This file is indexed.

/usr/share/singular/LIB/teachstd.lib is in singular-data 4.0.3+ds-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
////////////////////////////////////////////////////////////////////////////
version="version teachstd.lib 4.0.0.0 Jun_2013 "; // $Id: 92ffc29de41ebc8e82235f0e4b83b6408de3d641 $
category="Teaching";
info="
LIBRARY:  teachstd.lib   Procedures for teaching standard bases
AUTHOR:                  G.-M. Greuel, greuel@mathematik.uni-kl.de

NOTE: The library is intended to be used for teaching purposes, but not
      for serious computations. Sufficiently high printlevel allows to
      control each step, thus illustrating the algorithms at work.
      The procedures are implemented exactly as described in the book
      'A SINGULAR Introduction to Commutative Algebra' by G.-M. Greuel and
      G. Pfister (Springer 2002).

PROCEDURES:
 ecart(f);              ecart of f
 tail(f);               tail of f
 sameComponent(f,g);    test for same module component of lead(f) and lead(g)
 leadmonomial(f);       leading monomial as polynomial (also for vectors)
 monomialLcm(m,n);      lcm of monomials m and n as polynomial (also for vectors)
 spoly(f[,1]);          s-polynomial of f [symmetric form]
 minEcart(T,h);         element g from T of minimal ecart s.t. LM(g)|LM(h)
 NFMora(i);             normal form of i w.r.t Mora algorithm
 prodcrit(f,g[,o]);     test for product criterion
 chaincrit(f,g,h);      test for chain criterion
 pairset(G);            pairs form G neither satifying prodcrit nor chaincrit
 updatePairs(P,S,h);    pairset P enlarded by not useless pairs (h,f), f in S
 standard(id);          standard basis of ideal/module
 localstd(id);          local standard basis of id using Lazard's method

              [parameters in square brackets are optional]
";

LIB "poly.lib";

///////////////////////////////////////////////////////////////////////////////
proc ecart(def f)
"USAGE:   ecart(f); f poly or vector
RETURN:  the ecart e of f of type int
EXAMPLE: example ecart; shows an example
"
{
  int e = maxdeg1(f)-maxdeg1(lead(f));
  return(e);
}
example
{ "EXAMPLE:"; echo = 2;
   ring r=0,(x,y,z),ls;
   ecart((y+z+x+xyz)**2);
   ring s=0,(x,y,z),dp;
   ecart((y+z+x+xyz)**2);
}
///////////////////////////////////////////////////////////////////////////////
proc leadmonomial(def f)
"USAGE:   leadmonomial(f); f poly or vector
RETURN:  the leading monomial of f of type poly
NOTE:    if f is of type poly, leadmonomial(f)=leadmonom(f), if f is of type
         vector and if leadmonom(f)=m*gen(i) then leadmonomial(f)=m
EXAMPLE: example leadmonomial; shows an example
"
{
  int e;
  poly m;
  if(typeof(f) == "vector")
  {
    e=leadexp(f)[nvars(basering)+1];
    m=leadmonom(f)[e,1];
  }
  if(typeof(f) == "poly")
  {
    m=leadmonom(f);
  }
  return(m);
}
example
{ "EXAMPLE:"; echo = 2;
   ring s=0,(x,y,z),(c,dp);
   leadmonomial((y+z+x+xyz)^2);
   leadmonomial([(y+z+x+xyz)^2,xyz5]);
}
///////////////////////////////////////////////////////////////////////////////
proc tail(def f)
"USAGE:   tail(f); f poly or vector
RETURN:  f-lead(f), the tail of f of type poly
EXAMPLE: example tail; shows an example
"
{
  def t = f-lead(f);
  return(t);
}
example
{ "EXAMPLE:"; echo = 2;
   ring r=0,(x,y,z),ls;
   tail((y+z+x+xyz)**2);
   ring s=0,(x,y,z),dp;
   tail((y+z+x+xyz)**2);
}
///////////////////////////////////////////////////////////////////////////////
proc sameComponent(def f,def g)
"USAGE:   sameComponent(f,g); f,g poly or vector
RETURN:  1 if f and g are of type poly or if f and g are of type vector and
         their leading monomials involve the same module component,
         0 if not
EXAMPLE: example sameComponent; shows an example
"
{
  if(typeof(f) != typeof(g))
  {
    ERROR("** arguments must be of same type");
  }
  if(typeof(f) == "vector")
  {
     if( leadexp(f)[nvars(basering)+1] !=  leadexp(g)[nvars(basering)+1] )
     {
       return(0);
     }
  }
  return(1);
}
example
{ "EXAMPLE:"; echo = 2;
   ring r=0,(x,y,z),dp;
   sameComponent([y+z+x,xyz],[z2,xyz]);
   sameComponent([y+z+x,xyz],[z4,xyz]);
   sameComponent(y+z+x+xyz, xy+z5);
}
///////////////////////////////////////////////////////////////////////////////
proc monomialLcm(def m,def n)
"USAGE:   monomialLcm(m,n); m,n of type poly or vector
RETURN:  least common multiple of leading monomials of m and n, of type poly
NOTE:    if m = (x1...xr)^(a1,...,ar)*gen(i) (gen(i)=1 if m is of type poly)
         and n = (x1...xr)^(b1,...,br)*gen(j), then the proc returns
         (x1,...,xr)^(max(a1,b1),...,max(ar,br)) if i=j and 0 if i!=j.
EXAMPLE: example monomialLcm; shows an example
"
{
  if(typeof(n) != typeof(m))
  {
    ERROR("** arguments must be of same type");
  }

