This file is indexed.

/usr/share/genius/gel/calculus/fourier.gel is in genius-common 1.0.21-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# FourierSeries
# 
function NumericalFourierSeriesFunction(f,L,N) =
	(
	local *;
# check arguments
	if not IsFunctionOrIdentifier(f) then
		(error("NumericalFourierSeriesFunction: argument f must be a function");bailout)
	else if not (IsReal(L) and L > 0) then
		(error("NumericalFourierSeriesFunction: argument L must be a positive real value");bailout)
	else if not IsPositiveInteger(N) then
		(error("NumericalFourierSeriesFunction: argument N must be a positive integer");bailout);

	c = NumericalFourierSeriesCoefficients(f,L,N);

	FourierSeriesFunction(c@(1),c@(2),L)
)
SetHelp("NumericalFourierSeriesFunction","calculus","Return a function which is the Fourier series of f with half-period L with coefficients up to N computed numerically");

function NumericalFourierSineSeriesFunction(f,L,N) =
	(
	local *;
# check arguments
	if not IsFunctionOrIdentifier(f) then
		(error("NumericalFourierSineSeriesFunction: argument f must be a function");bailout)
	else if not (IsReal(L) and L > 0) then
		(error("NumericalFourierSineSeriesFunction: argument L must be a positive real value");bailout)
	else if not IsPositiveInteger(N) then
		(error("NumericalFourierSineSeriesFunction: argument N must be a positive integer");bailout);

	b = NumericalFourierSineSeriesCoefficients(f,L,N);

	FourierSeriesFunction(null,b,L)
)
SetHelp("NumericalFourierSineSeriesFunction","calculus","Return a function which is the Fourier sine series of f on [0,L] with coefficients up to N computed numerically");

function NumericalFourierCosineSeriesFunction(f,L,N) =
	(
	local *;
# check arguments
	if not IsFunctionOrIdentifier(f) then
		(error("NumericalFourierCosineSeriesFunction: argument f must be a function");bailout)
	else if not (IsReal(L) and L > 0) then
		(error("NumericalFourierCosineSeriesFunction: argument L must be a positive real value");bailout)
	else if not IsPositiveInteger(N) then
		(error("NumericalFourierCosineSeriesFunction: argument N must be a positive integer");bailout);

	a = NumericalFourierCosineSeriesCoefficients(f,L,N);

	FourierSeriesFunction(a,null,L)
)
SetHelp("NumericalFourierCosineSeriesFunction","calculus","Return a function which is the Fourier cosine series of f on [0,L] with coefficients up to N computed numerically");

function FourierSeriesFunction(a,b,L) =
	(
# check arguments
	if not ((IsVector(a) or IsNull(a)) and (IsVector(b) or IsNull(b))) then
		(error("FourierSeriesFunction: arguments a and b must be vectors");bailout)
	else if not (IsReal(L) and L > 0) then
		(error("FourierSeriesFunction: argument L must be a positive real value");bailout);

	`(x)[a,b,L] = (
		if not IsNull(a) then (
			val = a@(1)/2 + sum n = 2 to elements(a) do
				a@(n) * cos(x*(n-1)*pi/L)
		) else (
			val = 0
		);
	
		if not IsNull(b) then (
			increment val by (sum n = 1 to elements(b) do
					    b@(n) * sin(x*n*pi/L))
		);
	
		val
	)
)
SetHelp("FourierSeriesFunction","calculus","Return a function which is a Fourier series with the coefficients given by the vectors a (sines) and b (cosines).  Note that a@(1) is the constant coefficient!");

function NumericalFourierSeriesCoefficients(f,L,N) =
	(
	local *;
# check arguments
	if not IsFunctionOrIdentifier(f) then
		(error("NumericalFourierSeriesCoefficients: argument f must be a function");bailout)
	else if not (IsReal(L) and L > 0) then
		(error("NumericalFourierSeriesCoefficients: argument L must be a positive real value");bailout)
	else if not IsPositiveInteger(N) then
		(error("NumericalFourierSeriesCoefficients: argument N must be a positive integer");bailout);

	a = .;
	b = .;

