This file is indexed.

/usr/share/singular/LIB/surfacesignature.lib is in singular-data 4.0.3+ds-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
////////////////////////////////////////////////////////////////////////////
version="version surfacesignature.lib 4.0.0.0 Jun_2014 "; // $Id: 2627fa5318c92bdc77035f6e5bf28d53f61900e4 $
category="Singularities";
info="
LIBRARY:  surfacesignature.lib        signature of surface singularity

AUTHORS:  Gerhard Pfister             pfister@mathematik.uni-kl.de
@*        Muhammad Ahsan Banyamin     ahsanbanyamin@gmail.com
@*        Stefan Steidel              steidel@mathematik.uni-kl.de

OVERVIEW:

  A library for computing the signature of irreducible surface singularity.
  The signature of a surface singularity is defined in [3]. The algorithm we
  use has been proposed in [9].
  Let g in C[x,y] define an isolated curve singularity at 0 in C^2 and
  f:=z^N+g(x,y). The zero-set V:=V(f) in C^3 of f has an isolated singularity
  at 0. For a small e>0 let V_e:=V(f-e) in C^3 be the Milnor fibre of (V,0) and
  s: H_2(V_e,R) x H_2(V_e,R) ---> R be the intersection form (cf. [1],[7]).
  H_2(V_e,R) is an m-dimensional R-vector space, m the Milnor number of (V,0)
  (cf. [1],[4],[5],[6]), and s is a symmetric bilinear form.
  Let sigma(f) be the signature of s, called the signature of the surface
  singularity (V,0). Formulaes to compute the signature are given by Nemethi
  (cf. [8],[9]) and van Doorn, Steenbrink (cf. [2]).
  We have implemented three approaches using Puiseux expansions, the resolution
  of singularities resp. the spectral pairs of the singularity.

REFERENCES:

 [1] Arnold, V.I.; Gusein-Zade, S.M.; Varchenko, A.N.: Singularities of
     Differentiable Mappings. Vol. 1,2, Birkh\"auser (1988).
 [2] van Doorn, M.G.M.; Steenbrink, J.H.M.: A supplement to the monodromy
     theorem. Abh. Math. Sem. Univ. Hamburg 59, 225-233 (1989).
 [3] Durfee, A.H.: The Signature of Smoothings of Complex Surface
     Singularities. Mathematische Annalen 232, 85-98 (1978).
 [4] de Jong, T.; Pfister, G.: Local Analytic Geometry. Vieweg (2000).
 [5] Kerner, D.; Nemethi, A.: The Milnor fibre signature is not semi-continous.
     arXiv:0907.5252 (2009).
 [6] Kulikov, V.S.: Mixed Hodge Structures and Singularities. Cambridge Tracts
     in Mathematics 132, Cambridge University Press (1998).
 [7] Nemethi, A.: The real Seifert form and the spectral pairs of isolated
     hypersurface singularities. Compositio Mathematica 98, 23-41 (1995).
 [8] Nemethi, A.: Dedekind sums and the signature of f(x,y)+z^N. Selecta
     Mathematica, New series, Vol. 4, 361-376 (1998).
 [9] Nemethi, A.: The Signature of f(x,y)+z^$. Proceedings of Real and Complex
     Singularities (C.T.C. Wall's 60th birthday meeting, Liverpool (England),
     August 1996), London Math. Soc. Lecture Notes Series 263, 131--149 (1999).

PROCEDURES:
 signatureBrieskorn(a1,a2,a3);  signature of singularity x^a1+y^a2+z^a3
 signaturePuiseux(N,f);         signature of singularity z^N+f(x,y)=0, f irred.
 signatureNemethi(N,f);         signature of singularity z^N+f(x,y)=0
";

LIB "hnoether.lib";
LIB "alexpoly.lib";
LIB "gmssing.lib";

///////////////////////////////////////////////////////////////////////////////
//------- sigma(z^N + f) in terms of Puiseux pairs of f for f irreducible -----

static proc exponentSequence(poly f)
//=== computes the sequence a_1,...,a_s of exponents as described in [Nemethi]
//=== using the Puiseux pairs (m_1, n_1),...,(m_s, n_s) of f:
//===  - a_1 = m_1,
//===  - a_i = m_i - n_i * (m_[i-1] - n_[i-1] * a_[i-1]).
//===
//=== Return: list of two intvecs:
//===         1st entry: A = (a_1,...,a_s)
//===         2nd entry: N = (n_1,...,n_s)
{
   def R = basering;
   ring S = 0,(x,y),dp;
   poly f = fetch(R,f);
   list puiseuxPairs = invariants(f);
   setring R;

   intvec M = puiseuxPairs[1][3];
   intvec N = puiseuxPairs[1][4];

   int i;
   int a = M[1];
   intvec A = a;
   for(i = 2; i <= size(M); i++)
   {
      a = M[i] - N[i] * (M[i-1] - N[i-1] * a);
      A[size(A)+1] = a;
   }

   return(list(A,N));
}
example
{ "EXAMPLE:"; echo = 2;
   ring r = 0,(x,y),dp;
   exponentSequence(y4+2x3y2+x6+x5y);
}

