/usr/share/singular/LIB/spcurve.lib is in singular-data 4.0.3+ds-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 | //////////////////////////////////////////////////////////////////////////
version="version spcurve.lib 4.0.0.0 Jun_2013 "; // $Id: c59b3ead180716d2b229ac5332b70c0a55115262 $
category="Singularities";
info="
LIBRARY: spcurve.lib Deformations and Invariants of CM-codim 2 Singularities
AUTHOR: Anne Fruehbis-Krueger, anne@mathematik.uni-kl.de
PROCEDURES:
isCMcod2(i); presentation matrix of the ideal i, if i is CM
CMtype(i); Cohen-Macaulay type of the ideal i
matrixT1(M,n); 1st order deformation T1 in matrix description
semiCMcod2(M,T1); semiuniversal deformation of maximal minors of M
discr(sem,n); discriminant of semiuniversal deformation
qhmatrix(M); weights if M is quasihomogeneous
relweight(N,W,a); relative matrix weight of N w.r.t. weights (W,a)
posweight(M,T1,i); deformation of coker(M) of non-negative weight
KSpencerKernel(M); kernel of the Kodaira-Spencer map
";
LIB "elim.lib";
LIB "homolog.lib";
LIB "inout.lib";
LIB "poly.lib";
/////////////////////////////////////////////////////////////////////////////
proc isCMcod2(ideal kurve)
"USAGE: isCMcod2(i); i an ideal
RETURN: presentation matrix of i, if i is Cohen-Macaulay of codimension 2 @*
a zero matrix otherwise
EXAMPLE: example isCMcod2; shows an example"
{
int p = printlevel-voice+3; // p=printlevel+1 (default: p=1)
//---------------------------------------------------------------------------
// Compute a minimal free resolution of the ideal and check if the
// resolution has the expected structure
//---------------------------------------------------------------------------
list kurveres=mres(kurve,0);
matrix M=kurveres[2];
if ((size(kurveres)>3) &&
((size(kurveres[3])>1) ||
((size(kurveres[3])<=1) && (kurveres[3][1,1]!=0))))
{
dbprint(p,"//not Cohen-Macaulay, codim 2");
matrix ret=0;
return(ret);
}
return(M);
}
example
{ "EXAMPLE:"; echo=2;
ring r=32003,(x,y,z),ds;
ideal i=xz,yz,x^3-y^4;
print(isCMcod2(i));
}
/////////////////////////////////////////////////////////////////////////////
proc CMtype(ideal kurve)
"USAGE: CMtype(i); i an ideal, CM of codimension 2
RETURN: Cohen-Macaulay type of i (integer)
(-1, if i is not Cohen-Macaulay of codimension 2)
EXAMPLE: example CMtype; shows an example"
{
int p = printlevel-voice+3; // p=printlevel+1 (default: p=1)
int gt = -1;
//---------------------------------------------------------------------------
// Compute a minimal free resolution of the ideal and check if the
// resolution has the expected structure
//---------------------------------------------------------------------------
list kurveres;
kurveres=mres(kurve,0);
if ((size(kurveres)>3) &&
((size(kurveres[3])>1) ||
((size(kurveres[3])<=1) && (kurveres[3][1,1]!=0))))
{
dbprint(p,"//not Cohen-Macaulay, codim 2");
return(gt);
}
//---------------------------------------------------------------------------
// Return the Cohen-Macaulay type of i
//---------------------------------------------------------------------------
matrix M = matrix(kurveres[2]);
gt = ncols(M);
return(gt);
}
example
{ "EXAMPLE:"; echo=2;
ring r=32003,(x,y,z),ds;
ideal i=xy,xz,yz;
CMtype(i);
}
/////////////////////////////////////////////////////////////////////////////
proc matrixT1(matrix M ,int n)
