This file is indexed.

/usr/include/coin/OsiBranchingObject.hpp is in coinor-libosi-dev 0.106.9-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
// Copyright (C) 2006, International Business Machines
// Corporation and others.  All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).

#ifndef OsiBranchingObject_H
#define OsiBranchingObject_H

#include <cassert>
#include <string>
#include <vector>

#include "CoinError.hpp"
#include "CoinTypes.hpp"

class OsiSolverInterface;
class OsiSolverBranch;

class OsiBranchingObject;
class OsiBranchingInformation;

//#############################################################################
//This contains the abstract base class for an object and for branching.
//It also contains a simple integer class
//#############################################################################

/** Abstract base class for `objects'.

  The branching model used in Osi is based on the idea of an <i>object</i>.
  In the abstract, an object is something that has a feasible region, can be
  evaluated for infeasibility, can be branched on (<i>i.e.</i>, there's some
  constructive action to be taken to move toward feasibility), and allows
  comparison of the effect of branching.

  This class (OsiObject) is the base class for an object. To round out the
  branching model, the class OsiBranchingObject describes how to perform a
  branch, and the class OsiBranchDecision describes how to compare two
  OsiBranchingObjects.

  To create a new type of object you need to provide three methods:
  #infeasibility(), #feasibleRegion(), and #createBranch(), described below.

  This base class is primarily virtual to allow for any form of structure.
  Any form of discontinuity is allowed.

  As there is an overhead in getting information from solvers and because
  other useful information is available there is also an OsiBranchingInformation 
  class which can contain pointers to information.
  If used it must at minimum contain pointers to current value of objective,
  maximum allowed objective and pointers to arrays for bounds and solution
  and direction of optimization.  Also integer and primal tolerance.
  
  Classes which inherit might have other information such as depth, number of
  solutions, pseudo-shadow prices etc etc.
  May be easier just to throw in here - as I keep doing
*/
class OsiObject {

public:
  
  /// Default Constructor 
  OsiObject ();
  
  /// Copy constructor 
  OsiObject ( const OsiObject &);
  
  /// Assignment operator 
  OsiObject & operator=( const OsiObject& rhs);
  
  /// Clone
  virtual OsiObject * clone() const=0;
  
  /// Destructor 
  virtual ~OsiObject ();
  
  /** Infeasibility of the object
      
    This is some measure of the infeasibility of the object. 0.0 
    indicates that the object is satisfied.
  
    The preferred branching direction is returned in whichWay, where for
    normal two-way branching 0 is down, 1 is up
  
    This is used to prepare for strong branching but should also think of
    case when no strong branching
  
    The object may also compute an estimate of cost of going "up" or "down".
    This will probably be based on pseudo-cost ideas

    This should also set mutable infeasibility_ and whichWay_
    This is for instant re-use for speed

    Default for this just calls infeasibility with OsiBranchingInformation
    NOTE - Convention says that an infeasibility of COIN_DBL_MAX means 
    object has worked out it can't be satisfied!
  */
  double infeasibility(const OsiSolverInterface * solver,int &whichWay) const ;
  // Faster version when more information available
  virtual double infeasibility(const OsiBranchingInformation * info, int &whichWay) const =0;
  // This does NOT set mutable stuff
  virtual double checkInfeasibility(const OsiBranchingInformation * info) const;
  
  /** For the variable(s) referenced by the object,
      look at the current solution and set bounds to match the solution.
      Returns measure of how much it had to move solution to make feasible
  */
  virtual double feasibleRegion(OsiSolverInterface * solver) const ;
  /** For the variable(s) referenced by the object,
      look at the current solution and set bounds to match the solution.
      Returns measure of how much it had to move solution to make feasible
      Faster version
  */
  virtual double feasibleRegion(OsiSolverInterface * solver, const OsiBranchingInformation * info) const =0;
  
  /** Create a branching object and indicate which way to branch first.
      
