This file is indexed.

/usr/lib/aster/Utilitai/optimize.py is in code-aster 11.5.0+dfsg2-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
# coding=utf-8
#            CONFIGURATION MANAGEMENT OF EDF VERSION
# ======================================================================
# COPYRIGHT (C) 1991 - 2006  EDF R&D                  WWW.CODE-ASTER.ORG
# THIS PROGRAM IS FREE SOFTWARE; YOU CAN REDISTRIBUTE IT AND/OR MODIFY  
# IT UNDER THE TERMS OF THE GNU GENERAL PUBLIC LICENSE AS PUBLISHED BY  
# THE FREE SOFTWARE FOUNDATION; EITHER VERSION 2 OF THE LICENSE, OR     
# (AT YOUR OPTION) ANY LATER VERSION.                                                  
#                                                                       
# THIS PROGRAM IS DISTRIBUTED IN THE HOPE THAT IT WILL BE USEFUL, BUT   
# WITHOUT ANY WARRANTY; WITHOUT EVEN THE IMPLIED WARRANTY OF            
# MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. SEE THE GNU      
# GENERAL PUBLIC LICENSE FOR MORE DETAILS.                              
#                                                                       
# YOU SHOULD HAVE RECEIVED A COPY OF THE GNU GENERAL PUBLIC LICENSE     
# ALONG WITH THIS PROGRAM; IF NOT, WRITE TO EDF R&D CODE_ASTER,         
#    1 AVENUE DU GENERAL DE GAULLE, 92141 CLAMART CEDEX, FRANCE.        
# ======================================================================
# person_in_charge: aimery.assire at edf.fr
#

# ******NOTICE***************
# optimize.py module by Travis E. Oliphant
#
# You may copy and use this module as you see fit with no
# guarantee implied provided you keep this notice in all copies.
# *****END NOTICE************

# A collection of optimization algorithms.  Version 0.3.1

# Minimization routines
"""optimize.py

A collection of general-purpose optimization routines using Numeric

fmin        ---      Nelder-Mead Simplex algorithm (uses only function calls)
fminBFGS    ---      Quasi-Newton method (uses function and gradient)
fminNCG     ---      Line-search Newton Conjugate Gradient (uses function, gradient
                     and hessian (if it's provided))

"""
import numpy as Num
max = Num.max
min = Num.min
abs = Num.absolute
__version__="0.3.1"

def rosen(x):  # The Rosenbrock function
    return Num.sum(100.0*(x[1:len(x)]-x[0:-1]**2.0)**2.0 + (1-x[0:-1])**2.0)

def rosen_der(x):
    xm = x[1:-1]
    xm_m1 = x[0:-2]
    xm_p1 = x[2:len(x)]
    der = Num.zeros(x.shape,x.dtype.char)
    der[1:-1] = 200*(xm-xm_m1**2) - 400*(xm_p1 - xm**2)*xm - 2*(1-xm)
    der[0] = -400*x[0]*(x[1]-x[0]**2) - 2*(1-x[0])
    der[-1] = 200*(x[-1]-x[-2]**2)
    return der

def rosen3_hess_p(x,p):
    assert(len(x)==3)
    assert(len(p)==3)
    hessp = Num.zeros((3,),x.dtype.char)
    hessp[0] = (2 + 800*x[0]**2 - 400*(-x[0]**2 + x[1])) * p[0] \
               - 400*x[0]*p[1] \
               + 0
    hessp[1] = - 400*x[0]*p[0] \
               + (202 + 800*x[1]**2 - 400*(-x[1]**2 + x[2]))*p[1] \
               - 400*x[1] * p[2]
    hessp[2] = 0 \
               - 400*x[1] * p[1] \
               + 200 * p[2]
    
    return hessp

def rosen3_hess(x):
    assert(len(x)==3)
    hessp = Num.zeros((3,3),x.dtype.char)
    hessp[0,:] = [2 + 800*x[0]**2 -400*(-x[0]**2 + x[1]), -400*x[0], 0]
    hessp[1,:] = [-400*x[0], 202+800*x[1]**2 -400*(-x[1]**2 + x[2]), -400*x[1]]
    hessp[2,:] = [0,-400*x[1], 200]
    return hessp
    
        
def fmin(func, x0, args=(), xtol=1e-4, ftol=1e-4, maxiter=None, maxfun=None, fulloutput=0, printmessg=1):
    """xopt,{fval,warnflag} = fmin(function, x0, args=(), xtol=1e-4, ftol=1e-4,
    maxiter=200*len(x0), maxfun=200*len(x0), fulloutput=0, printmessg=0)

