This file is indexed.

/usr/include/coin/IpIpoptNLP.hpp is in coinor-libipopt-dev 3.11.9-2.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
// Copyright (C) 2004, 2006 International Business Machines and others.
// All Rights Reserved.
// This code is published under the Eclipse Public License.
//
// $Id: IpIpoptNLP.hpp 1861 2010-12-21 21:34:47Z andreasw $
//
// Authors:  Carl Laird, Andreas Waechter     IBM    2004-08-13

#ifndef __IPIPOPTNLP_HPP__
#define __IPIPOPTNLP_HPP__

#include "IpNLP.hpp"
#include "IpJournalist.hpp"
#include "IpNLPScaling.hpp"

namespace Ipopt
{
  // forward declarations
  class IteratesVector;

  /** This is the abstract base class for classes that map
   *  the traditional NLP into
   *  something that is more useful by Ipopt.
   *  This class takes care of storing the
   *  calculated model results, handles cacheing,
   *  and (some day) takes care of addition of slacks.
   */
  class IpoptNLP : public ReferencedObject
  {
  public:
    /**@name Constructors/Destructors */
    //@{
    IpoptNLP(const SmartPtr<NLPScalingObject> nlp_scaling)
        :
        nlp_scaling_(nlp_scaling)
    {}

    /** Default destructor */
    virtual ~IpoptNLP()
    {}
    //@}

    /** Initialization method.  Set the internal options and
     *  initialize internal data structures. */
    virtual bool Initialize(const Journalist& jnlst,
                            const OptionsList& options,
                            const std::string& prefix)
    {
      bool ret = true;
      if (IsValid(nlp_scaling_)) {
        ret = nlp_scaling_->Initialize(jnlst, options, prefix);
      }
      return ret;
    }

    /**@name Possible Exceptions */
    //@{
    /** thrown if there is any error evaluating values from the nlp */
    DECLARE_STD_EXCEPTION(Eval_Error);
    //@}
    /** Initialize (create) structures for
     *  the iteration data */
    virtual bool InitializeStructures(SmartPtr<Vector>& x,
                                      bool init_x,
                                      SmartPtr<Vector>& y_c,
                                      bool init_y_c,
                                      SmartPtr<Vector>& y_d,
                                      bool init_y_d,
                                      SmartPtr<Vector>& z_L,
                                      bool init_z_L,
                                      SmartPtr<Vector>& z_U,
                                      bool init_z_U,
                                      SmartPtr<Vector>& v_L,
                                      SmartPtr<Vector>& v_U
                                     ) = 0;

    /** Method accessing the GetWarmStartIterate of the NLP */
    virtual bool GetWarmStartIterate(IteratesVector& warm_start_iterate)=0;

    /** Accessor methods for model data */
    //@{
    /** Objective value */
    virtual Number f(const Vector& x) = 0;

    /** Gradient of the objective */
    virtual SmartPtr<const Vector> grad_f(const Vector& x) = 0;

    /** Equality constraint residual */
    virtual SmartPtr<const Vector> c(const Vector& x) = 0;

    /** Jacobian Matrix for equality constraints */
    virtual SmartPtr<const Matrix> jac_c(const Vector& x) = 0;

    /** Inequality constraint residual (reformulated
     *  as equalities with slacks */
    virtual SmartPtr<const Vector> d(const Vector& x) = 0;

    /** Jacobian Matrix for inequality constraints */
    virtual SmartPtr<const Matrix> jac_d(const Vector& x) = 0;

    /** Hessian of the Lagrangian */
    virtual SmartPtr<const SymMatrix> h(const Vector& x,
                                        Number obj_factor,
                                        const Vector& yc,
                                        const Vector& yd
                                       ) = 0;

    /** Lower bounds on x */
    virtual SmartPtr<const Vector> x_L() const = 0;

    /** Permutation matrix (x_L_ -> x) */
    virtual SmartPtr<const Matrix> Px_L() const = 0;

    /** Upper bounds on x */
    virtual SmartPtr<const Vector> x_U() const = 0;

    /** Permutation matrix (x_U_ -> x */
    virtual SmartPtr<const Matrix> Px_U() const = 0;

    /** Lower bounds on d */
    virtual SmartPtr<const Vector> d_L() const = 0;

    /** Permutation matrix (d_L_ -> d) */
    virtual SmartPtr<const Matrix> Pd_L() const = 0;

    /** Upper bounds on d */
    virtual SmartPtr<const Vector> d_U() const = 0;

    /** Permutation matrix (d_U_ -> d */
    virtual SmartPtr<const Matrix> Pd_U() const = 0;

    /** Accessor method to obtain the MatrixSpace for the Hessian
     *  matrix (or it's approximation) */
    virtual SmartPtr<const SymMatrixSpace> HessianMatrixSpace() const = 0;
    //@}

