/usr/share/singular/LIB/surfacesignature.lib is in singular-data 4.0.3+ds-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 | ////////////////////////////////////////////////////////////////////////////
version="version surfacesignature.lib 4.0.0.0 Jun_2014 "; // $Id: 2627fa5318c92bdc77035f6e5bf28d53f61900e4 $
category="Singularities";
info="
LIBRARY: surfacesignature.lib signature of surface singularity
AUTHORS: Gerhard Pfister pfister@mathematik.uni-kl.de
@* Muhammad Ahsan Banyamin ahsanbanyamin@gmail.com
@* Stefan Steidel steidel@mathematik.uni-kl.de
OVERVIEW:
A library for computing the signature of irreducible surface singularity.
The signature of a surface singularity is defined in [3]. The algorithm we
use has been proposed in [9].
Let g in C[x,y] define an isolated curve singularity at 0 in C^2 and
f:=z^N+g(x,y). The zero-set V:=V(f) in C^3 of f has an isolated singularity
at 0. For a small e>0 let V_e:=V(f-e) in C^3 be the Milnor fibre of (V,0) and
s: H_2(V_e,R) x H_2(V_e,R) ---> R be the intersection form (cf. [1],[7]).
H_2(V_e,R) is an m-dimensional R-vector space, m the Milnor number of (V,0)
(cf. [1],[4],[5],[6]), and s is a symmetric bilinear form.
Let sigma(f) be the signature of s, called the signature of the surface
singularity (V,0). Formulaes to compute the signature are given by Nemethi
(cf. [8],[9]) and van Doorn, Steenbrink (cf. [2]).
We have implemented three approaches using Puiseux expansions, the resolution
of singularities resp. the spectral pairs of the singularity.
REFERENCES:
[1] Arnold, V.I.; Gusein-Zade, S.M.; Varchenko, A.N.: Singularities of
Differentiable Mappings. Vol. 1,2, Birkh\"auser (1988).
[2] van Doorn, M.G.M.; Steenbrink, J.H.M.: A supplement to the monodromy
theorem. Abh. Math. Sem. Univ. Hamburg 59, 225-233 (1989).
[3] Durfee, A.H.: The Signature of Smoothings of Complex Surface
Singularities. Mathematische Annalen 232, 85-98 (1978).
[4] de Jong, T.; Pfister, G.: Local Analytic Geometry. Vieweg (2000).
[5] Kerner, D.; Nemethi, A.: The Milnor fibre signature is not semi-continous.
arXiv:0907.5252 (2009).
[6] Kulikov, V.S.: Mixed Hodge Structures and Singularities. Cambridge Tracts
in Mathematics 132, Cambridge University Press (1998).
[7] Nemethi, A.: The real Seifert form and the spectral pairs of isolated
hypersurface singularities. Compositio Mathematica 98, 23-41 (1995).
[8] Nemethi, A.: Dedekind sums and the signature of f(x,y)+z^N. Selecta
Mathematica, New series, Vol. 4, 361-376 (1998).
[9] Nemethi, A.: The Signature of f(x,y)+z^$. Proceedings of Real and Complex
Singularities (C.T.C. Wall's 60th birthday meeting, Liverpool (England),
August 1996), London Math. Soc. Lecture Notes Series 263, 131--149 (1999).
PROCEDURES:
signatureBrieskorn(a1,a2,a3); signature of singularity x^a1+y^a2+z^a3
signaturePuiseux(N,f); signature of singularity z^N+f(x,y)=0, f irred.
signatureNemethi(N,f); signature of singularity z^N+f(x,y)=0
";
LIB "hnoether.lib";
LIB "alexpoly.lib";
LIB "gmssing.lib";
///////////////////////////////////////////////////////////////////////////////
//------- sigma(z^N + f) in terms of Puiseux pairs of f for f irreducible -----
static proc exponentSequence(poly f)
//=== computes the sequence a_1,...,a_s of exponents as described in [Nemethi]
//=== using the Puiseux pairs (m_1, n_1),...,(m_s, n_s) of f:
//=== - a_1 = m_1,
//=== - a_i = m_i - n_i * (m_[i-1] - n_[i-1] * a_[i-1]).