    Uses a Nelder-Mead Simplex algorithm to find the minimum of function
    of one or more variables.
    """
    x0 = Num.asarray(x0)
    assert (len(x0.shape)==1)
    N = len(x0)
    if maxiter is None:
        maxiter = N * 200
    if maxfun is None:
        maxfun = N * 200

    rho = 1; chi = 2; psi = 0.5; sigma = 0.5;
    one2np1 = range(1,N+1)

    sim = Num.zeros((N+1,N),x0.dtype.char)
    fsim = Num.zeros((N+1,),'d')
    sim[0] = x0
    fsim[0] = apply(func,(x0,)+args)
    nonzdelt = 0.05
    zdelt = 0.00025
    for k in range(0,N):
        y = Num.array(x0,copy=1)
        if y[k] != 0:
            y[k] = (1+nonzdelt)*y[k]
        else:
            y[k] = zdelt

        sim[k+1] = y
        f = apply(func,(y,)+args)
        fsim[k+1] = f

    ind = Num.argsort(fsim)
    fsim = Num.take(fsim,ind)     # sort so sim[0,:] has the lowest function value
    sim = Num.take(sim,ind,0)
    
    iterations = 1
    funcalls = N+1
    
    while (funcalls < maxfun and iterations < maxiter):
        if (max(Num.ravel(abs(sim[1:len(sim)]-sim[0]))) <= xtol \
            and max(abs(fsim[0]-fsim[1:len(fsim)])) <= ftol):
            break

        xbar = Num.add.reduce(sim[0:-1],0) / N
        xr = (1+rho)*xbar - rho*sim[-1]
        fxr = apply(func,(xr,)+args)
        funcalls = funcalls + 1
        doshrink = 0

        if fxr < fsim[0]:
            xe = (1+rho*chi)*xbar - rho*chi*sim[-1]
            fxe = apply(func,(xe,)+args)
            funcalls = funcalls + 1

            if fxe < fxr:
                sim[-1] = xe
                fsim[-1] = fxe
            else:
                sim[-1] = xr
                fsim[-1] = fxr
        else: # fsim[0] <= fxr
            if fxr < fsim[-2]:
                sim[-1] = xr
                fsim[-1] = fxr
            else: # fxr >= fsim[-2]
                # Perform contraction
                if fxr < fsim[-1]:
                    xc = (1+psi*rho)*xbar - psi*rho*sim[-1]
                    fxc = apply(func,(xc,)+args)
                    funcalls = funcalls + 1

                    if fxc <= fxr:
                        sim[-1] = xc
                        fsim[-1] = fxc
                    else:
                        doshrink=1
                else:
                    # Perform an inside contraction
                    xcc = (1-psi)*xbar + psi*sim[-1]
                    fxcc = apply(func,(xcc,)+args)
                    funcalls = funcalls + 1

                    if fxcc < fsim[-1]:
                        sim[-1] = xcc
                        fsim[-1] = fxcc
                    else:
                        doshrink = 1

                if doshrink:
                    for j in one2np1:
                        sim[j] = sim[0] + sigma*(sim[j] - sim[0])
                        fsim[j] = apply(func,(sim[j],)+args)
                    funcalls = funcalls + N

        ind = Num.argsort(fsim)
        sim = Num.take(sim,ind,0)
        fsim = Num.take(fsim,ind)
        iterations = iterations + 1

    x = sim[0]
    fval = min(fsim)
    warnflag = 0

    if funcalls >= maxfun:
        warnflag = 1
        if printmessg:
            print "Warning: Maximum number of function evaluations has been exceeded."
    elif iterations >= maxiter:
        warnflag = 2
        if printmessg:
            print "Warning: Maximum number of iterations has been exceeded"
    else:
        if printmessg:
            print "Optimization terminated successfully."
            print "         Current function value: %f" % fval
            print "         Iterations: %d" % iterations
            print "         Function evaluations: %d" % funcalls

    if fulloutput:
        return x, fval, warnflag
    else:        
        return x


def zoom(a_lo, a_hi):
    pass

    

def line_search(f, fprime, xk, pk, gfk, args=(), c1=1e-4, c2=0.9, amax=50):
    """alpha, fc, gc = line_search(f, xk, pk, gfk,
                                   args=(), c1=1e-4, c2=0.9, amax=1)

    minimize the function f(xk+alpha pk) using the line search algorithm of
    Wright and Nocedal in 'Numerical Optimization', 1999, pg. 59-60
    """

    fc = 0
    gc = 0
    alpha0 = 1.0
    phi0  = apply(f,(xk,)+args)
    phi_a0 = apply(f,(xk+alpha0*pk,)+args)
    fc = fc + 2
    derphi0 = Num.dot(gfk,pk)
    derphi_a0 = Num.dot(apply(fprime,(xk+alpha0*pk,)+args),pk)
    gc = gc + 1