///////////////////////////////////////////////////////////////////////////////

proc signatureBrieskorn(int a1, int a2, int a3)
"USAGE:  signatureBrieskorn(a1,a2,a3); a1,a2,a3 = integers
RETURN:  signature of Brieskorn singularity x^a1+y^a2+z^a3
EXAMPLE: example signatureBrieskorn; shows an example
"
{
   int a_temp, t, k1, k2, k3, s_t, sigma;
   number s;

   if(a1 > a2) { a_temp = a1; a1 = a2; a2 = a_temp; }
   if(a2 > a3) { a_temp = a2; a2 = a3; a3 = a_temp; }
   if(a1 > a2) { a_temp = a1; a1 = a2; a2 = a_temp; }

   for(t = 0; t <= 2; t++)
   {
      s_t = 0;
      for(k1 = 1; k1 <= a1-1; k1++)
      {
         for(k2 = 1; k2 <= a2-1; k2++)
         {
            for(k3 = 1; k3 <= a3-1; k3++)
            {
               s = number(k1)/a1 + number(k2)/a2 + number(k3)/a3;
               if(t < s)
               {
                  if(s < t+1)
                  {
                     s_t = s_t + 1;
                  }
                  else
                  {
                     break;
                  }
               }
            }
            if(k3 == 1) { break; }
         }
         if(k2 == 1) { break; }
      }
      sigma = sigma + (-1)^t * s_t;
   }
   return(sigma);
}
example
{ "EXAMPLE:"; echo = 2;
   ring R = 0,x,dp;
   signatureBrieskorn(11,3,5);
}

///////////////////////////////////////////////////////////////////////////////

proc signaturePuiseux(int N, poly f)
"USAGE:  signaturePuiseux(N,f); N = int, f = irreducible poly in 2 variables
RETURN:  signature of surface singularity defined by z^N + f(x,y) = 0
EXAMPLE: example signaturePuiseux; shows an example
"
{
   int i, d, prod, sigma;
   list L = exponentSequence(f);
   int s = size(L[2]);

   if(s == 1)
   {
      return(signatureBrieskorn(L[1][1], L[2][1], N));
   }

   prod = 1;
   sigma = signatureBrieskorn(L[1][s], L[2][s], N);
   for(i = s - 1; i >= 1; i--)
   {
      prod = prod * L[2][i+1];
      d = gcd(N, prod);
      sigma = sigma + d * signatureBrieskorn(L[1][i], L[2][i], N div d);
   }

   return(sigma);
}
example
{ "EXAMPLE:"; echo = 2;
   ring r = 0,(x,y),dp;
   int N  = 3;
   poly f = x15-21x14+8x13y-6x13-16x12y+20x11y2-x12+8x11y-36x10y2
            +24x9y3+4x9y2-16x8y3+26x7y4-6x6y4+8x5y5+4x3y6-y8;
   signaturePuiseux(N,f);
}

///////////////////////////////////////////////////////////////////////////////
//------- sigma(z^N + f) in terms of the imbedded resolution graph of f -------

static proc dedekindSum(number b, number c, int a)
{
   number s,d,e;
   int k;
   for(k=1;k<=a-1;k++)
   {
      d=bigint(k*b) mod a;
      e=bigint(k*c) mod a;
      if(d*e!=0)
      {
         s=s+(d/a-1/2)*(e/a-1/2);
      }
   }
   return(s);
}

///////////////////////////////////////////////////////////////////////////////

static proc isRupture(intvec v)
//=== decides whether the exceptional divisor given by the row v in the
//=== incidence matrix of the resolution graph intersects at least 3 other
//=== divisors
{
   int i,j;
   for(i=1;i<=size(v);i++)
   {
       if(v[i]<0){return(0);}
       if(v[i]!=0){j++;}
   }
   return(j>=4);
}

///////////////////////////////////////////////////////////////////////////////

static proc sumExcepDiv(intmat N, list M, int K, int n)
//=== computes part of the formulae for eta(g,K), g defining an
//=== isolated curve singularity
//=== N the incidence matrix of the resolution graph of g
//=== M list of total multiplicities
//=== n = nrows(N)
{
   int i,j,m,d;
   for(i=1;i<=n;i++)
   {
      if(N[i,i]>0)
      {
         m=gcd(K,M[i]);
         for(j=1;j<=n;j++)
         {
            if((i!=j)&&(N[i,j]!=0))
            {
               if(m==1){break;}
               m=gcd(m,M[j]);
            }
         }
         d=d+m-1;
      }
   }
   return(d);
}