"USAGE: matrixT1(M,n); M matrix, n integer
ASSUME: M is a presentation matrix of an ideal i, CM of codimension 2;
consider i as a family of ideals in a ring in the first n
variables where the remaining variables are considered as
parameters
RETURN: list consisting of the k x (k+1) matrix M and a module K_M such that
T1=Mat(k,k+1;R)/K_M is the space of first order deformations of i
EXAMPLE: example matrixT1; shows an example"
{
int p = printlevel-voice+3; // p=printlevel+1 (default: p=1)
//--------------------------------------------------------------------------
// Initialization and sanity checks
//--------------------------------------------------------------------------
int nr=nrows(M);
int nc=ncols(M);
if ( nr < nc )
{
M=transpose(M);
int temp=nc;
nc=nr;
nr=temp;
int tra=1;
}
if ( nr != (nc+1) )
{
ERROR("not a k x (k+1) matrix");
}
//---------------------------------------------------------------------------
// Construct the denominator - step by step
// step 1: initialization
//---------------------------------------------------------------------------
int gt=nc;
int i,j;
ideal m = M;
ideal dx;
ideal rv;
ideal lv;
matrix R[gt][gt]=0;
matrix L[gt+1][gt+1]=0;
matrix T1[n+gt*gt+(gt+1)*(gt+1)][gt*(gt+1)] = 0;
//---------------------------------------------------------------------------
// step 2: the derivatives of the matrix are generators of the denominator
//---------------------------------------------------------------------------
for( i=1; i<= n; i++ )
{
dx=diff(m,var(i));
T1[i,1..gt*(gt+1)] = dx;
}
//---------------------------------------------------------------------------
// step 3: M*R is a generator as well
//---------------------------------------------------------------------------
for( i=1; i <= gt; i++ )
{
for ( j=1 ; j <= gt ; j++ )
{
R[i,j]=1;
rv = M * R;
T1[n+(i-1)*gt+j,1..gt*(gt+1)] = rv;
R[i,j]=0;
}
}
//---------------------------------------------------------------------------
// step 4: so is L*M
//---------------------------------------------------------------------------
for( i=1; i <= (gt+1); i++)
{
for( j=1 ; j <= (gt+1);j++ )
{
L[i,j]=1;
lv = L * M;
T1[n+gt*gt+(i-1)*(gt+1)+j,1..gt*(gt+1)] = lv;
L[i,j]=0;
}
}
//---------------------------------------------------------------------------
// Compute the vectorspace basis of T1
//---------------------------------------------------------------------------
module t1 = module(transpose(T1));
list result=M,t1;
return(result);
}
example
{ "EXAMPLE:"; echo = 2;
ring r=32003,(x(1),x(2),x(3)),ds;
ideal curve=x(1)*x(2),x(1)*x(3),x(2)*x(3);
matrix M=isCMcod2(curve);
matrixT1(M,3);
}
/////////////////////////////////////////////////////////////////////////////
proc semiCMcod2(matrix M, module t1,list #)
"USAGE: semiCMcod2(M,t1[,s]); M matrix, t1 module, s any
ASSUME: M is a presentation matrix of an ideal i, CM of codimension 2,
and t1 is a presentation of the space of first order deformations
of i ((M,t1) as returned by the procedure matrixT1)
RETURN: new ring in which the ideal semi describing the semiuniversal
deformation of i;
if the optional third argument is given, the perturbation matrix
of the semiuniversal deformation is returned instead of the ideal.
NOTE: The current basering should not contain any variables named
A(j) where j is some integer!