  poly u ;
  if(sameComponent(m,n) == 0)   //leading term of vectors involve
  {                             //different module components
     return(u);
  }

  intvec v = leadexp(m);        //now start to compute lcm
  intvec w = leadexp(n);
  u=1;
  int i;
  for (i=1; i<=nvars(basering); i++)
  {
      if(v[i]>=w[i])
      {
         u = u*var(i)**v[i];
      }
      else
      {
         u = u*var(i)**w[i];
      }
   }
   return(u);
}
example
{ "EXAMPLE:"; echo = 2;
   ring r=0,(x,y,z),ds;
   monomialLcm(xy2,yz3);
   monomialLcm([xy2,xz],[yz3]);
   monomialLcm([xy2,xz3],[yz3]);
}
///////////////////////////////////////////////////////////////////////////////
proc spoly(def f,def g,list #)
"USAGE:   spoly(f,g[,s]); f,g poly or vector, s int
RETURN:  the s-polynomial of f and g, of type poly or vector
         if s!=0 the symmetric s-polynomial (without division) is returned
EXAMPLE: example spoly; shows an example
"
{
  if(typeof(f) != typeof(g))
  {
    ERROR("** arguments must be of same type");
  }
  if(size(#) == 0)
  {
     #[1]=0;
  }

  int e;
  poly o = monomialLcm(f,g);

  if( o == 0)                    //can only happen, if vectors f and g involve
  {                              //different module components
    vector sp;
    return(sp);
  }

  poly m=(o/leadmonomial(f));         //compute the leading monomial as poly
  poly n=(o/leadmonomial(g));

  f = m * f;
  g = n * g; // now they have the same LM!

  if (#[1]==0)                    //the asymmetric s-poly
  {
    def sp = f - (leadcoef(f)/leadcoef(g))*g;
  }
  else                            //the symmetric s-poly, avoiding division
  {
    def sp = leadcoef(g)*f - leadcoef(f)*g;
  }
  return(sp);
}
example
{ "EXAMPLE:"; echo = 2;
   ring r=0,(x,y,z),ls;
   spoly(2x2+x2y,3y3+xyz);
   ring s=0,(x,y,z),(c,dp);
   spoly(2x2+x2y,3y3+xyz);
   spoly(2x2+x2y,3y3+xyz,1);             //symmetric s-poly without division
   spoly([5x2+x2y,z5],[x2,y3,y4]);       //s-poly for vectors
}
///////////////////////////////////////////////////////////////////////////////
proc minEcart(def T,def h)
"USAGE:   minEcart(T,h); T ideal or module, h poly or vector
RETURN:  element g from T such that leadmonom(g) divides leadmonom(h)@*
         ecart(g) is minimal with this property (if T != 0);
         return 0 if T is 0 or h = 0
EXAMPLE: example minEcart; shows an example
"
{
  int i,k,e;
  if (size(T)==0 or h==0 )       //trivial cases
  {
     h = 0;
     return(h);
  }
//---- check whether some element in T has the same module component as h ----
  int v;
  intvec w;
  T = simplify(T,2);