    # check to see if alpha0 = 1 satisfies Strong Wolfe conditions.
    if (phi_a0 <= phi0 + c1*alpha0*derphi0) \
       and (abs(derphi_a0) <= c2*abs(derphi0)):
        return alpha0, fc, gc

    alpha0 = 0
    alpha1 = 1
    phi_a1 = phi_a0
    phi_a0 = phi0

    i = 1
    while 1:
        if (phi_a1 > phi0 + c1*alpha1*derphi0) or \
           ((phi_a1 >= phi_a0) and (i > 1)):
            return zoom(alpha0, alpha1)

        derphi_a1 = Num.dot(apply(fprime,(xk+alpha1*pk,)+args),pk)
        gc = gc + 1
        if (abs(derphi_a1) <= -c2*derphi0):
            return alpha1

        if (derphi_a1 >= 0):
            return zoom(alpha1, alpha0)

        alpha2 = (amax-alpha1)*0.25 + alpha1
        i = i + 1
        alpha0 = alpha1
        alpha1 = alpha2
        phi_a0 = phi_a1
        phi_a1 = apply(f,(xk+alpha1*pk,)+args)

    

def line_search_BFGS(f, xk, pk, gfk, args=(), c1=1e-4, alpha0=1):
    """alpha, fc, gc = line_search(f, xk, pk, gfk,
                                   args=(), c1=1e-4, alpha0=1)

    minimize over alpha, the function f(xk+alpha pk) using the interpolation
    algorithm (Armiijo backtracking) as suggested by
    Wright and Nocedal in 'Numerical Optimization', 1999, pg. 56-57
    """

    fc = 0
    phi0 = apply(f,(xk,)+args)               # compute f(xk)
    phi_a0 = apply(f,(xk+alpha0*pk,)+args)     # compute f
    fc = fc + 2
    derphi0 = Num.dot(gfk,pk)

    if (phi_a0 <= phi0 + c1*alpha0*derphi0):
        return alpha0, fc, 0

    # Otherwise compute the minimizer of a quadratic interpolant:

    alpha1 = -(derphi0) * alpha0**2 / 2.0 / (phi_a0 - phi0 - derphi0 * alpha0)
    phi_a1 = apply(f,(xk+alpha1*pk,)+args)
    fc = fc + 1

    if (phi_a1 <= phi0 + c1*alpha1*derphi0):
        return alpha1, fc, 0

    # Otherwise loop with cubic interpolation until we find an alpha which satifies
    #  the first Wolfe condition (since we are backtracking, we will assume that
    #  the value of alpha is not too small and satisfies the second condition.

    while 1:       # we are assuming pk is a descent direction
        factor = alpha0**2 * alpha1**2 * (alpha1-alpha0)
        a = alpha0**2 * (phi_a1 - phi0 - derphi0*alpha1) - \
            alpha1**2 * (phi_a0 - phi0 - derphi0*alpha0)
        a = a / factor
        b = -alpha0**3 * (phi_a1 - phi0 - derphi0*alpha1) + \
            alpha1**3 * (phi_a0 - phi0 - derphi0*alpha0)
        b = b / factor

        alpha2 = (-b + Num.sqrt(abs(b**2 - 3 * a * derphi0))) / (3.0*a)
        phi_a2 = apply(f,(xk+alpha2*pk,)+args)
        fc = fc + 1

        if (phi_a2 <= phi0 + c1*alpha2*derphi0):
            return alpha2, fc, 0

        if (alpha1 - alpha2) > alpha1 / 2.0 or (1 - alpha2/alpha1) < 0.96:
            alpha2 = alpha1 / 2.0

        alpha0 = alpha1
        alpha1 = alpha2
        phi_a0 = phi_a1
        phi_a1 = phi_a2