EXAMPLE: example semiCMcod2; shows an example"
{
int p = printlevel-voice+3; // p=printlevel+1 (default: p=1)
//---------------------------------------------------------------------------
// Initialization
//---------------------------------------------------------------------------
module t1erz=kbase(std(t1));
int tau=vdim(t1);
int gt=ncols(M);
int i;
def r=basering;
if(size(M)!=gt*(gt+1))
{
gt=gt-1;
}
for(i=1; i<=size(t1erz); i++)
{
if(rvar(A(i)))
{
int jj=-1;
break;
}
}
if (defined(jj)>1)
{
if (jj==-1)
{
ERROR("Your ring contains a variable T(i)!");
}
}
//---------------------------------------------------------------------------
// Definition of the new ring and the image of M and t1 in the new ring
//---------------------------------------------------------------------------
ring rtemp=0,(A(1..tau)),dp;
def rneu=r+rtemp;
setring rneu;
matrix M=imap(r,M);
ideal m=M;
module t1erz=imap(r,t1erz);
//---------------------------------------------------------------------------
// Construction of the presentation matrix of the versal deformation
//---------------------------------------------------------------------------
matrix N=matrix(m);
matrix Mtemp[gt*(gt+1)][1];
for( i=1; i<=tau; i++)
{
Mtemp=t1erz[i];
N=N+A(i)*transpose(Mtemp);
}
ideal n=N;
matrix O[gt+1][gt]=n;
//---------------------------------------------------------------------------
// Construction of the return value
//---------------------------------------------------------------------------
if(size(#)>0)
{
matrix semi=O;
}
else
{
ideal semi=minor(O,gt);
}
export semi;
return(rneu);
}
example
{ "EXAMPLE:"; echo=2;
ring r=32003,(x(1),x(2),x(3)),ds;
ideal curve=x(1)*x(2),x(1)*x(3),x(2)*x(3);
matrix M=isCMcod2(curve);
list l=matrixT1(M,3);
def rneu=semiCMcod2(l[1],std(l[2]));
setring rneu;
semi;
}
/////////////////////////////////////////////////////////////////////////////
proc discr(ideal kurve, int n)
"USAGE: discr(sem,n); sem ideal, n integer
ASSUME: sem is the versal deformation of an ideal of codimension 2. @*
The first n variables of the ring are treated as variables
all the others as parameters.
RETURN: ideal describing the discriminant
NOTE: This is not a powerful algorithm!
EXAMPLE: example discr; shows an example"
{
int p = printlevel-voice+3; // p=printlevel+1 (default: p=1)
//---------------------------------------------------------------------------
// some sanity checks and initialization
//---------------------------------------------------------------------------
int i;
ideal sem=std(kurve);
ideal semdiff;
ideal J2;
int ncol=ncols(matrix(sem));
matrix Jacob[n][ncol];
//---------------------------------------------------------------------------
// compute the Jacobian matrix
//---------------------------------------------------------------------------
for (i=1; i<=n; i++)
{
semdiff=diff(sem,var(i));
Jacob[i,1..ncol]=semdiff;
}
//---------------------------------------------------------------------------
// eliminate the first n variables in the ideal generated by
// the versal deformation and the 2x2 minors of the Jacobian
//---------------------------------------------------------------------------
semdiff=minor(Jacob,2);
J2=sem,semdiff;
J2=std(J2);
poly eli=1;
for(i=1; i<=n; i++)
{
eli=eli*var(i);
}
ideal dis=eliminate(J2,eli);
return(dis);
}
example
{ "EXAMPLE:"; echo=2;
ring r=32003,(x(1),x(2),x(3)),ds;
ideal curve=x(1)*x(2),x(1)*x(3),x(2)*x(3);
matrix M=isCMcod2(curve);
list l=matrixT1(M,3);
def rneu=semiCMcod2(l[1],std(l[2]));
setring rneu;
discr(semi,3);
}
/////////////////////////////////////////////////////////////////////////////
proc qhmatrix(matrix M)