//===
//=== Return: list of two intvecs:
//=== 1st entry: A = (a_1,...,a_s)
//=== 2nd entry: N = (n_1,...,n_s)
{
def R = basering;
ring S = 0,(x,y),dp;
poly f = fetch(R,f);
list puiseuxPairs = invariants(f);
setring R;
intvec M = puiseuxPairs[1][3];
intvec N = puiseuxPairs[1][4];
int i;
int a = M[1];
intvec A = a;
for(i = 2; i <= size(M); i++)
{
a = M[i] - N[i] * (M[i-1] - N[i-1] * a);
A[size(A)+1] = a;
}
return(list(A,N));
}
example
{ "EXAMPLE:"; echo = 2;
ring r = 0,(x,y),dp;
exponentSequence(y4+2x3y2+x6+x5y);
}
///////////////////////////////////////////////////////////////////////////////
proc signatureBrieskorn(int a1, int a2, int a3)
"USAGE: signatureBrieskorn(a1,a2,a3); a1,a2,a3 = integers
RETURN: signature of Brieskorn singularity x^a1+y^a2+z^a3
EXAMPLE: example signatureBrieskorn; shows an example
"
{
int a_temp, t, k1, k2, k3, s_t, sigma;
number s;
if(a1 > a2) { a_temp = a1; a1 = a2; a2 = a_temp; }
if(a2 > a3) { a_temp = a2; a2 = a3; a3 = a_temp; }
if(a1 > a2) { a_temp = a1; a1 = a2; a2 = a_temp; }
for(t = 0; t <= 2; t++)
{
s_t = 0;
for(k1 = 1; k1 <= a1-1; k1++)
{
for(k2 = 1; k2 <= a2-1; k2++)
{
for(k3 = 1; k3 <= a3-1; k3++)
{
s = number(k1)/a1 + number(k2)/a2 + number(k3)/a3;
if(t < s)
{
if(s < t+1)
{
s_t = s_t + 1;
}
else
{
break;
}
}
}
if(k3 == 1) { break; }
}
if(k2 == 1) { break; }
}
sigma = sigma + (-1)^t * s_t;
}
return(sigma);
}
example
{ "EXAMPLE:"; echo = 2;
ring R = 0,x,dp;
signatureBrieskorn(11,3,5);
}
///////////////////////////////////////////////////////////////////////////////
proc signaturePuiseux(int N, poly f)
"USAGE: signaturePuiseux(N,f); N = int, f = irreducible poly in 2 variables
RETURN: signature of surface singularity defined by z^N + f(x,y) = 0
EXAMPLE: example signaturePuiseux; shows an example
"
{
int i, d, prod, sigma;
list L = exponentSequence(f);
int s = size(L[2]);
if(s == 1)
{
return(signatureBrieskorn(L[1][1], L[2][1], N));
}
prod = 1;
sigma = signatureBrieskorn(L[1][s], L[2][s], N);
for(i = s - 1; i >= 1; i--)
{
prod = prod * L[2][i+1];
d = gcd(N, prod);
sigma = sigma + d * signatureBrieskorn(L[1][i], L[2][i], N div d);
}
return(sigma);
}
example
{ "EXAMPLE:"; echo = 2;
ring r = 0,(x,y),dp;
int N = 3;
poly f = x15-21x14+8x13y-6x13-16x12y+20x11y2-x12+8x11y-36x10y2
+24x9y3+4x9y2-16x8y3+26x7y4-6x6y4+8x5y5+4x3y6-y8;
signaturePuiseux(N,f);
}
///////////////////////////////////////////////////////////////////////////////
//------- sigma(z^N + f) in terms of the imbedded resolution graph of f -------
static proc dedekindSum(number b, number c, int a)
{
number s,d,e;
int k;
for(k=1;k<=a-1;k++)
{
d=bigint(k*b) mod a;
e=bigint(k*c) mod a;
if(d*e!=0)
{
s=s+(d/a-1/2)*(e/a-1/2);
}
}
return(s);
}
///////////////////////////////////////////////////////////////////////////////
static proc isRupture(intvec v)
//=== decides whether the exceptional divisor given by the row v in the
//=== incidence matrix of the resolution graph intersects at least 3 other
//=== divisors
{
int i,j;
for(i=1;i<=size(v);i++)
{
if(v[i]<0){return(0);}
if(v[i]!=0){j++;}
}
return(j>=4);
}
///////////////////////////////////////////////////////////////////////////////
static proc sumExcepDiv(intmat N, list M, int K, int n)
//=== computes part of the formulae for eta(g,K), g defining an
//=== isolated curve singularity
//=== N the incidence matrix of the resolution graph of g