  if (typeof(h) == "vector")
  {
     e=1;
     v = leadexp(h)[nvars(basering)+1];
     for( i=1; i<=size(T); i++)
     {
       w[i]=leadexp(T[i])[nvars(basering)+1];
       if(v == w[i])
       {
         e=0;         //some element in T involves the same component as h
       }
     }
  }
  if ( e == 1 )       //no element in T involves the same component as h
  {
     h = 0;
     return(h);
  }

  if (typeof(h) == "poly")   //for polys v=w[i] for all i
  {
    v = 1;
    w[size(T)]=0;
    w=w+1;
  }

//------ check whether for some g in T leadmonom(g) divides leadmonom(h) -----
  def g = T[1];
  poly f = leadmonomial(h);

  for( i=1; i<=size(T); i++)
  {
    if( f/leadmonomial(T[i]) != 0 and v==w[i] )
    {
       g=T[i];
       k=i;
       break;
    }
  }
  if (k == 0)        //no leadmonom(g) divides leadmonom(h)
  {
     g = 0;
     return(g);
  }
//--look for T[i] with minimal ecart s.t.leadmonom(T[i]) divides leadmonom(h)--

  for( i=k+1; i<=size(T); i++)
  {
    if( f/leadmonomial(T[i]) != 0 and v==w[i] )
    {
       if (ecart(T[i]) < ecart(g))
       {
         g=T[i];
        }
     }
  }
  return(g);
}
example
{ "EXAMPLE:"; echo = 2;
   ring R=0,(x,y,z),dp;
   ideal T = x2y+x2,y3+xyz,xyz2+z4;
   poly h = x2y2z2+x5+yx3+z6;
   minEcart(T,h);"";
   ring S=0,(x,y,z),(c,ds);
   module T = [x2+x2y,y2],[y3+xyz,x3-z3],[x3y+z4,0,x2];
   vector h = [x3y+x5+x2y2z2+z6,x3];
   minEcart(T,h);
}
///////////////////////////////////////////////////////////////////////////////
proc NFMora(def f,def G,list #)
"USAGE:   NFMora(f,G[,s]); f poly or vector,G ideal or module, s int
RETURN:  the Mora normal form of f w.r.t. G, same type as f
         if s!=0 the symmetric s-polynomial (without division) is used
NOTE:    Show comments if printlevel > 0, pauses computation if printlevel > 1
EXAMPLE: example NFMora; shows an example
"
{
  if(size(#) == 0)
  {
     #[1]=0;
  }

  int y = printlevel - voice + 2;
  if( f==0 or size(G) ==0 )
  {
     if (y>0)
     {
        "// 1st or 2nd argument 0";
     }
     return(f);
  }

  int i,e;
  def h = f;
  def T = G;
// -------------------- start with f to be reduced by G --------------------
  if (y>0)
  {"";
   "// Input for NFMora is (f,T):";
   "// f:"; f;
   "// T:"; T;
   "// Reduce f with T, eventually enlarging T for local ordering";
  }