"USAGE: qhmatrix(M); M a k x (k+1) matrix
RETURN: list, consisting of an integer vector containing the weights of
the variables of the basering and an integer matrix giving the
weights of the entries of M, if M is quasihomogeneous;
zero integer vector and zero integer matrix, if M is not
quasihomogeneous, i.e. does not allow row and column weights
EXAMPLE: example qhmatrix; shows an example"
{
int p = printlevel-voice+3; // p=printlevel+1 (default: p=1)
//---------------------------------------------------------------------------
// Initialization and sanity checks
//---------------------------------------------------------------------------
def r=basering;
int i,j,temp;
int tra=0;
int nr=nrows(M);
int nc=ncols(M);
if ( nr > nc )
{
M=transpose(M);
temp=nc;
nc=nr;
nr=temp;
tra=1;
}
if ( nc != (nr+1) )
{
ERROR("not a k x (k+1) matrix");
}
ideal m=minor(M,nr);
//---------------------------------------------------------------------------
// get the weight using the fact that the matrix is quasihomogeneous, if
// its maximal minors are, and check, whether M is really quasihomogeneous
//---------------------------------------------------------------------------
intvec a=weight(m);
string tempstr="ring rneu=" + charstr(r) + ",(" + varstr(r) + "),Ws(" + string(a) + ");";
execute(tempstr);
def M=imap(r,M);
int difset=0;
list l;
int dif;
int donttest=0;
int comprow=0;
intmat W[nr][nc];
//---------------------------------------------------------------------------
// find a row not containing a 0
//---------------------------------------------------------------------------
for(i=1; i<=nr; i++)
{
if(comprow==0)
{
comprow=i;
for(j=1; j<=nc; j++)
{
if(M[i,j]==0)
{
comprow=0;
break;
}
}
}
}
//---------------------------------------------------------------------------
// get the weights of the comprow'th row or use emergency exit
//---------------------------------------------------------------------------
if(comprow==0)
{
intvec v=0;
intmat V=0
list ret=v,V;
return(ret);
}
else
{
for(j=1; j<=nc; j++)
{
l[j]=deg(lead(M[comprow,j]));
}
}
//---------------------------------------------------------------------------
// do the checks
//---------------------------------------------------------------------------
for(i=1; i<=nr; i++)
{
if ( i==comprow )
{
// this row should not be tested against itself
donttest=1;
}
else
{
// initialize the difference of the rows, but ignore 0-entries
if (M[i,1]!=0)
{
dif=deg(lead(M[i,1]))-l[1];
difset=1;
}
else
{
list memo;
memo[1]=1;
}
}
// check column by column
for(j=1; j<=nc; j++)
{
if(M[i,j]==0)
{
if(defined(memo)!=0)
{
memo[size(memo)+1]=j;
}
else
{
list memo;
memo[1]=j;
}
}
temp=deg(lead(M[i,j]));
if((difset!=1) && (donttest!=1) && (M[i,j]!=0))
{
// initialize the difference of the rows, if necessary - still ignore 0s
dif=deg(lead(M[i,j]))-l[j];
difset=1;
}
// is M[i,j] quasihomogeneous - else emergency exit
if(M[i,j]!=jet(M[i,j],temp,a)-jet(M[i,j],temp-1,a))
{
intvec v=0;
intmat V=0;
list ret=v,V;
return(ret);
}
if(donttest!=1)
{
// check row and column weights - else emergency exit
if(((temp-l[j])!=dif) && (M[i,j]!=0) && (difset==1))
{
intvec v=0;
intmat V=0;
list ret=v,V;
return(ret);
}
}
// set the weight matrix entry
W[i,j]=temp;
}
// clean up the 0's we left out
if((difset==1) && (defined(memo)!=0))
{
for(j=1; j<=size(memo); j++)
{
W[i,memo[j]]=dif+l[memo[j]];
}
kill memo;
}
donttest=0;
}
//---------------------------------------------------------------------------
// transpose, if M was transposed during initialization, and return the list
//---------------------------------------------------------------------------
if ( tra==1 )
{