//=== M list of total multiplicities
//=== n = nrows(N)
{
int i,j,m,d;
for(i=1;i<=n;i++)
{
if(N[i,i]>0)
{
m=gcd(K,M[i]);
for(j=1;j<=n;j++)
{
if((i!=j)&&(N[i,j]!=0))
{
if(m==1){break;}
m=gcd(m,M[j]);
}
}
d=d+m-1;
}
}
return(d);
}
///////////////////////////////////////////////////////////////////////////////
static proc sumEdges(intmat N, list M, int K, int n)
//=== computes part of the formulae for eta(g,K), g defining an
//=== isolated curve singularity
//=== N the incidence matrix of the resolution graph of g
//=== M list of total multiplicities
//=== n = nrows(N)
{
int i,j,d;
for(i=1;i<=n-1;i++)
{
for(j=i+1;j<=n;j++)
{
if(N[i,j]==1)
{
d=d+gcd(K,gcd(M[i],M[j]))-1;
}
}
}
return(d);
}
///////////////////////////////////////////////////////////////////////////////
static proc etaRes(list L, int K)
//=== L total multiplicities
//=== eta-invariant in terms of the imbedded resolution graph of f
{
int i,j,d;
intvec v;
number e;
intmat N = L[1]; // incidence matrix of the resolution graph
int n = ncols(L[1]); // number of vertices in the resolution graph
int a = ncols(L[2]); // number of branches
list M; // total multiplicities
for(i=1;i<=n;i++)
{
d=L[2][i,1];
for(j=2;j<=a;j++)
{
d=d+L[2][i,j];
}
if(d==0){d=1;}
M[i]=d;
}
for(i=1;i<=n;i++)
{
v=N[i,1..n];
if(isRupture(v)) // the divisor intersects more then two others
{
for(j=1;j<=n;j++)
{
if((i!=j)&&(v[j]!=0))
{
e=e+dedekindSum(M[j],K,M[i]);
}
}
}
}
if(a==1)
{
//the irreducible case
return(4*e);
}
return(a-1+4*e+sumEdges(N,M,K,n)-sumExcepDiv(N,M,K,n));
}
///////////////////////////////////////////////////////////////////////////////
static proc signatureRes(int N, poly f)
//=== computes signature of surface singularity defined by z^N + f(x,y) = 0
//=== in terms of the imbedded resolution graph of f
{
list L = totalmultiplicities(f);
return(etaRes(L,N) - N*etaRes(L,1));
}
///////////////////////////////////////////////////////////////////////////////
//------------ sigma(z^N + f) in terms of the spectral pairs of f -------------
static proc fracPart(number n)
//=== computes the fractional part n2 of n
//=== i.e. n2 is not in Z but n-n2 is in Z
{
number a,b;
int r;
a = numerator(n);
b = denominator(n);
int z = int(number(a));
int y = int(number(b));
r = z mod y;
int q = (z-r) div y;
number n1 = q;
number n2 = n-n1;
return(n2);
}
///////////////////////////////////////////////////////////////////////////////
static proc etaSpec(list L, int N)
//=== L spectral numbers
//=== eta-invariant in terms of the spectral pairs of f
{
int i;
number e, h;
int n = ncols(L[1]);
if((n mod 2) == 0)
// 0 is not a spectral number, thus f is irreducible
{
for(i = n div 2+1; i <= n; i++)
{
e = e + (1 - 2 * fracPart(N * number(L[1][i]))) * L[3][i];
}
return(2*e);
}
else
// 0 is a spectral number, thus f is reducible
{
// sum of Hodge numbers in eta function
for(i = 1; i <= n; i++)
{
if((L[2][i] == 2) && ((denominator(leadcoef(N*L[1][i]))==1)
||(denominator(leadcoef(N*L[1][i]))==-1)))
{
h = h + L[3][i];
}
}
// summand coming from spectral number 0 in eta function
h = h + L[3][(n+1) div 2];
// sum coming from non-zero spectral numbers in eta function
for(i = (n+3) div 2; i <= n; i++)
{
if(!((denominator(leadcoef(N*L[1][i]))==1)
||(denominator(leadcoef(N*L[1][i]))==-1)))
{
e = e + (1 - 2 * fracPart(N * number(L[1][i]))) * L[3][i];
}
}
return(h + 2*e);