      The branching object has to know how to create branches (fix
      variables, etc.)
  */
  virtual OsiBranchingObject * createBranch(OsiSolverInterface * /*solver*/,
					    const OsiBranchingInformation * /*info*/,
					    int /*way*/) const {throw CoinError("Need code","createBranch","OsiBranchingObject"); return NULL; }
  
  /** \brief Return true if object can take part in normal heuristics
  */
  virtual bool canDoHeuristics() const 
  {return true;}
  /** \brief Return true if object can take part in move to nearest heuristic
  */
  virtual bool canMoveToNearest() const 
  {return false;}
  /** Column number if single column object -1 otherwise,
      Used by heuristics
  */
  virtual int columnNumber() const;
  /// Return Priority - note 1 is highest priority
  inline int priority() const
  { return priority_;}
  /// Set priority
  inline void setPriority(int priority)
  { priority_ = priority;}
  /** \brief Return true if branch should only bound variables
  */
  virtual bool boundBranch() const 
  {return true;}
  /// Return true if knows how to deal with Pseudo Shadow Prices
  virtual bool canHandleShadowPrices() const
  { return false;}
  /// Return maximum number of ways branch may have
  inline int numberWays() const
  { return numberWays_;}
  /// Set maximum number of ways branch may have
  inline void setNumberWays(int numberWays)
  { numberWays_ = static_cast<short int>(numberWays) ; }
  /** Return preferred way to branch.  If two
      then way=0 means down and 1 means up, otherwise
      way points to preferred branch
  */
  inline void setWhichWay(int way)
  { whichWay_ = static_cast<short int>(way) ; }
  /** Return current preferred way to branch.  If two
      then way=0 means down and 1 means up, otherwise
      way points to preferred branch
  */
  inline int whichWay() const
  { return whichWay_;}
  /// Get pre-emptive preferred way of branching - -1 off, 0 down, 1 up (for 2-way)
  virtual int preferredWay() const
  { return -1;}
  /// Return infeasibility
  inline double infeasibility() const
  { return infeasibility_;}
  /// Return "up" estimate (default 1.0e-5)
  virtual double upEstimate() const;
  /// Return "down" estimate (default 1.0e-5)
  virtual double downEstimate() const;
  /** Reset variable bounds to their original values.
    Bounds may be tightened, so it may be good to be able to reset them to
    their original values.
   */
  virtual void resetBounds(const OsiSolverInterface * ) {}
  /**  Change column numbers after preprocessing
   */
  virtual void resetSequenceEtc(int , const int * ) {}
  /// Updates stuff like pseudocosts before threads
  virtual void updateBefore(const OsiObject * ) {}
  /// Updates stuff like pseudocosts after threads finished
  virtual void updateAfter(const OsiObject * , const OsiObject * ) {}

protected:
  /// data

  /// Computed infeasibility
  mutable double infeasibility_;
  /// Computed preferred way to branch 
  mutable short whichWay_;
  /// Maximum number of ways on branch
  short  numberWays_;
  /// Priority
  int priority_;

};
/// Define a class to add a bit of complexity to OsiObject
/// This assumes 2 way branching


class OsiObject2 : public OsiObject {

public:

  /// Default Constructor 
  OsiObject2 ();

  /// Copy constructor 
  OsiObject2 ( const OsiObject2 &);
   
  /// Assignment operator 
  OsiObject2 & operator=( const OsiObject2& rhs);

  /// Destructor 
  virtual ~OsiObject2 ();
  
  /// Set preferred way of branching - -1 off, 0 down, 1 up (for 2-way)
  inline void setPreferredWay(int value)
  {preferredWay_=value;}
  
  /// Get preferred way of branching - -1 off, 0 down, 1 up (for 2-way)
  virtual int preferredWay() const
  { return preferredWay_;}
protected:
  /// Preferred way of branching - -1 off, 0 down, 1 up (for 2-way)
  int preferredWay_;
  /// "Infeasibility" on other way
  mutable double otherInfeasibility_;
  
};

/** \brief Abstract branching object base class

  In the abstract, an OsiBranchingObject contains instructions for how to
  branch. We want an abstract class so that we can describe how to branch on
  simple objects (<i>e.g.</i>, integers) and more exotic objects
  (<i>e.g.</i>, cliques or hyperplanes).