W=transpose(W);
}
setring r;
list ret=a,W;
return(ret);
}
example
{ "EXAMPLE:"; echo=2;
ring r=0,(x,y,z),ds;
matrix M[3][2]=z,0,y,x,x^3,y;
qhmatrix(M);
pmat(M);
}
/////////////////////////////////////////////////////////////////////////////
proc relweight(matrix N, intmat W, intvec a)
"USAGE: relweight(N,W,a); N matrix, W intmat, a intvec
ASSUME: N is a non-zero matrix
W is an integer matrix of the same size as N
a is an integer vector giving the weights of the variables
RETURN: integer, max(a-weighted order(N_ij) - W_ij | all entries ij) @*
string \"ERROR\" if sizes do not match
EXAMPLE: example relweight; shows an example
"
{
int p = printlevel-voice+3; // p=printlevel+1 (default: p=1)
//---------------------------------------------------------------------------
// Initialization and sanity checks
//---------------------------------------------------------------------------
if ((size(N)!=size(W)) || (ncols(N)!=ncols(W)))
{
ERROR("matrix size does not match");
}
if (size(a)!=nvars(basering))
{
ERROR("length of weight vector != number of variables");
}
int i,j,temp;
def r=basering;
//---------------------------------------------------------------------------
// Comparision entry by entry
//---------------------------------------------------------------------------
for(i=1; i<=nrows(N); i++)
{
for(j=1; j<=ncols(N); j++)
{
if (N[i,j]!=0)
{
temp=mindeg1(N[i,j],a)-W[i,j];
if (defined(ret))
{
if(temp > ret)
{
ret=temp;
}
}
else
{
int ret=temp;
}
}
}
}
return(ret);
}
example
{ "EXAMPLE:"; echo=2;
ring r=32003,(x,y,z),ds;
matrix N[2][3]=z,0,y,x,x^3,y;
intmat W[2][3]=1,1,1,1,1,1;
intvec a=1,1,1;
relweight(N,W,a);
}
/////////////////////////////////////////////////////////////////////////////
proc posweight(matrix M, module t1, int choose, list #)
"USAGE: posweight(M,t1,n[,s]); M matrix, t1 module, n int, s string @*
n=0 : all deformations of non-negative weight @*
n=1 : only non-constant deformations of non-negative weight @*
n=2 : all deformations of positive weight @*
ASSUME: M is a presentation matrix of a Cohen-Macaulay codimension 2
ideal and t1 is its T1 space in matrix notation
RETURN: new ring containing a list posw, consisting of a presentation
matrix describing the deformation given by the generators of T1
of non-negative/positive weight and the weight vector for the new
variables
NOTE: The current basering should not contain any variables named
T(i) where i is some integer!
EXAMPLE: example posweight; shows an example"
{
//---------------------------------------------------------------------------
// Initialization and sanity checks
//---------------------------------------------------------------------------
if (size(#)>0)
{
if (typeof(#[1])=="string")
{
string newname=#[1];
}
}
if (attrib(t1,"isSB"))
{
module t1erz=kbase(t1);
int tau=vdim(t1);
}
else
{ module t1erz=kbase(std(t1));
int tau=vdim(std(t1));
}
for(int i=1; i<=size(t1erz); i++)
{
if(rvar(T(i)))
{
int jj=-1;
break;
}
}
kill i;
if (defined(jj))
{
if (jj==-1)
{
ERROR("Your ring contains a variable T(i)!");
}
}
int pw=0;
int i;
def r=basering;
list l=qhmatrix(M);
int gt=ncols(M);
if(size(M)!=gt*(gt+1))
{
gt=gt-1;
}
matrix erzmat[gt+1][gt];
list erz;
if ((size(l[1])==1) && (l[1][1]==0) && (size(l[2])==1) && (l[2][1,1]==0))
{
ERROR("Internal Error: Problem determining the weights.");
}
//---------------------------------------------------------------------------
// Find the generators of T1 of non-negative weight
//---------------------------------------------------------------------------
int relw;
list rlw;
for(i=1; i<=tau; i++)
{
erzmat=t1erz[i];
kill relw;
def relw=relweight(erzmat,l[2],l[1]);