// ----------------------- enter the reduction loop ------------------------
  def g = minEcart(T,h);
  while (h!=0 and g!=0)
  {
     if (y>0)
     {  "";
        "//                Reduction-step in NFMora:",i;
        "// h = (f after",i,"reductions) reduction with g from T:";
        "// g = element of minimal ecart in T s.t. LM(g)|LM(h):";
        "// h:";h;
        "// g:";g;
     }
     if (y>1)
     {
        pause("press <return> to continue");
        "// T, set used for reduction:"; T;
        pause("press <return> to continue");
     }
     e=0;
     if( ecart(g) > ecart(h) )
     {
        T=T,h;  e=1;
     }
     if (y>0 )
     {
        "// T-set enlarged for next reduction? (yes/no = 1/0):  ", e;
        if( e==1 )
        {
          "// T-set for next reduction got enlarged by h:";
          "// h:";h;
          if (y>1)
          {
             pause("press <return> to continue");
          }
        }
     }
     h = spoly(h,g,#[1]);
     g = minEcart(T,h);
     i=i+1;
  }
  if(y>0)
  { "";
    "// normal form is:";
  }
  return(h);
}
example
{ "EXAMPLE:"; echo = 2;
   ring r=0,(x,y,z),dp;
   poly f = x2y2z2+x5+yx3+z6-3y3;
   ideal G = x2y+x2,y3+xyz,xyz2+z6;
   NFMora(f,G);"";
   ring s=0,(x,y,z),ds;
   poly f = x3y+x5+x2y2z2+z6;
   ideal G = x2+x2y,y3+xyz,x3y2+z4;
   NFMora(f,G);"";
   vector v = [f,x2+x2y];
   module M = [x2+x2y,f],[y3+xyz,y3],[x3y2+z4,z2];
   NFMora(v,M);
}
///////////////////////////////////////////////////////////////////////////////
proc prodcrit(def f,def g,list #)
"USAGE:   prodcrit(f,g[,o]); f,g poly or vector, and optional int argument o
RETURN:  1 if product criterion applies in the same module component,
         2 if lead(f) and lead(g) involve different components, 0 else
NOTE:    if product criterion applies we can delete (f,g) from pairset.
         This procedure returns 0 if o is given and is a positive integer, or
         you may set the attribute \"default_arg\" for prodcrit to 1.
EXAMPLE: example prodcrit; shows an example
"
{
// ------------------ check for optional disabling argument -------------
  if( size(#) > 0 )
  {// "size(#): ", size(#);   "typeof(#[1]): ", typeof(#[1]);

    if( typeof(#[1]) == "int" )
    {// "#[1] = int ", #[1];
      if( #[1] > 0 )
      {
        return(0);
      }
    }
  }