  The #branch() method is the crucial routine: it is expected to be able to
  step through a set of branch arms, executing the actions required to create
  each subproblem in turn. The base class is primarily virtual to allow for
  a wide range of problem modifications.

  See OsiObject for an overview of the two classes (OsiObject and
  OsiBranchingObject) which make up Osi's branching
  model.
*/

class OsiBranchingObject {

public:

  /// Default Constructor 
  OsiBranchingObject ();

  /// Constructor 
  OsiBranchingObject (OsiSolverInterface * solver, double value);
  
  /// Copy constructor 
  OsiBranchingObject ( const OsiBranchingObject &);
   
  /// Assignment operator 
  OsiBranchingObject & operator=( const OsiBranchingObject& rhs);

  /// Clone
  virtual OsiBranchingObject * clone() const=0;

  /// Destructor 
  virtual ~OsiBranchingObject ();

  /// The number of branch arms created for this branching object
  inline int numberBranches() const
  {return numberBranches_;}

  /// The number of branch arms left for this branching object
  inline int numberBranchesLeft() const
  {return numberBranches_-branchIndex_;}

  /// Increment the number of branch arms left for this branching object
  inline void incrementNumberBranchesLeft()
  { numberBranches_ ++;}

  /** Set the number of branch arms left for this branching object
      Just for forcing
  */
  inline void setNumberBranchesLeft(int /*value*/)
  {/*assert (value==1&&!branchIndex_);*/ numberBranches_=1;}

  /// Decrement the number of branch arms left for this branching object
  inline void decrementNumberBranchesLeft()
  {branchIndex_++;}

  /** \brief Execute the actions required to branch, as specified by the
	     current state of the branching object, and advance the object's
	     state. 
	     Returns change in guessed objective on next branch
  */
  virtual double branch(OsiSolverInterface * solver)=0;
  /** \brief Execute the actions required to branch, as specified by the
	     current state of the branching object, and advance the object's
	     state. 
	     Returns change in guessed objective on next branch
  */
  virtual double branch() {return branch(NULL);}
  /** \brief Return true if branch should fix variables
  */
  virtual bool boundBranch() const 
  {return true;}
  /** Get the state of the branching object
      This is just the branch index
  */
  inline int branchIndex() const
  {return branchIndex_;}

  /** Set the state of the branching object.
  */
  inline void setBranchingIndex(int branchIndex)
  { branchIndex_ = static_cast<short int>(branchIndex) ; }

  /// Current value
  inline double value() const
  {return value_;}
  
  /// Return pointer back to object which created
  inline const OsiObject * originalObject() const
  {return  originalObject_;}
  /// Set pointer back to object which created
  inline void setOriginalObject(const OsiObject * object)
  {originalObject_=object;}
  /** Double checks in case node can change its mind!
      Returns objective value
      Can change objective etc */
  virtual void checkIsCutoff(double ) {}
  /// For debug
  int columnNumber() const;
  /** \brief Print something about branch - only if log level high
  */
  virtual void print(const OsiSolverInterface * =NULL) const {}

protected:

  /// Current value - has some meaning about branch
  double value_;

  /// Pointer back to object which created
  const OsiObject * originalObject_;

  /** Number of branches
  */
  int numberBranches_;

  /** The state of the branching object. i.e. branch index
      This starts at 0 when created
  */
  short branchIndex_;

};
/* This contains information
   This could also contain pseudo shadow prices
   or information for dealing with computing and trusting pseudo-costs
*/
class OsiBranchingInformation {

public:
  