if(typeof(relw)=="int")
{
if (((choose==0) && (relw>=0))
|| ((choose==1) && (relw>=0) && (CMtype(minor(M+erzmat,gt))==gt))
|| ((choose==2) && (relw > 0)))
{
pw++;
rlw[pw]=relw;
erz[pw]=erzmat;
}
}
else
{
ERROR("Internal Error: Problem determining relative weight.");
}
}
//---------------------------------------------------------------------------
// Definition of the new ring and the image of M and erz in the new ring
//---------------------------------------------------------------------------
if(size(rlw)==0)
{
ERROR("Internal Error: Problem determining relative weight.");
}
intvec iv=rlw[1..size(rlw)];
ring rtemp=0,(T(1..pw)),dp;
def rneu=r+rtemp;
setring rneu;
matrix M=imap(r,M);
ideal m=M;
// we cannot imap erz, if its size=0
if(pw==0)
{
list erz1;
}
else
{
list erz1=imap(r,erz);
}
//---------------------------------------------------------------------------
// Construction of the presentation matrix of the deformation
//---------------------------------------------------------------------------
matrix N=matrix(m);
ideal mtemp;
matrix Mtemp[gt*(gt+1)][1];
for( i=1; i<=pw; i++)
{
mtemp=erz1[i];
Mtemp=mtemp;
N=N+T(i)*transpose(Mtemp);
}
ideal n=N;
matrix O[gt+1][gt]=n;
//---------------------------------------------------------------------------
// Keep the matrix and return the ring in which it lives
//---------------------------------------------------------------------------
list posw=O,iv;
export posw;
return(rneu);
}
example
{ "EXAMPLE:"; echo=2;
ring r=32003,(x(1),x(2),x(3)),ds;
ideal curve=(x(3)-x(1)^2)*x(3),(x(3)-x(1)^2)*x(2),x(2)^2-x(1)^7*x(3);
matrix M=isCMcod2(curve);
list l=matrixT1(M,3);
def rneu=posweight(l[1],std(l[2]),0);
setring rneu;
pmat(posw[1]);
posw[2];
}
/////////////////////////////////////////////////////////////////////////////
proc KSpencerKernel(matrix M,list #)
"USAGE: KSpencerKernel(M[,s][,v]); M matrix, s string, v intvec @*
optional parameters (please specify in this order, if both are
present):
* s = first of the names of the new rings
e.g. \"R\" leads to ring names R and R1
* v of size n(n+1) leads to the following module ordering @*
gen(v[1]) > gen(v[2]) > ... > gen(v[n(n+1)]) where the matrix
entry ij corresponds to gen((i-1)*n+j)
ASSUME: M is a quasihomogeneous n x (n+1) matrix where the n minors define
an isolated space curve singularity
RETURN: new ring containing the coefficient matrix KS representing
the kernel of the Kodaira-Spencer map of the family of
non-negative deformations having the given singularity as
special fibre
NOTE: * the initial basering should not contain variables with name
e(i) or T(i), since those variable names will internally be
used by the script
* setting an intvec with 5 entries and name watchProgress
shows the progress of the computations: @*
watchProgress[1]>0 => option(prot) in groebner commands @*
watchProgress[2]>0 => trace output for highcorner @*
watchProgress[3]>0 => output of deformed matrix @*
watchProgress[4]>0 => result of elimination step @*
watchProgress[4]>1 => trace output of multiplications with xyz
and subsequent reductions @*
watchProgress[5]>0 => matrix representing the kernel using print
EXAMPLE: example KSpencerKernel; shows an example"
{
int p = printlevel-voice+3; // p=printlevel+1 (default: p=1)
//---------------------------------------------------------------------------
// Initialization and sanity checks
//---------------------------------------------------------------------------
intvec optvec=option(get);
if (size(#)>0)
{
if (typeof(#[1])=="string")
{
string newname=#[1];
}
if (typeof(#[1])=="intvec")
{
intvec desiredorder=#[1];
}
if (size(#)>1)
{