}
}
///////////////////////////////////////////////////////////////////////////////
static proc signatureSpec(int N, poly f)
//=== computes signature of surface singularity defined by z^N + f(x,y) = 0
//=== in terms of the spectral pairs of f
{
def R = basering;
def Rds = changeord(list(list("ds",1:nvars(basering))));
setring Rds;
poly f = imap(R,f);
list L = sppairs(f);
setring R;
list L = imap(Rds,L);
return(etaSpec(L,N) - N*etaSpec(L,1));
}
///////////////////////////////////////////////////////////////////////////////
//----------------- Consolidation of the two recent variants ------------------
proc signatureNemethi(int N, poly f, list #)
"USAGE: signatureNemethi(N,f); N = integer, f = reduced poly in 2 variables,
# empty or 1,2,3
@* - if #[1] = 1 then resolution of singularity is used
@* - if #[1] = 2 then spectral pairs are used
@* - if # is empty then both upper variants are used in parallel and the
@* fastest returns the result
RETURN: signature of surface singularity defined by z^N + f(x,y) = 0
REMARK: computes the signature of some special surface singularities
EXAMPLE: example signatureNemethi; shows an example
"
{
if(size(#) == 0)
{
link l(1) = "ssi:fork"; open(l(1));
link l(2) = "ssi:fork"; open(l(2));
list l = list(l(1),l(2));
write(l(1), quote(signatureRes(N,f)));
write(l(2), quote(signatureSpec(N,f)));
int winner = waitfirst(l);
number sigma = read(l(winner));
close(l(1));
close(l(2));
if(printlevel >= 1)
{
if(winner == 1) { "Resolution of singularity has been used."; }
if(winner == 2) { "Spectral pairs have been used."; }
}
return(sigma);
}
if(#[1] == 1)
{
return(signatureRes(N,f));
}
if(#[1] == 2)
{
return(signatureSpec(N,f));
}
}
example
{ "EXAMPLE:"; echo = 2;
ring r = 0,(x,y),dp;
int N = 3;
poly f = x15-21x14+8x13y-6x13-16x12y+20x11y2-x12+8x11y-36x10y2
+24x9y3+4x9y2-16x8y3+26x7y4-6x6y4+8x5y5+4x3y6-y8;
signatureNemethi(N,f,1);
printlevel = 1;
signatureNemethi(N,f);
}
///////////////////////////////////////////////////////////////////////////////
/*
Further examples
ring r = 0,(x,y),dp;
int N;
poly f,g,g1,g2,g3;
// irreducible polynomials
N = 5;
f = x15-21x14+8x13y-6x13-16x12y+20x11y2-x12+8x11y-36x10y2
+24x9y3+4x9y2-16x8y3+26x7y4-6x6y4+8x5y5+4x3y6-y8;
g = f^3 + x17y17;
N = 6;
f = y4+2x3y2+x6+x5y;
g1 = f^2 + x5y5;
g2 = f^3 + x11y11;
g3 = f^3 + x17y17;
N = 7;
f = x5+y11;
g1 = f^3 + x11y11;
g2 = f^3 + x17y17;
N = 6;
// k0 = 30, k1 = 35, k2 = 71
f = x71+6x65+15x59-630x52y6+20x53+6230x46y6+910x39y12+15x47
-7530x40y6+14955x33y12-285x26y18+6x41+1230x34y6+4680x27y12
+1830x20y18+30x13y24+x35-5x28y6+10x21y12-10x14y18+5x7y24-y30;
// k0 = 16, k1 = 24, k2 = 28, k3 = 30, k4 = 31
f = x31-781x30+16x29y-3010x29-2464x28y+104x27y2-2805x28-7024x27y
-5352x26y2+368x25y3+366x27-7136x26y-984x25y2-8000x24y3
+836x23y4+34x26-320x25y-6464x24y2+6560x23y3-8812x22y4+1392x21y5
-12x25+256x24y-1296x23y2-1536x22y3+4416x21y4-8864x20y5+1752x19y6
-x24+16x23y-88x22y2-16x21y3-404x20y4+3056x19y5-6872x18y6+1648x17y7
+8x21y2-96x20y3+524x19y4-1472x18y5+3464x17y6-3808x16y7+1290x15y8
-28x18y4+240x17y5-976x16y6+2208x15y7-2494x14y8+816x13y9+56x15y6
-320x14y7+844x13y8-1216x12y9+440x11y10-70x12y8+240x11y9-344x10y10
+240x9y11+56x9y10-96x8y11+52x7y12-28x6y12+16x5y13+8x3y14-y16;
// reducible polynomials
N = 12;
f = ((y2-x3)^2 - 4x5y - x7)*(x2-y3);
f = 2x3y3-2y5+x4-xy2;
f = -x3y3+x6y+xy6-x4y4;
*/
|