///////////////////////////////////////////////////////////////////////////////

static proc sumEdges(intmat N, list M, int K, int n)
//=== computes part of the formulae for eta(g,K), g defining an
//=== isolated curve singularity
//=== N the incidence matrix of the resolution graph of g
//=== M list of total multiplicities
//=== n = nrows(N)
{
   int i,j,d;
   for(i=1;i<=n-1;i++)
   {
      for(j=i+1;j<=n;j++)
      {
         if(N[i,j]==1)
         {
            d=d+gcd(K,gcd(M[i],M[j]))-1;
         }
      }
   }
   return(d);
}

///////////////////////////////////////////////////////////////////////////////

static proc etaRes(list L, int K)
//=== L total multiplicities
//=== eta-invariant in terms of the imbedded resolution graph of f
{
   int i,j,d;
   intvec v;
   number e;
   intmat N = L[1];         // incidence matrix of the resolution graph
   int n = ncols(L[1]);     // number of vertices in the resolution graph
   int a = ncols(L[2]);     // number of branches
   list M;                  // total multiplicities
   for(i=1;i<=n;i++)
   {
      d=L[2][i,1];
      for(j=2;j<=a;j++)
      {
         d=d+L[2][i,j];
      }
      if(d==0){d=1;}
      M[i]=d;
   }
   for(i=1;i<=n;i++)
   {
      v=N[i,1..n];
      if(isRupture(v))      // the divisor intersects more then two others
      {
         for(j=1;j<=n;j++)
         {
            if((i!=j)&&(v[j]!=0))
            {
               e=e+dedekindSum(M[j],K,M[i]);
            }
         }
      }
   }
   if(a==1)
   {
      //the irreducible case
      return(4*e);
   }
   return(a-1+4*e+sumEdges(N,M,K,n)-sumExcepDiv(N,M,K,n));
}

///////////////////////////////////////////////////////////////////////////////

static proc signatureRes(int N, poly f)
//=== computes signature of surface singularity defined by z^N + f(x,y) = 0
//=== in terms of the imbedded resolution graph of f
{
   list L = totalmultiplicities(f);
   return(etaRes(L,N) - N*etaRes(L,1));
}

///////////////////////////////////////////////////////////////////////////////
//------------ sigma(z^N + f) in terms of the spectral pairs of f -------------

static proc fracPart(number n)
//=== computes the fractional part n2 of n
//=== i.e. n2 is not in Z but n-n2 is in Z
{
   number a,b;
   int r;
   a = numerator(n);
   b = denominator(n);
   int z = int(number(a));
   int y = int(number(b));
   r = z mod y;
   int q = (z-r) div y;
   number n1 = q;
   number n2 = n-n1;
   return(n2);
}

///////////////////////////////////////////////////////////////////////////////

static proc etaSpec(list L, int N)
//=== L spectral numbers
//=== eta-invariant in terms of the spectral pairs of f
{
   int i;
   number e, h;

   int n = ncols(L[1]);

   if((n mod 2) == 0)
   // 0 is not a spectral number, thus f is irreducible
   {
      for(i = n div 2+1; i <= n; i++)
      {
         e = e + (1 - 2 * fracPart(N * number(L[1][i]))) * L[3][i];
      }
      return(2*e);
   }
   else
   // 0 is a spectral number, thus f is reducible
   {
      // sum of Hodge numbers in eta function
      for(i = 1; i <= n; i++)
      {
         if((L[2][i] == 2) && ((denominator(leadcoef(N*L[1][i]))==1)
                              ||(denominator(leadcoef(N*L[1][i]))==-1)))
         {
            h = h + L[3][i];
         }
      }

      // summand coming from spectral number 0 in eta function
      h = h + L[3][(n+1) div 2];

      // sum coming from non-zero spectral numbers in eta function
      for(i = (n+3) div 2; i <= n; i++)
      {
         if(!((denominator(leadcoef(N*L[1][i]))==1)
             ||(denominator(leadcoef(N*L[1][i]))==-1)))
         {
            e = e + (1 - 2 * fracPart(N * number(L[1][i]))) * L[3][i];
         }
      }
      return(h + 2*e);
   }
}