  /// Default Constructor 
  OsiBranchingInformation ();
  
  /** Useful Constructor 
      (normalSolver true if has matrix etc etc)
      copySolution true if constructot should make a copy
  */
  OsiBranchingInformation (const OsiSolverInterface * solver, bool normalSolver,bool copySolution=false);
  
  /// Copy constructor 
  OsiBranchingInformation ( const OsiBranchingInformation &);
  
  /// Assignment operator 
  OsiBranchingInformation & operator=( const OsiBranchingInformation& rhs);
  
  /// Clone
  virtual OsiBranchingInformation * clone() const;
  
  /// Destructor 
  virtual ~OsiBranchingInformation ();
  
  // Note public
public:
  /// data

  /** State of search
      0 - no solution
      1 - only heuristic solutions
      2 - branched to a solution 
      3 - no solution but many nodes
  */
  int stateOfSearch_;
  /// Value of objective function (in minimization sense)
  double objectiveValue_;
  /// Value of objective cutoff (in minimization sense)
  double cutoff_;
  /// Direction 1.0 for minimization, -1.0 for maximization
  double direction_;
  /// Integer tolerance
  double integerTolerance_;
  /// Primal tolerance
  double primalTolerance_;
  /// Maximum time remaining before stopping on time
  double timeRemaining_;
  /// Dual to use if row bound violated (if negative then pseudoShadowPrices off)
  double defaultDual_;
  /// Pointer to solver
  mutable const OsiSolverInterface * solver_;
  /// The number of columns
  int numberColumns_;
  /// Pointer to current lower bounds on columns
  mutable const double * lower_;
  /// Pointer to current solution
  mutable const double * solution_;
  /// Pointer to current upper bounds on columns
  mutable const double * upper_;
  /// Highly optional target (hot start) solution
  const double * hotstartSolution_;
  /// Pointer to duals
  const double * pi_;
  /// Pointer to row activity
  const double * rowActivity_;
  /// Objective
  const double * objective_;
  /// Pointer to current lower bounds on rows
  const double * rowLower_;
  /// Pointer to current upper bounds on rows
  const double * rowUpper_;
  /// Elements in column copy of matrix
  const double * elementByColumn_;
  /// Column starts
  const CoinBigIndex * columnStart_;
  /// Column lengths
  const int * columnLength_;
  /// Row indices
  const int * row_;
  /** Useful region of length CoinMax(numberColumns,2*numberRows)
      This is allocated and deleted before OsiObject::infeasibility
      It is zeroed on entry and should be so on exit
      It only exists if defaultDual_>=0.0
  */
  double * usefulRegion_;
  /// Useful index region to go with usefulRegion_
  int * indexRegion_;
  /// Number of solutions found
  int numberSolutions_;
  /// Number of branching solutions found (i.e. exclude heuristics)
  int numberBranchingSolutions_;
  /// Depth in tree
  int depth_;
  /// TEMP
  bool owningSolution_;
};

/// This just adds two-wayness to a branching object

class OsiTwoWayBranchingObject : public OsiBranchingObject {

public:

  /// Default constructor 
  OsiTwoWayBranchingObject ();

  /** Create a standard tw0-way branch object

    Specifies a simple two-way branch.
    Specify way = -1 to set the object state to perform the down arm first,
    way = 1 for the up arm.
  */
  OsiTwoWayBranchingObject (OsiSolverInterface *solver,const OsiObject * originalObject,
			     int way , double value) ;
    
  /// Copy constructor 
  OsiTwoWayBranchingObject ( const OsiTwoWayBranchingObject &);
   
  /// Assignment operator 
  OsiTwoWayBranchingObject & operator= (const OsiTwoWayBranchingObject& rhs);