if (typeof(#[2])=="intvec")
{
intvec desiredorder=#[2];
}
}
}
if (defined(watchProgress))
{
if ((typeof(watchProgress)!="intvec") || (size(watchProgress)<5))
{
"watchProgress should be an intvec with at least 5 entries";
"ignoring watchProgress";
def kksave=watchProgress;
kill watchProgress;
}
}
option(redTail);
if (nvars(basering) != 3 )
{
ERROR("It should be a curve in 3 space");
}
//---------------------------------------------------------------------------
// change to a basering with the correct weihted order
//---------------------------------------------------------------------------
def rt=basering;
list wl=qhmatrix(M);
if ((size(wl)!=2) || ((wl[1]==0) && (wl[2]==0)))
{
ERROR("The matrix was not n x (n+1) or not quasihomogenous");
}
string ringre=" ring r=" + charstr(rt) + ",(x,y,z), Ws(" + string(wl[1]) + ");";
execute(ringre);
matrix M=imap(rt,M);
int ne=size(M);
if (defined(desiredorder)>1)
{
intvec iv;
for(int i=1;i<=size(desiredorder);i++)
{
iv[desiredorder[i]]=i;
}
}
else
{
intvec iv=1..ne;
}
list l=matrixT1(M,3);
if (dim(std(l[2])) != 0)
{
ERROR("The matrix does not define an isolated space curve singularity");
}
module t1qh=l[2];
//--------------------------------------------------------------------------
// Passing to a new ring with extra variables e(i) corresponding to
// the module generators gen(i) for weighted standard basis computation
// accepting weights for the gen(i)
//--------------------------------------------------------------------------
int jj=0;
for(int i=1; i<=ne; i++)
{
if(rvar(e(i)))
{
jj=-1;
}
}
if (jj==-1)
{
ERROR("Your ring contains a variable e(i)!");
}
if(defined(desiredorder)>1)
{
ringre="ring re=" + charstr(r) +",(e(1.." + string(ne) + "),"+
varstr(basering) + "),Ws(";
intvec tempiv=intvec(wl[2]);
for(i=1;i<=ne;i++)
{
ringre=ringre + string((-1)*tempiv[desiredorder[i]]) + ",";
}
ringre= ringre + string(wl[1]) + ");";
}
else
{
ringre="ring re=" + charstr(r) +",(e(1.." + string(ne) + "),"+ varstr(basering)
+ "),Ws(" + string((-1)*intvec(wl[2])) + ","
+ string(wl[1]) + ");";
}
execute(ringre);
module temp=imap(r,t1qh);
ideal t1qh=mod2id(temp,iv);
if (defined(watchProgress))
{
if (watchProgress[1]!=0)
{
option(prot);
"Protocol output of the groebner computation (quasihomogenous case)";
}
}
ideal t1qhs=std(t1qh);
if (defined(watchProgress))
{
if (watchProgress[1]!=0)
{
"groebner computation finished";
option(noprot);
}
}
ideal t1qhsl=lead(t1qhs);
module mo=id2mod(t1qhsl,iv);
//--------------------------------------------------------------------------
// Return to the initial ring to compute the kbase and noether there
// (in the new ring t1qh is of course not of dimension 0 but of dimension 3
// so we have to go back)
//--------------------------------------------------------------------------
setring r;
module mo=imap(re,mo);
attrib(mo,"isSB",1); // mo is monomial ==> SB
attrib(mo,"isHomog",intvec(wl[2])); // highcorner has to respect the weights
vector noe=highcorner(mo);
if (defined(watchProgress))
{
if (watchProgress[2]!=0)
{
"weights corresponding to the entries of the matrix:";
wl;
"leading term of the groebner basis (quasihomogeneous case)";
mo;
"noether";
noe;
}
}
//--------------------------------------------------------------------------
// Define the family of curves with the same quasihomogeneous initial
// matrix M, compute T1 and pass again to the ring with the variables e(i)
//--------------------------------------------------------------------------
def rneu=posweight(M,mo,2);
setring rneu;
list li=posw;
if (size(li)<=1)
{
ERROR("Internal Error: Problem determining perturbations of weight > 0.")
