This file is indexed.

/usr/share/genius/gel/symbolic/differentiation.gel is in genius-common 1.0.21-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
function SymbolicNthDerivative(f,n) =
(
	local *;
	if not IsFunction(f) then
		(error("SymbolicNthDerivative: argument 1 must be a function");bailout)
	else if not IsNonNegativeInteger(n) then
		(error("SymbolicNthDerivative: argument 2 must be a non-negative integer");bailout);

	df = f;

	for k=1 to n do (
		df = SymbolicDerivativeTry (df);
		if IsNull(df) then
			(error("SymbolicNthDerivative: Cannot differentiate function n times");bailout)
	);
	df
)
SetHelp("SymbolicNthDerivative","symbolic","Attempt to symbolically differentiate a function n times");

function SymbolicNthDerivativeTry(f,n) =
(
	local *;
	if not IsFunction(f) then
		(error("SymbolicNthDerivativeTry: argument 1 must be a function");bailout)
	else if not IsNonNegativeInteger(n) then
		(error("SymbolicNthDerivativeTry: argument 2 must be a non-negative integer");bailout);

	df = f;

	for k=1 to n do (
		df = SymbolicDerivativeTry (df);
		if IsNull(df) then
			return null
	);
	df
)
SetHelp("SymbolicNthDerivativeTry","symbolic","Attempt to symbolically differentiate a function n times quietly and return null on failure");

function SymbolicTaylorApproximationFunction(f,x0,n) =
(
	local *;
	if not IsFunction(f) then
		(error("SymbolicTaylorApproximationFunction: argument 1 must be a function");bailout)
	else if not IsValue(x0) then
		(error("SymbolicTaylorApproximationFunction: argument 2 must be a value");bailout)
	else if not IsPositiveInteger(n) then
		(error("SymbolicTaylorApproximationFunction: argument 3 must be a positive integer");bailout);

	df = f;
	c = null;

	for k=0 to n do (
		c@(k+1) = (df call (x0))/(k!);
		if k < n then (
			df = SymbolicDerivative (df);
			if IsNull(df) then
				return null
	        )
	);
	tp = PolyToFunction (c);
	`(x)[tp,x0] = (tp call (x - x0))
)
SetHelp("SymbolicTaylorApproximationFunction","symbolic","Attempt to construct the Taylor approximation function around x0 to the nth degree.");