  /// Destructor 
  virtual ~OsiTwoWayBranchingObject ();

  using OsiBranchingObject::branch ;
  /** \brief Sets the bounds for the variable according to the current arm
	     of the branch and advances the object state to the next arm.
	     state. 
	     Returns change in guessed objective on next branch
  */
  virtual double branch(OsiSolverInterface * solver)=0;

  inline int firstBranch() const { return firstBranch_; }
  /// Way returns -1 on down +1 on up
  inline int way() const
  { return !branchIndex_ ? firstBranch_ : -firstBranch_;}
protected:
  /// Which way was first branch -1 = down, +1 = up
  int firstBranch_;
};
/// Define a single integer class


class OsiSimpleInteger : public OsiObject2 {

public:

  /// Default Constructor 
  OsiSimpleInteger ();

  /// Useful constructor - passed solver index
  OsiSimpleInteger (const OsiSolverInterface * solver, int iColumn);
  
  /// Useful constructor - passed solver index and original bounds
  OsiSimpleInteger (int iColumn, double lower, double upper);
  
  /// Copy constructor 
  OsiSimpleInteger ( const OsiSimpleInteger &);
   
  /// Clone
  virtual OsiObject * clone() const;

  /// Assignment operator 
  OsiSimpleInteger & operator=( const OsiSimpleInteger& rhs);

  /// Destructor 
  virtual ~OsiSimpleInteger ();
  
  using OsiObject::infeasibility ;
  /// Infeasibility - large is 0.5
  virtual double infeasibility(const OsiBranchingInformation * info, int & whichWay) const;

  using OsiObject::feasibleRegion ;
  /** Set bounds to fix the variable at the current (integer) value.

    Given an integer value, set the lower and upper bounds to fix the
    variable. Returns amount it had to move variable.
  */
  virtual double feasibleRegion(OsiSolverInterface * solver, const OsiBranchingInformation * info) const;

  /** Creates a branching object

    The preferred direction is set by \p way, 0 for down, 1 for up.
  */
  virtual OsiBranchingObject * createBranch(OsiSolverInterface * solver, const OsiBranchingInformation * info, int way) const;


  /// Set solver column number
  inline void setColumnNumber(int value)
  {columnNumber_=value;}
  
  /** Column number if single column object -1 otherwise,
      so returns >= 0
      Used by heuristics
  */
  virtual int columnNumber() const;

  /// Original bounds
  inline double originalLowerBound() const
  { return originalLower_;}
  inline void setOriginalLowerBound(double value)
  { originalLower_=value;}
  inline double originalUpperBound() const
  { return originalUpper_;}
  inline void setOriginalUpperBound(double value)
  { originalUpper_=value;}
  /** Reset variable bounds to their original values.
    Bounds may be tightened, so it may be good to be able to reset them to
    their original values.
   */
  virtual void resetBounds(const OsiSolverInterface * solver) ;
  /**  Change column numbers after preprocessing
   */
  virtual void resetSequenceEtc(int numberColumns, const int * originalColumns);
  
  /// Return "up" estimate (default 1.0e-5)
  virtual double upEstimate() const;
  /// Return "down" estimate (default 1.0e-5)
  virtual double downEstimate() const;
  /// Return true if knows how to deal with Pseudo Shadow Prices
  virtual bool canHandleShadowPrices() const
  { return false;}
protected:
  /// data
  /// Original lower bound
  double originalLower_;
  /// Original upper bound
  double originalUpper_;
  /// Column number in solver
  int columnNumber_;
  
};
/** Simple branching object for an integer variable

  This object can specify a two-way branch on an integer variable. For each
  arm of the branch, the upper and lower bounds on the variable can be
  independently specified. 0 -> down, 1-> up.
*/

class OsiIntegerBranchingObject : public OsiTwoWayBranchingObject {

public:

  /// Default constructor 
  OsiIntegerBranchingObject ();

  /** Create a standard floor/ceiling branch object

    Specifies a simple two-way branch. Let \p value = x*. One arm of the
    branch will be lb <= x <= floor(x*), the other ceil(x*) <= x <= ub.
    Specify way = -1 to set the object state to perform the down arm first,
    way = 1 for the up arm.
  */
  OsiIntegerBranchingObject (OsiSolverInterface *solver,const OsiSimpleInteger * originalObject,
			     int way , double value) ;
  /** Create a standard floor/ceiling branch object