epsilon = 1e-8

def approx_fprime(xk,f,*args):
    f0 = apply(f,(xk,)+args)
    grad = Num.zeros((len(xk),),'d')
    ei = Num.zeros((len(xk),),'d')
    for k in range(len(xk)):
        ei[k] = 1.0
        grad[k] = (apply(f,(xk+epsilon*ei,)+args) - f0)/epsilon
        ei[k] = 0.0
    return grad

def approx_fhess_p(x0,p,fprime,*args):
    f2 = apply(fprime,(x0+epsilon*p,)+args)
    f1 = apply(fprime,(x0,)+args)
    return (f2 - f1)/epsilon


def fminBFGS(f, x0, fprime=None, args=(), avegtol=1e-5, maxiter=None, fulloutput=0, printmessg=1):
    """xopt = fminBFGS(f, x0, fprime=None, args=(), avegtol=1e-5,
                       maxiter=None, fulloutput=0, printmessg=1)

    Optimize the function, f, whose gradient is given by fprime using the
    quasi-Newton method of Broyden, Fletcher, Goldfarb, and Shanno (BFGS)
    See Wright, and Nocedal 'Numerical Optimization', 1999, pg. 198.
    """

    app_fprime = 0
    if fprime is None:
        app_fprime = 1

    x0 = Num.asarray(x0)
    if maxiter is None:
        maxiter = len(x0)*200
    func_calls = 0
    grad_calls = 0
    k = 0
    N = len(x0)
    gtol = N*avegtol
    I = Num.eye(N)
    Hk = I

    if app_fprime:
        gfk = apply(approx_fprime,(x0,f)+args)
        func_calls = func_calls + len(x0) + 1
    else:
        gfk = apply(fprime,(x0,)+args)
        grad_calls = grad_calls + 1
    xk = x0
    sk = [2*gtol]
    while (Num.add.reduce(abs(gfk)) > gtol) and (k < maxiter):
        pk = -Num.dot(Hk,gfk)
        alpha_k, fc, gc = line_search_BFGS(f,xk,pk,gfk,args)
        func_calls = func_calls + fc
        xkp1 = xk + alpha_k * pk
        sk = xkp1 - xk
        xk = xkp1
        if app_fprime:
            gfkp1 = apply(approx_fprime,(xkp1,f)+args)
            func_calls = func_calls + gc + len(x0) + 1
        else:
            gfkp1 = apply(fprime,(xkp1,)+args)
            grad_calls = grad_calls + gc + 1

        yk = gfkp1 - gfk
        k = k + 1

        rhok = 1 / Num.dot(yk,sk)
        A1 = I - sk[:,Num.newaxis] * yk[Num.newaxis,:] * rhok
        A2 = I - yk[:,Num.newaxis] * sk[Num.newaxis,:] * rhok
        Hk = Num.dot(A1,Num.dot(Hk,A2)) + rhok * sk[:,Num.newaxis] * sk[Num.newaxis,:]
        gfk = gfkp1


    if printmessg or fulloutput:
        fval = apply(f,(xk,)+args)
    if k >= maxiter:
        warnflag = 1
        if printmessg:
            print "Warning: Maximum number of iterations has been exceeded"
            print "         Current function value: %f" % fval
            print "         Iterations: %d" % k
            print "         Function evaluations: %d" % func_calls
            print "         Gradient evaluations: %d" % grad_calls
    else:
        warnflag = 0
        if printmessg:
            print "Optimization terminated successfully."
            print "         Current function value: %f" % fval
            print "         Iterations: %d" % k
            print "         Function evaluations: %d" % func_calls
            print "         Gradient evaluations: %d" % grad_calls

    if fulloutput:
        return xk, fval, func_calls, grad_calls, warnflag
    else:        
        return xk


def fminNCG(f, x0, fprime, fhess_p=None, fhess=None, args=(), avextol=1e-5, maxiter=None, fulloutput=0, printmessg=1):
    """xopt = fminNCG(f, x0, fprime, fhess_p=None, fhess=None, args=(), avextol=1e-5,
                       maxiter=None, fulloutput=0, printmessg=1)