}
if (defined(watchProgress))
{
if(watchProgress[3]!=0)
{
"perturbed matrix and weights of the perturbations:";
li;
}
}
list li2=matrixT1(li[1],3);
module Mpert=transpose(matrix(ideal(li2[1])));
module t1pert=li2[2];
int nv=nvars(rneu)-nvars(r);
ring rtemp=0,(T(1..nv)),wp(li[2]);
def reneu=re+rtemp;
setring reneu;
module noe=matrix(imap(r,noe));
ideal noet=mod2id(noe,iv);
module temp=imap(rneu,t1pert);
ideal t1pert=mod2id(temp,iv);
//--------------------------------------------------------------------------
// Compute the standard basis and select those generators with leading term
// divisible by some T(i)
//--------------------------------------------------------------------------
noether=noet[size(noet)];
if (defined(watchProgress))
{
if (watchProgress[1]!=0)
{
"protocol output of the groebner command (perturbed case)";
option(prot);
}
}
ideal t1perts=std(t1pert);
noether=noet[size(noet)];
t1perts=interred(t1perts);
if (defined(Debug))
{
if (watchProgress[1]!=0)
{
"groebner computation finished (perturbed case)";
option(noprot);
}
}
ideal templ=lead(t1perts);
for(int j=1;j<=nv;j++)
{
templ=subst(templ,T(j),0);
}
ideal mx;
ideal mt;
for(j=1;j<=size(t1perts);j++)
{
if(templ[j]!=0)
{
mx=mx,t1perts[j];
}
else
{
mt=mt,t1perts[j];
}
}
//--------------------------------------------------------------------------
// multiply by the initial ring variables to shift the generators with
// leading term divisible by some T(i) and reduce afterwards
//--------------------------------------------------------------------------
// This is obviously no SB, but we have to reduce by
attrib(mx,"isSB",1); // it and setting isSB suppresses error messages
noether=noet[size(noet)];
ideal ker_gen=reduce(mt,mx);
ideal ovar=var(ne+1),var(ne+2),var(ne+3);
j=1;
noether=noet[size(noet)];
if (defined(watchProgress))
{
if (watchProgress[4]!=0)
{
"generators of the kernel as a C[T]{x} module:";
mt;
"noether:";
noether;
}
}
int zeros;
templ=ker_gen;
while(zeros==0)
{
zeros=1;
templ=templ*ovar;
templ=reduce(templ,mx);
if(defined(watchProgress))
{
if(watchProgress[4]>1)
{
templ;
}
}
if (size(templ)!= 0)
{
zeros=0;
ker_gen=ker_gen,templ;
}
}
//-------------------------------------------------------------------------
// kill zero entries, keep only one of identical entries
//-------------------------------------------------------------------------
ovar=var(1);
for(i=2;i<=ne;i++)
{
ovar=ovar,var(i);
}
ker_gen=ker_gen,ovar^2;
noether=noet[size(noet)];
ker_gen=simplify(ker_gen,10);
//-------------------------------------------------------------------------
// interreduce ker_gen as a k[T]-module
//-------------------------------------------------------------------------
intvec mgen=1..(ne+3);
ideal Mpert=mod2id(imap(rneu,Mpert),iv);
templ=0;
for(i=1;i<=nv;i++)
{
templ[i]=diff(Mpert[size(Mpert)],T(i));
}
templ=templ,ovar^2;
list retl=subrInterred(templ,ker_gen,mgen);
// Build up the matrix representing L
module retlm=transpose(retl[2]);
for(i=1;i<=size(retl[1]);i++)
{
if(reduce(retl[1][1,i],std(ovar^2))==0)
{
retlm[i]=0;
}
}
retlm=simplify(transpose(simplify(transpose(retlm),10)),10);
if(defined(watchProgress))
{
if(watchProgress[5]>0)
{
print(retlm);
}
}
ker_gen=retl[3];
// we define ret=i(L),(delta_j(t_k))_jk
list ret=id2mod(ker_gen,iv),matrix(retlm);
// cleanups - define what we previously killed
if(defined(kksave)>1)
{
def watchProgress=kksave;
export watch Progress;
}
option(set,optvec);
def KS=ret[2];
export KS;
return(reneu);
}
example
{ "EXAMPLE:"; echo=2;
ring r=0,(x,y,z),ds;
matrix M[3][2]=z-x^7,0,y^2,z,x^9,y;
def rneu=KSpencerKernel(M,"ar");
setring rneu;
basering;
print(KS);
}
///////////////////////////////////////////////////////////////////////////
|