    /** Accessor method for vector/matrix spaces pointers. */
    virtual void GetSpaces(SmartPtr<const VectorSpace>& x_space,
                           SmartPtr<const VectorSpace>& c_space,
                           SmartPtr<const VectorSpace>& d_space,
                           SmartPtr<const VectorSpace>& x_l_space,
                           SmartPtr<const MatrixSpace>& px_l_space,
                           SmartPtr<const VectorSpace>& x_u_space,
                           SmartPtr<const MatrixSpace>& px_u_space,
                           SmartPtr<const VectorSpace>& d_l_space,
                           SmartPtr<const MatrixSpace>& pd_l_space,
                           SmartPtr<const VectorSpace>& d_u_space,
                           SmartPtr<const MatrixSpace>& pd_u_space,
                           SmartPtr<const MatrixSpace>& Jac_c_space,
                           SmartPtr<const MatrixSpace>& Jac_d_space,
                           SmartPtr<const SymMatrixSpace>& Hess_lagrangian_space) = 0;

    /** Method for adapting the variable bounds.  This is called if
     *  slacks are becoming too small */
    virtual void AdjustVariableBounds(const Vector& new_x_L,
                                      const Vector& new_x_U,
                                      const Vector& new_d_L,
                                      const Vector& new_d_U)=0;

    /** @name Counters for the number of function evaluations. */
    //@{
    virtual Index f_evals() const = 0;
    virtual Index grad_f_evals() const = 0;
    virtual Index c_evals() const = 0;
    virtual Index jac_c_evals() const = 0;
    virtual Index d_evals() const = 0;
    virtual Index jac_d_evals() const = 0;
    virtual Index h_evals() const = 0;
    //@}

    /** @name Special method for dealing with the fact that the
     *  restoration phase objective function depends on the barrier
     *  parameter */
    //@{
    /** Method for telling the IpoptCalculatedQuantities class whether
     *  the objective function depends on the barrier function.  This
     *  is only used for the restoration phase NLP
     *  formulation. Probably only RestoIpoptNLP should overwrite
     *  this. */
    virtual bool objective_depends_on_mu() const
    {
      return false;
    }

    /** Replacement for the default objective function method which
     *  knows about the barrier parameter */
    virtual Number f(const Vector& x, Number mu) = 0;

    /** Replacement for the default objective gradient method which
     *  knows about the barrier parameter  */
    virtual SmartPtr<const Vector> grad_f(const Vector& x, Number mu) = 0;

    /** Replacement for the default Lagrangian Hessian method which
     *  knows about the barrier parameter */
    virtual SmartPtr<const SymMatrix> h(const Vector& x,
                                        Number obj_factor,
                                        const Vector& yc,
                                        const Vector& yd,
                                        Number mu) = 0;

    /** Provides a Hessian matrix from the correct matrix space with
     *  uninitialized values.  This can be used in LeastSquareMults to
     *  obtain a "zero Hessian". */
    virtual SmartPtr<const SymMatrix> uninitialized_h() = 0;
    //@}

    /**@name solution routines */
    //@{
    virtual void FinalizeSolution(SolverReturn status,
                                  const Vector& x, const Vector& z_L, const Vector& z_U,
                                  const Vector& c, const Vector& d,
                                  const Vector& y_c, const Vector& y_d,
                                  Number obj_value,
                                  const IpoptData* ip_data,
                                  IpoptCalculatedQuantities* ip_cq)=0;

    virtual bool IntermediateCallBack(AlgorithmMode mode,
                                      Index iter, Number obj_value,
                                      Number inf_pr, Number inf_du,
                                      Number mu, Number d_norm,
                                      Number regularization_size,
                                      Number alpha_du, Number alpha_pr,
                                      Index ls_trials,
                                      SmartPtr<const IpoptData> ip_data,
                                      SmartPtr<IpoptCalculatedQuantities> ip_cq)=0;
    //@}

    /** Returns the scaling strategy object */
    SmartPtr<NLPScalingObject> NLP_scaling() const
    {
      DBG_ASSERT(IsValid(nlp_scaling_));
      return nlp_scaling_;
    }

  private:

    /**@name Default Compiler Generated Methods
     * (Hidden to avoid implicit creation/calling).
     * These methods are not implemented and 
     * we do not want the compiler to implement
     * them for us, so we declare them private
     * and do not define them. This ensures that
     * they will not be implicitly created/called. */
    //@{

    /** Copy Constructor */
    IpoptNLP(const IpoptNLP&);

    /** Overloaded Equals Operator */
    void operator=(const IpoptNLP&);
    //@}

    SmartPtr<NLPScalingObject> nlp_scaling_;
  };

} // namespace Ipopt

#endif