    Optimize the function, f, whose gradient is given by fprime using the
    Newton-CG method.  fhess_p must compute the hessian times an arbitrary
    vector. If it is not given, finite-differences on fprime are used to
    compute it. See Wright, and Nocedal 'Numerical Optimization', 1999,
    pg. 140.
    """

    x0 = Num.asarray(x0)
    fcalls = 0
    gcalls = 0
    hcalls = 0
    approx_hessp = 0
    if fhess_p is None and fhess is None:    # Define hessian product
        approx_hessp = 1
    
    xtol = len(x0)*avextol
    update = [2*xtol]
    xk = x0
    k = 0
    while (Num.add.reduce(abs(update)) > xtol) and (k < maxiter):
        # Compute a search direction pk by applying the CG method to
        #  del2 f(xk) p = - grad f(xk) starting from 0.
        b = -apply(fprime,(xk,)+args)
        gcalls = gcalls + 1
        maggrad = Num.add.reduce(abs(b))
        eta = min([0.5,Num.sqrt(maggrad)])
        termcond = eta * maggrad
        xsupi = 0
        ri = -b
        psupi = -ri
        i = 0
        dri0 = Num.dot(ri,ri)

        if fhess is not None:               # you want to compute hessian once.
            A = apply(fhess,(xk,)+args)
            hcalls = hcalls + 1

        while Num.add.reduce(abs(ri)) > termcond:
            if fhess is None:
                if approx_hessp:
                    Ap = apply(approx_fhess_p,(xk,psupi,fprime)+args)
                    gcalls = gcalls + 2
                else:
                    Ap = apply(fhess_p,(xk,psupi)+args)
                    hcalls = hcalls + 1
            else:
                Ap = Num.dot(A,psupi)
            # check curvature
            curv = Num.dot(psupi,Ap)
            if (curv <= 0):
                if (i > 0):
                    break
                else:
                    xsupi = xsupi + dri0/curv * psupi
                    break
            alphai = dri0 / curv
            xsupi = xsupi + alphai * psupi
            ri = ri + alphai * Ap
            dri1 = Num.dot(ri,ri)
            betai = dri1 / dri0
            psupi = -ri + betai * psupi
            i = i + 1
            dri0 = dri1          # update Num.dot(ri,ri) for next time.
    
        pk = xsupi  # search direction is solution to system.
        gfk = -b    # gradient at xk
        alphak, fc, gc = line_search_BFGS(f,xk,pk,gfk,args)
        fcalls = fcalls + fc
        gcalls = gcalls + gc

        update = alphak * pk
        xk = xk + update
        k = k + 1

    if printmessg or fulloutput:
        fval = apply(f,(xk,)+args)
    if k >= maxiter:
        warnflag = 1
        if printmessg:
            print "Warning: Maximum number of iterations has been exceeded"
            print "         Current function value: %f" % fval
            print "         Iterations: %d" % k
            print "         Function evaluations: %d" % fcalls
            print "         Gradient evaluations: %d" % gcalls
            print "         Hessian evaluations: %d" % hcalls
    else:
        warnflag = 0
        if printmessg:
            print "Optimization terminated successfully."
            print "         Current function value: %f" % fval
            print "         Iterations: %d" % k
            print "         Function evaluations: %d" % fcalls
            print "         Gradient evaluations: %d" % gcalls
            print "         Hessian evaluations: %d" % hcalls
            
    if fulloutput:
        return xk, fval, fcalls, gcalls, hcalls, warnflag
    else:        
        return xk

    

if __name__ == "__main__":
    import string
    import time

    
    times = []
    algor = []
    x0 = [0.8,1.2,0.7]
    start = time.time()
    x = fmin(rosen,x0)
    print x
    times.append(time.time() - start)
    algor.append('Nelder-Mead Simplex\t')

    start = time.time()
    x = fminBFGS(rosen, x0, fprime=rosen_der, maxiter=80)
    print x
    times.append(time.time() - start)
    algor.append('BFGS Quasi-Newton\t')

    start = time.time()
    x = fminBFGS(rosen, x0, avegtol=1e-4, maxiter=100)
    print x
    times.append(time.time() - start)
    algor.append('BFGS without gradient\t')


    start = time.time()
    x = fminNCG(rosen, x0, rosen_der, fhess_p=rosen3_hess_p, maxiter=80)
    print x
    times.append(time.time() - start)
    algor.append('Newton-CG with hessian product')
    

    start = time.time()
    x = fminNCG(rosen, x0, rosen_der, fhess=rosen3_hess, maxiter=80)
    print x
    times.append(time.time() - start)
    algor.append('Newton-CG with full hessian')

    print "\nMinimizing the Rosenbrock function of order 3\n"
    print " Algorithm \t\t\t       Seconds"
    print "===========\t\t\t      ========="
    for k in range(len(algor)):
        print algor[k], "\t -- ", times[k]