    Specifies a simple two-way branch in a more flexible way. One arm of the
    branch will be lb <= x <= downUpperBound, the other upLowerBound <= x <= ub.
    Specify way = -1 to set the object state to perform the down arm first,
    way = 1 for the up arm.
  */
  OsiIntegerBranchingObject (OsiSolverInterface *solver,const OsiSimpleInteger * originalObject,
			     int way , double value, double downUpperBound, double upLowerBound) ;
    
  /// Copy constructor 
  OsiIntegerBranchingObject ( const OsiIntegerBranchingObject &);
   
  /// Assignment operator 
  OsiIntegerBranchingObject & operator= (const OsiIntegerBranchingObject& rhs);

  /// Clone
  virtual OsiBranchingObject * clone() const;

  /// Destructor 
  virtual ~OsiIntegerBranchingObject ();
  
  using OsiBranchingObject::branch ;
  /** \brief Sets the bounds for the variable according to the current arm
	     of the branch and advances the object state to the next arm.
	     state. 
	     Returns change in guessed objective on next branch
  */
  virtual double branch(OsiSolverInterface * solver);

  using OsiBranchingObject::print ;
  /** \brief Print something about branch - only if log level high
  */
  virtual void print(const OsiSolverInterface * solver=NULL);

protected:
  // Probably could get away with just value which is already stored 
  /// Lower [0] and upper [1] bounds for the down arm (way_ = -1)
  double down_[2];
  /// Lower [0] and upper [1] bounds for the up arm (way_ = 1)
  double up_[2];
};


/** Define Special Ordered Sets of type 1 and 2.  These do not have to be
    integer - so do not appear in lists of integers.
    
    which_ points columns of matrix
*/


class OsiSOS : public OsiObject2 {

public:

  // Default Constructor 
  OsiSOS ();

  /** Useful constructor - which are indices
      and  weights are also given.  If null then 0,1,2..
      type is SOS type
  */
  OsiSOS (const OsiSolverInterface * solver, int numberMembers,
	   const int * which, const double * weights, int type=1);
  
  // Copy constructor 
  OsiSOS ( const OsiSOS &);
   
  /// Clone
  virtual OsiObject * clone() const;

  // Assignment operator 
  OsiSOS & operator=( const OsiSOS& rhs);

  // Destructor 
  virtual ~OsiSOS ();
  
  using OsiObject::infeasibility ;
  /// Infeasibility - large is 0.5
  virtual double infeasibility(const OsiBranchingInformation * info,int & whichWay) const;

  using OsiObject::feasibleRegion ;
  /** Set bounds to fix the variable at the current (integer) value.

    Given an integer value, set the lower and upper bounds to fix the
    variable. Returns amount it had to move variable.
  */
  virtual double feasibleRegion(OsiSolverInterface * solver, const OsiBranchingInformation * info) const;

  /** Creates a branching object

    The preferred direction is set by \p way, 0 for down, 1 for up.
  */
  virtual OsiBranchingObject * createBranch(OsiSolverInterface * solver, const OsiBranchingInformation * info, int way) const;
  /// Return "up" estimate (default 1.0e-5)
  virtual double upEstimate() const;
  /// Return "down" estimate (default 1.0e-5)
  virtual double downEstimate() const;
  
  /// Redoes data when sequence numbers change
  virtual void resetSequenceEtc(int numberColumns, const int * originalColumns);
  
  /// Number of members
  inline int numberMembers() const
  {return numberMembers_;}

  /// Members (indices in range 0 ... numberColumns-1)
  inline const int * members() const
  {return members_;}