// ------------------- product criterion for polynomials ---------------------
  if(typeof(f)=="poly")
  {
    if( monomialLcm(f,g)==leadmonom(f)*leadmonom(g))
    {
      return(1);
    }
    return(0);
  }
// ------------------- product criterion for modules ---------------------
  if(sameComponent(f,g)==1)
  {
     if( monomialLcm(f,g)==leadmonomial(f)*leadmonomial(g) )
     {
         int c = leadexp(f)[nvars(basering)+1];  //component involving lead(f)
         if((f-f[c]*gen(c))-(g-g[c]*gen(c))==0)  //other components are 0
         {
           return(1);
         }
     }
     return(0);
  }
  return(2);
}
example
{ "EXAMPLE:"; echo = 2;
   ring r=0,(x,y,z),dp;
   poly f = y3z3+x5+yx3+z6;
   poly g = x5+yx3;
   prodcrit(f,g);
   vector v = x3z2*gen(1)+x3y*gen(1)+x2y*gen(2);
   vector w = y4*gen(1)+y3*gen(2)+xyz*gen(1);
   prodcrit(v,w);
}
///////////////////////////////////////////////////////////////////////////////
proc chaincrit(def f,def g,def h)
"USAGE:   chaincrit(f,g,h); f,g,h poly or module
RETURN:  1 if chain criterion applies, 0 else
NOTE:    if chain criterion applies to f,g,h we can delete (g,h) from pairset
EXAMPLE: example chaincrit; shows an example
"
{
  if(sameComponent(f,g) and sameComponent(f,h))
  {
    if( monomialLcm(g,h)/leadmonomial(f) !=0 )
    {
      return(1);
    }
  }
  return(0);
}
example
{ "EXAMPLE:"; echo = 2;
   ring r=0,(x,y,z),dp;
   poly f = x2y2z2+x5+yx3+z6;
   poly g = x5+yx3;
   poly h = y2z5+x5+yx3;
   chaincrit(f,g,h);
   vector u = [x2y3-z2,x2y];
   vector v = [x2y2+z2,x2-y2];
   vector w = [x2y4+z3,x2+y2];
   chaincrit(u,v,w);
}
///////////////////////////////////////////////////////////////////////////////
proc pairset(def G)
"USAGE:   pairset(G); G ideal or module
RETURN:  list L,
         L[1] = the pairset of G as list (not containing pairs for
         which the product or the chain criterion applies),
         L[2] = intvec v, v[1]= # product criterion, v[2]= # chain criterion
EXAMPLE: example pairset; shows an example
"
{
   int i,j,k,s,c,ccrit,pcrit,pr;
   int y = printlevel - voice + 2;
   G = simplify(G,10);
   def g = G;
   ideal pair;
   list P,I;      //P=pairlist of G, I=list of corresponding indices of pairs
   for (i=1; i<=size(G); i++)
   {
      for(j = i+1; j<=size(G); j++)
      {
         pr = prodcrit(G[i],G[j]);       //check first product criterion
         if( pr != 0 )
         {
            pcrit=pcrit+(pr==1);
         }
         else
         {
            s = size(P);                //now check chain criterion
            for(k=1; k<=s; k++)
            {
              if( i==I[k][2] )
              {
                if ( chaincrit(P[k][1],P[k][2],G[j]) )
                {                     //need not include (G[i],G[j]) in P
                  c=1; ccrit=ccrit+1;
                  break;
                }
              }
              if( j==I[k][1] and c==0 )
              {
                "########### enter pairset2 #############";
                if ( chaincrit(G[i],P[k][1],P[k][2]) )
                {                     //can delete P[k]=(P[k][1],P[k][2])
                  ccrit=ccrit+1;
                  P = delete(P,k);
                  s = s-1;
                }
              }
            }
            if ( c==0 )
            {
               g = G[i],G[j];
               P[s+1]=g;
               I[s+1]=intvec(i,j);
            }
            c=0;
         }
      }
   }
   if (y>0)
   {  "";
      "// product criterion:",pcrit," chain criterion:",ccrit;
   }
   intvec v = pcrit,ccrit;
   P=P,v;
   return(P);
}
example
{ "EXAMPLE:"; echo = 2;
   ring r=0,(x,y,z),dp;
   ideal G = x2y+x2,y3+xyz,xyz2+z4;
   pairset(G);"";
   module T = [x2y3-z2,x2y],[x2y2+z2,x2-y2],[x2y4+z3,x2+y2];
   pairset(T);
}
///////////////////////////////////////////////////////////////////////////////
proc updatePairs(def P,def S,def h)
"USAGE:   updatePairs(P,S,h); P list, S ideal or module, h poly or vector@*
         P a list of pairs of polys or vectors (obtained from pairset)
RETURN:  list Q,
         Q[1] = the pairset P enlarged  by all pairs (f,h), f from S,
         without pairs for which the product or the chain criterion applies@*
         Q[2] = intvec v, v[1]= # product criterion, v[2]= # chain criterion
EXAMPLE: example updatePairs; shows an example
"
{
   int i,j,k,s,r,c,ccrit,pcrit,pr;
   int y = printlevel - voice + 2;
   ideal pair;
   list Q = P;           //Q will become enlarged pairset
   s = size(P);
   r = size(Q);          //r will grow with Q
   list R;
   def g = S;            //give g the correct type ideal/module
   for (i=1; i<=size(S); i++)
   {
      pr =  prodcrit(h,S[i]);
      if( pr != 0 )     //check product criterion
      {
        pcrit=pcrit+(pr==1);       //count product criterion in same component
      }
      else
      {                 //prodcrit did not apply, check for chaincrit
         r=size(Q);
         for(k=1; k<=r; k++)
         {
           if( Q[k][2]==S[i] )    //S[i]=Q[k][2]
           {
             if( chaincrit(Q[k][1],S[i],h) )
             {                   //can forget (S[i],h)
                c=1; ccrit=ccrit+1;
                break;
             }
           }
         }
         if ( c==0 )
         {
            g = S[i],h;        //add pair (S[i],h)
            Q[r+1] = g;
         }
         c=0;
      }
   }
   if (y>0)
   {  "";;
      "// product criterion:",pcrit," chain criterion:",ccrit;
   }
   intvec v = pcrit,ccrit;
   Q = Q,v;
   return(Q);
}
example
{ "EXAMPLE:"; echo = 2;
   ring R1=0,(x,y,z),(c,dp);
   ideal S = x2y+x2,y3+xyz;
   poly h = x2y+xyz;
   list P = pairset(S)[1];
   P;"";
   updatePairs(P,S,h);"";
   module T = [x2y3-z2,x2y],[x2y4+z3,x2+y2];
   P = pairset(T)[1];
   P;"";
   updatePairs(P,T,[x2+x2y,y3+xyz]);
}
///////////////////////////////////////////////////////////////////////////////
proc standard(def id, list #)
"USAGE:   standard(i[,s]); id ideal or module, s int
RETURN:  a standard basis of id, using generalized Mora's algorithm
         which is Buchberger's algorithm for global monomial orderings.
         If s!=0 the symmetric s-polynomial (without division) is used
NOTE:    Show comments if printlevel > 0, pauses computation if printlevel > 1
EXAMPLE: example standard; shows an example
"
{
  if(size(#) == 0)
  {
     #[1]=0;
  }