///////////////////////////////////////////////////////////////////////////////

static proc signatureSpec(int N, poly f)
//=== computes signature of surface singularity defined by z^N + f(x,y) = 0
//=== in terms of the spectral pairs of f
{
   def R = basering;
   def Rds = changeord(list(list("ds",1:nvars(basering))));
   setring Rds;
   poly f = imap(R,f);
   list L = sppairs(f);
   setring R;
   list L = imap(Rds,L);
   return(etaSpec(L,N) - N*etaSpec(L,1));
}

///////////////////////////////////////////////////////////////////////////////
//----------------- Consolidation of the two recent variants ------------------

proc signatureNemethi(int N, poly f, list #)
"USAGE:  signatureNemethi(N,f); N = integer, f = reduced poly in 2 variables,
                                # empty or 1,2,3
@*       - if #[1] = 1 then resolution of singularity is used
@*       - if #[1] = 2 then spectral pairs are used
@*       - if # is empty then both upper variants are used in parallel and the
@*                 fastest returns the result
RETURN:  signature of surface singularity defined by z^N + f(x,y) = 0
REMARK:  computes the signature of some special surface singularities
EXAMPLE: example signatureNemethi; shows an example
"
{
   if(size(#) == 0)
   {
      link l(1) = "ssi:fork"; open(l(1));
      link l(2) = "ssi:fork"; open(l(2));
      list l = list(l(1),l(2));
      write(l(1), quote(signatureRes(N,f)));
      write(l(2), quote(signatureSpec(N,f)));
      int winner = waitfirst(l);
      number sigma = read(l(winner));
      close(l(1));
      close(l(2));
      if(printlevel >= 1)
      {
         if(winner == 1) { "Resolution of singularity has been used."; }
         if(winner == 2) { "Spectral pairs have been used."; }
      }
      return(sigma);
   }

   if(#[1] == 1)
   {
      return(signatureRes(N,f));
   }

   if(#[1] == 2)
   {
      return(signatureSpec(N,f));
   }
}
example
{ "EXAMPLE:"; echo = 2;
   ring r = 0,(x,y),dp;
   int N  = 3;
   poly f = x15-21x14+8x13y-6x13-16x12y+20x11y2-x12+8x11y-36x10y2
            +24x9y3+4x9y2-16x8y3+26x7y4-6x6y4+8x5y5+4x3y6-y8;
   signatureNemethi(N,f,1);
   printlevel = 1;
   signatureNemethi(N,f);
}

///////////////////////////////////////////////////////////////////////////////

/*
Further examples

ring r = 0,(x,y),dp;
int N;
poly f,g,g1,g2,g3;


// irreducible polynomials

N = 5;
f = x15-21x14+8x13y-6x13-16x12y+20x11y2-x12+8x11y-36x10y2
    +24x9y3+4x9y2-16x8y3+26x7y4-6x6y4+8x5y5+4x3y6-y8;
g = f^3 + x17y17;

N = 6;
f = y4+2x3y2+x6+x5y;
g1 = f^2 + x5y5;
g2 = f^3 + x11y11;
g3 = f^3 + x17y17;

N = 7;
f = x5+y11;
g1 = f^3 + x11y11;
g2 = f^3 + x17y17;

N = 6;
// k0 = 30, k1 = 35, k2 = 71
f = x71+6x65+15x59-630x52y6+20x53+6230x46y6+910x39y12+15x47
    -7530x40y6+14955x33y12-285x26y18+6x41+1230x34y6+4680x27y12
    +1830x20y18+30x13y24+x35-5x28y6+10x21y12-10x14y18+5x7y24-y30;

// k0 = 16, k1 = 24, k2 = 28, k3 = 30, k4 = 31
f = x31-781x30+16x29y-3010x29-2464x28y+104x27y2-2805x28-7024x27y
    -5352x26y2+368x25y3+366x27-7136x26y-984x25y2-8000x24y3
    +836x23y4+34x26-320x25y-6464x24y2+6560x23y3-8812x22y4+1392x21y5
    -12x25+256x24y-1296x23y2-1536x22y3+4416x21y4-8864x20y5+1752x19y6
    -x24+16x23y-88x22y2-16x21y3-404x20y4+3056x19y5-6872x18y6+1648x17y7
    +8x21y2-96x20y3+524x19y4-1472x18y5+3464x17y6-3808x16y7+1290x15y8
    -28x18y4+240x17y5-976x16y6+2208x15y7-2494x14y8+816x13y9+56x15y6
    -320x14y7+844x13y8-1216x12y9+440x11y10-70x12y8+240x11y9-344x10y10
    +240x9y11+56x9y10-96x8y11+52x7y12-28x6y12+16x5y13+8x3y14-y16;


// reducible polynomials

N = 12;
f = ((y2-x3)^2 - 4x5y - x7)*(x2-y3);

f = 2x3y3-2y5+x4-xy2;

f = -x3y3+x6y+xy6-x4y4;
*/