	a@(1) = (1/L)*NumericalIntegral(f,-L,L);
	for n = 1 to N do (
		a@(n+1) = (1/L)*NumericalIntegral(`(x)[f,L,n]=(local *;(f call (x))*cos(x*n*pi/L)),-L,L);
		b@(n) = (1/L)*NumericalIntegral(`(x)[f,L,n]=(local *;(f call (x))*sin(x*n*pi/L)),-L,L)
	);
	`[a,b]
)
SetHelp("NumericalFourierSeriesCoefficients","calculus","Numerically compute the coefficients for a Fourier series with half-period L up to the Nth coefficient.");

function NumericalFourierSineSeriesCoefficients(f,L,N) =
	(
	local *;
# check arguments
	if not IsFunctionOrIdentifier(f) then
		(error("NumericalFourierSineSeriesCoefficients: argument f must be a function");bailout)
	else if not (IsReal(L) and L > 0) then
		(error("NumericalFourierSineSeriesCoefficients: argument L must be a positive real value");bailout)
	else if not IsPositiveInteger(N) then
		(error("NumericalFourierSineSeriesCoefficients: argument N must be a positive integer");bailout);

	b = .;

	for n = 1 to N do (
		b@(n) = (2/L)*NumericalIntegral(`(x)[f,L,n]=(local *;(f call (x))*sin(x*n*pi/L)),0,L)
	);
	b
)
SetHelp("NumericalFourierSineSeriesCoefficients","calculus","Numerically compute the coefficients for a sine Fourier series for a function on [0,L] up to the Nth coefficient.");

function NumericalFourierCosineSeriesCoefficients(f,L,N) =
	(
	local *;
# check arguments
	if not IsFunctionOrIdentifier(f) then
		(error("NumericalFourierCosineSeriesCoefficients: argument f must be a function");bailout)
	else if not (IsReal(L) and L > 0) then
		(error("NumericalFourierCosineSeriesCoefficients: argument L must be a positive real value");bailout)
	else if not IsPositiveInteger(N) then
		(error("NumericalFourierCosineSeriesCoefficients: argument N must be a positive integer");bailout);

	a = .;

	a@(1) = (2/L)*NumericalIntegral(f,0,L);
	for n = 1 to N do (
		a@(n+1) = (2/L)*NumericalIntegral(`(x)[f,L,n]=(local *;(f call (x))*cos(x*n*pi/L)),0,L)
	);
	a
)
SetHelp("NumericalFourierCosineSeriesCoefficients","calculus","Numerically compute the coefficients for a cosine Fourier series for a function on [0,L] up to the Nth coefficient.");

function PeriodicExtension(f,a,b) =
(
# check arguments
	if not IsFunctionOrIdentifier(f) then
		(error("PeriodicExtension: argument f must be a function");bailout)
	else if not (IsReal(a) and IsReal(b) and b > a) then
		(error("PeriodicExtension: arguments a, b must be a real, b > a");bailout);

	`(x)[f,a,b] = (
		local *;
		#This is pretty stupid, but simplest way to do this
		while x > b do increment x by (a-b); #-(b-a)
		while x < a do increment x by (b-a);
		(f call (x))
	)
)
SetHelp("PeriodicExtension","calculus","Return a function which is the periodic extension of f defined on the interval [a,b]");

function EvenPeriodicExtension(f,L) =
	(
# check arguments
	if not IsFunctionOrIdentifier(f) then
		(error("EvenPeriodicExtension: argument f must be a function");bailout)
	else if not (IsReal(L) and L > 0) then
		(error("EvenPeriodicExtension: argument L must be a positive real value");bailout);

	`(x)[f,L] = (
		local *;
		#This is pretty stupid, but simplest way to do this
		while x > L do increment x by -2*L;
		while x < -L do increment x by 2*L;

		if x >= 0 then (f call (x)) else (f call (-x))
	)
)
SetHelp("EvenPeriodicExtension","calculus","Return a function which is the even periodic extension of f defined on the interval [0,L]");

function OddPeriodicExtension(f,L) =
(
# check arguments
	if not IsFunctionOrIdentifier(f) then
		(error("OddPeriodicExtension: argument f must be a function");bailout)
	else if not (IsReal(L) and L > 0) then
		(error("OddPeriodicExtension: argument L must be a positive real value");bailout);

	`(x)[f,L] = (
		local *;
		#This is pretty stupid, but simplest way to do this
		while x > L do increment x by -2*L;
		while x < -L do increment x by 2*L;

		if x >= 0 then (f call (x)) else -(f call (-x))
	)
)
SetHelp("OddPeriodicExtension","calculus","Return a function which is the odd periodic extension of f defined on the interval [0,L]");