   def S = id;                 //S will become the standard basis of id
   def h = S[1];
   int i,z;
   int y = printlevel - voice + 2;
   if(y>0)
   {  "";
      "// the set S, to become a standard basis:"; S;
      if(y>1)
      {
         "// create pairset, i.e. pairs from S,";
         "// after application of product and chain criterion";
      }
   }
   list P = pairset(S);        //create pairset of S=id
   intvec v = P[2];
   P = P[1];
//-------------------------- Main loop in SB lgorithm ----------------------
   while (size(P) !=0)
   {  z=z+1;
      if(y>0)
      {  "";
         "//              Enter NFMora for next pair, count",z;
         "// size of partial standard basis S:    (",size(S),")";
         "// number of pairs of S after updating: (",size(P),")";
         if(y>1)
         {
            "// 1st pair of new pairset:"; P[1];
            "// set T=S used for reduction:";S;
            "// apply NFMora to (spoly,S), spoly = spoly(1st pair)";
         }
      }
      //-------------------- apply NFMora = Mora's normal form -------------
      h = spoly(P[1][1],P[1][2],#[1]);
      if(y>1)
      {
         "// spoly:";h;
      }
      h = NFMora(h,S,#[1]);
      if(h==0)           //normal form is 0
      {
         if(y==1)
         {
            "// pair has reduced to 0";
         }
          if(y>1)
         { h;"";
           pause("press <return> to continue");
         }
     }
      P = delete(P,1);   //spoly of pair reduced to 0, pair can be deleted
      //--- spoly of pair did not reduce to 0, update S and paiset of S ----
      if( h != 0)
      {
         if(y==1)
         {
            "// ** new spoly in degree **:", deg(h);
         }
         if(y>1)
         { h;"";
           pause("press <return> to continue");
           "// update pairset";
         }
        P=updatePairs(P,S,h);    //update P (=paisert of S)
        v=v+P[2];                //with useful pairs (g,h), g from S
         P=P[1];
         S=S,h;                  //update S, will become the standard basis
      }
   }
//------------------------------ finished ---------------------------------
   if( find(option(),"prot") or y>0 )
   {  "";                //show how often prodcrit and chaincrit applied
      "// product criterion:",v[1]," chain criterion:",v[2];
      "";
      "// Final standard basis:";
   }
   return(S);
}
example
{ "EXAMPLE:"; echo = 2;
   ring r=0,(x,y,z),dp;
   ideal G = x2y+x2,y3+xyz,xyz2+z4;
   standard(G);"";
   ring s=0,(x,y,z),(c,ds);
   ideal G = 2x2+x2y,y3+xyz,3x3y+z4;
   standard(G);"";
   standard(G,1);"";           //use symmetric s-poly without division
   module M = [2x2,x3y+z4],[3y3+xyz,y3],[5z4,z2];
   standard(M);
}
///////////////////////////////////////////////////////////////////////////////
proc localstd (def id)
"USAGE:   localstd(id); id = ideal
RETURN:  A standard basis for a local degree ordering, using Lazard's method.
NOTE:    The procedure homogenizes id w.r.t. a new 1st variable local@t,
         computes a SB w.r.t. (dp(1),dp) and substitutes local@t by 1.
         Hence the result is a SB with respect to an ordering which sorts
         first w.r.t. the subdegree of the original variables and then refines
         it with dp. This is the local degree ordering ds.
         localstd may be used in order to avoid cancellation of units and thus
         to be able to use option(contentSB) also for local orderings.
EXAMPLE: example localstd; shows an example
"
{
  int ii;
  def bas = basering;
  execute("ring  @r_locstd
     =("+charstr(bas)+"),(local@t,"+varstr(bas)+"),(dp(1),dp);");
  ideal id = imap(bas,id);
  ideal hid = homog(id,local@t);
  hid = std(hid);
  hid = subst(hid,local@t,1);
  setring bas;
  def hid = imap(@r_locstd,hid);
  attrib(hid,"isSB",1);
  kill @r_locstd;
  return(hid);
}
example
{ "EXAMPLE:"; echo = 2;
   ring R = 0,(x,y,z),ds;
   ideal i  = xyz+z5,2x2+y3+z7,3z5+y5;
   localstd(i);
}
///////////////////////////////////////////////////////////////////////////////