  /// SOS type
  inline int sosType() const
  {return sosType_;}

  /// SOS type
  inline int setType() const
  {return sosType_;}

  /** Array of weights */
  inline const double * weights() const
  { return weights_;}

  /** \brief Return true if object can take part in normal heuristics
  */
  virtual bool canDoHeuristics() const 
  {return (sosType_==1&&integerValued_);}
  /// Set whether set is integer valued or not
  inline void setIntegerValued(bool yesNo)
  { integerValued_=yesNo;}
  /// Return true if knows how to deal with Pseudo Shadow Prices
  virtual bool canHandleShadowPrices() const
  { return true;}
  /// Set number of members
  inline void setNumberMembers(int value)
  {numberMembers_=value;}

  /// Members (indices in range 0 ... numberColumns-1)
  inline int * mutableMembers() const
  {return members_;}

  /// Set SOS type
  inline void setSosType(int value)
  {sosType_=value;}

  /** Array of weights */
  inline  double * mutableWeights() const
  { return weights_;}
protected:
  /// data

  /// Members (indices in range 0 ... numberColumns-1)
  int * members_;
  /// Weights
  double * weights_;

  /// Number of members
  int numberMembers_;
  /// SOS type
  int sosType_;
  /// Whether integer valued
  bool integerValued_;
};

/** Branching object for Special ordered sets

 */
class OsiSOSBranchingObject : public OsiTwoWayBranchingObject {

public:

  // Default Constructor 
  OsiSOSBranchingObject ();

  // Useful constructor
  OsiSOSBranchingObject (OsiSolverInterface * solver,  const OsiSOS * originalObject,
			    int way,
			 double separator);
  
  // Copy constructor 
  OsiSOSBranchingObject ( const OsiSOSBranchingObject &);
   
  // Assignment operator 
  OsiSOSBranchingObject & operator=( const OsiSOSBranchingObject& rhs);

  /// Clone
  virtual OsiBranchingObject * clone() const;

  // Destructor 
  virtual ~OsiSOSBranchingObject ();
  
  using OsiBranchingObject::branch ;
  /// Does next branch and updates state
  virtual double branch(OsiSolverInterface * solver);

  using OsiBranchingObject::print ;
  /** \brief Print something about branch - only if log level high
  */
  virtual void print(const OsiSolverInterface * solver=NULL);
private:
  /// data
};
/** Lotsize class */


class OsiLotsize : public OsiObject2 {

public:

  // Default Constructor 
  OsiLotsize ();

  /* Useful constructor - passed model index.
     Also passed valid values - if range then pairs
  */
  OsiLotsize (const OsiSolverInterface * solver, int iColumn,
	      int numberPoints, const double * points, bool range=false);
  
  // Copy constructor 
  OsiLotsize ( const OsiLotsize &);
   
  /// Clone
  virtual OsiObject * clone() const;

  // Assignment operator 
  OsiLotsize & operator=( const OsiLotsize& rhs);

  // Destructor 
  virtual ~OsiLotsize ();
  
  using OsiObject::infeasibility ;
  /// Infeasibility - large is 0.5
  virtual double infeasibility(const OsiBranchingInformation * info, int & whichWay) const;

  using OsiObject::feasibleRegion ;
  /** Set bounds to contain the current solution.

    More precisely, for the variable associated with this object, take the
    value given in the current solution, force it within the current bounds
    if required, then set the bounds to fix the variable at the integer
    nearest the solution value.  Returns amount it had to move variable.
  */
  virtual double feasibleRegion(OsiSolverInterface * solver, const OsiBranchingInformation * info) const;

  /** Creates a branching object

    The preferred direction is set by \p way, 0 for down, 1 for up.
  */
  virtual OsiBranchingObject * createBranch(OsiSolverInterface * solver, const OsiBranchingInformation * info, int way) const;


  /// Set solver column number
  inline void setColumnNumber(int value)
  {columnNumber_=value;}
  
  /** Column number if single column object -1 otherwise,
      so returns >= 0
      Used by heuristics
  */
  virtual int columnNumber() const;
  /** Reset original upper and lower bound values from the solver.
  
