This file is indexed.

/usr/share/genius/examples/newton-sqrt2.gel is in genius-common 1.0.21-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# Category: Calculus
# Name: Newton's method graphically computing sqrt(2)

function f(x)=x^2-2;
c1 = 2;
LinePlotWindow=[1,2.5,-3,4];

df = SymbolicDerivative(f);

LinePlotDrawLegends=false;
LinePlotClear();
PlotWindowPresent(); # Make sure the window is raised


LinePlot(f);
LinePlotDrawLine(c1,-100,c1,100,"color","red","thickness",1);

AskButtons("We're starting with an estimate at x=2","OK");

LinePlot(f,`(x)=df(c1)*(x-c1)+f(c1));
c2=c1-f(c1)/df(c1);
LinePlotDrawLine(c1,-100,c1,100,"color","black","thickness",1);
LinePlotDrawLine(c2,-100,c2,100,"color","red","thickness",1);
AskButtons(float(c2)+" (real sqrt(2) is " + sqrt(2) + ")","OK");

LinePlot(f,
         `(x)=df(c2)*(x-c2)+f(c2));
c3=c2-f(c2)/df(c2);
LinePlotDrawLine(c1,-100,c1,100,"color","black","thickness",1);
LinePlotDrawLine(c2,-100,c2,100,"color","black","thickness",1);
LinePlotDrawLine(c3,-100,c3,100,"color","red","thickness",1);
AskButtons(float(c3)+" (real sqrt(2) is " + sqrt(2) + ")","OK");

LinePlot(f,
         `(x)=df(c3)*(x-c3)+f(c3));
c4=c3-f(c3)/df(c3);
LinePlotDrawLine(c1,-100,c1,100,"color","black","thickness",1);
LinePlotDrawLine(c2,-100,c2,100,"color","black","thickness",1);
LinePlotDrawLine(c3,-100,c3,100,"color","black","thickness",1);
LinePlotDrawLine(c4,-100,c4,100,"color","red","thickness",1);
AskButtons(float(c4)+" (real sqrt(2) is " + sqrt(2) + ")","OK");