/*
// some examples:
LIB"teachstd.lib";
option(prot); printlevel=3;
ring r0 = 0,(t,x,y),lp;
ideal i = x-t2,y-t3;
standard(i);

printlevel=1;
standard(i);

option(prot); printlevel =1;
ring r1 = (0,a,b),(x,y,z),(c,ds);
module M = [ax2,bx3y+z4],[a3y3+xyz,by3],[5az4,(a+b)*z2];
module N1= std(M);
module N2 = standard(M,1);
NF(lead(N2),lead(N1));
NF(lead(N1),lead(N2));rom T
ring r2 = 0,(x,y,z),dp;
ideal I = x2y+x2,y3+xyz,xyz2+z4;
option(prot);
int tt = timer;
ideal J = standard(I);
timer -tt;                 //4sec, product criterion: 9  chain criterion: 6
ideal J1 = std(I);
NF(lead(J),lead(J1));
NF(lead(J1),lead(J));

ring r3 = 0,(x,y,z),ds;
poly f = x3*y4+z5+xyz;
ideal I = f,jacob(f);
option(prot);
int tt = timer;
ideal J = standard(I);
timer -tt;                 //3sec, product criterion: 1  chain criterion: 3
ideal J1 = std(I);
NF(lead(J),lead(J1));
NF(lead(J1),lead(J));

//Becker:
ring r4 = 32003,(x,y,z),lp;
ideal I = x3-1, y3-1,
-27x3-243x2y+27x2z-729xy2+162xyz-9xz2-729y3+243y2z-27yz2+z3-27;
option(prot);
int tt = timer;
ideal J = standard(I);
timer -tt;                 //201sec, product criterion: 42  chain criterion: 33
ideal J1 = std(I);
NF(lead(J),lead(J1));
NF(lead(J1),lead(J));

//Alex
ring r5 = 32003,(x,y,z,t),dp;
ideal I =
2t3xy2z+x2ty+2x2y,
2tz+y3x2t+z2t3y2x;
option(prot); printlevel =1;
ideal J1 = std(I);
int tt = timer;
ideal J = standard(I);
timer -tt;                 //15sec product criterion: 0  chain criterion: 12
NF(lead(J),lead(J1));
NF(lead(J1),lead(J));

ring r6 = 32003,(x,y,z,t),dp; //is already SB for ds, for dp too long
ideal I=
9x8+y7t3z4+5x4y2t2+2xy2z3t2,
9y8+7xy6t+2x5y4t2+2x2yz3t2,
9z8+3x2y3z2t4;
option(prot);
int tt = timer;
ideal J = standard(I);
timer -tt;                 //0sec, product criterion: 3  chain criterion: 0
ideal J1 = std(I);
NF(lead(J),lead(J1));
NF(lead(J1),lead(J));


*/