    Handy for updating bounds held in this object after bounds held in the
    solver have been tightened.
   */
  virtual void resetBounds(const OsiSolverInterface * solver);

  /** Finds range of interest so value is feasible in range range_ or infeasible 
      between hi[range_] and lo[range_+1].  Returns true if feasible.
  */
  bool findRange(double value, double integerTolerance) const;
  
  /** Returns floor and ceiling
  */
  virtual void floorCeiling(double & floorLotsize, double & ceilingLotsize, double value,
			    double tolerance) const;
  
  /// Original bounds
  inline double originalLowerBound() const
  { return bound_[0];}
  inline double originalUpperBound() const
  { return bound_[rangeType_*numberRanges_-1];}
  /// Type - 1 points, 2 ranges
  inline int rangeType() const
  { return rangeType_;}
  /// Number of points
  inline int numberRanges() const
  { return numberRanges_;}
  /// Ranges
  inline double * bound() const
  { return bound_;}
  /**  Change column numbers after preprocessing
   */
  virtual void resetSequenceEtc(int numberColumns, const int * originalColumns);
  
  /// Return "up" estimate (default 1.0e-5)
  virtual double upEstimate() const;
  /// Return "down" estimate (default 1.0e-5)
  virtual double downEstimate() const;
  /// Return true if knows how to deal with Pseudo Shadow Prices
  virtual bool canHandleShadowPrices() const
  { return true;}
  /** \brief Return true if object can take part in normal heuristics
  */
  virtual bool canDoHeuristics() const 
  {return false;}

private:
  /// data

  /// Column number in model
  int columnNumber_;
  /// Type - 1 points, 2 ranges
  int rangeType_;
  /// Number of points
  int numberRanges_;
  // largest gap
  double largestGap_;
  /// Ranges
  double * bound_;
  /// Current range
  mutable int range_;
};


/** Lotsize branching object

  This object can specify a two-way branch on an integer variable. For each
  arm of the branch, the upper and lower bounds on the variable can be
  independently specified.
  
  Variable_ holds the index of the integer variable in the integerVariable_
  array of the model.
*/

class OsiLotsizeBranchingObject : public OsiTwoWayBranchingObject {

public:

  /// Default constructor 
  OsiLotsizeBranchingObject ();

  /** Create a lotsize floor/ceiling branch object

    Specifies a simple two-way branch. Let \p value = x*. One arm of the
    branch will be is lb <= x <= valid range below(x*), the other valid range above(x*) <= x <= ub.
    Specify way = -1 to set the object state to perform the down arm first,
    way = 1 for the up arm.
  */
  OsiLotsizeBranchingObject (OsiSolverInterface *solver,const OsiLotsize * originalObject, 
			     int way , double value) ;
  
  /// Copy constructor 
  OsiLotsizeBranchingObject ( const OsiLotsizeBranchingObject &);
   
  /// Assignment operator 
  OsiLotsizeBranchingObject & operator= (const OsiLotsizeBranchingObject& rhs);

  /// Clone
  virtual OsiBranchingObject * clone() const;

  /// Destructor 
  virtual ~OsiLotsizeBranchingObject ();

  using OsiBranchingObject::branch ;
  /** \brief Sets the bounds for the variable according to the current arm
	     of the branch and advances the object state to the next arm.
	     state. 
	     Returns change in guessed objective on next branch
  */
  virtual double branch(OsiSolverInterface * solver);

  using OsiBranchingObject::print ;
  /** \brief Print something about branch - only if log level high
  */
  virtual void print(const OsiSolverInterface * solver=NULL);

protected:
  /// Lower [0] and upper [1] bounds for the down arm (way_ = -1)
  double down_[2];
  /// Lower [0] and upper [1] bounds for the up arm (way_ = 1)
  double up_[2];
};
#endif