,0,-1,0,1,1,0,-1,0,0,0,-1,1,1,0,0,-1,0,-1,0,0;
hilbert4ti2(M);
}
/////////////////////////////////////////////////////////////////////////////
|