/usr/include/gnuradio/analog/agc.h is in gnuradio-dev 3.7.9.1-2ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 | /* -*- c++ -*- */
/*
* Copyright 2006,2012 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#ifndef INCLUDED_ANALOG_AGC_H
#define INCLUDED_ANALOG_AGC_H
#include <gnuradio/analog/api.h>
#include <gnuradio/gr_complex.h>
#include <math.h>
namespace gr {
namespace analog {
namespace kernel {
/*!
* \brief high performance Automatic Gain Control class for complex signals.
* \ingroup level_controllers_blk
*
* \details
* For Power the absolute value of the complex number is used.
*/
class ANALOG_API agc_cc
{
public:
/*!
* Construct a complex value AGC loop implementation object.
*
* \param rate the update rate of the loop.
* \param reference reference value to adjust signal power to.
* \param gain initial gain value.
* \param max_gain maximum gain value (0 for unlimited).
*/
agc_cc(float rate = 1e-4, float reference = 1.0,
float gain = 1.0, float max_gain = 0.0)
: _rate(rate), _reference(reference),
_gain(gain), _max_gain(max_gain) {};
virtual ~agc_cc() {};
float rate() const { return _rate; }
float reference() const { return _reference; }
float gain() const { return _gain; }
float max_gain() const { return _max_gain; }
void set_rate(float rate) { _rate = rate; }
void set_reference(float reference) { _reference = reference; }
void set_gain(float gain) { _gain = gain; }
void set_max_gain(float max_gain) { _max_gain = max_gain; }
gr_complex scale(gr_complex input)
{
gr_complex output = input * _gain;
_gain += _rate * (_reference - sqrt(output.real()*output.real() +
output.imag()*output.imag()));
if(_max_gain > 0.0 && _gain > _max_gain) {
_gain = _max_gain;
}
return output;
}
void scaleN(gr_complex output[], const gr_complex input[], unsigned n)
{
for(unsigned i = 0; i < n; i++) {
output[i] = scale (input[i]);
}
}
protected:
float _rate; // adjustment rate
float _reference; // reference value
float _gain; // current gain
float _max_gain; // max allowable gain
};
/*!
* \brief high performance Automatic Gain Control class for float signals.
*
* Power is approximated by absolute value
*/
class ANALOG_API agc_ff
{
public:
/*!
* Construct a floating point value AGC loop implementation object.
*
* \param rate the update rate of the loop.
* \param reference reference value to adjust signal power to.
* \param gain initial gain value.
* \param max_gain maximum gain value (0 for unlimited).
*/
agc_ff(float rate = 1e-4, float reference = 1.0,
float gain = 1.0, float max_gain = 0.0)
: _rate(rate), _reference(reference), _gain(gain),
_max_gain(max_gain) {};
~agc_ff() {};
float rate () const { return _rate; }
float reference () const { return _reference; }
float gain () const { return _gain; }
float max_gain () const { return _max_gain; }
void set_rate (float rate) { _rate = rate; }
void set_reference (float reference) { _reference = reference; }
void set_gain (float gain) { _gain = gain; }
void set_max_gain (float max_gain) { _max_gain = max_gain; }
float scale (float input)
{
float output = input * _gain;
_gain += (_reference - fabsf (output)) * _rate;
if(_max_gain > 0.0 && _gain > _max_gain)
_gain = _max_gain;
return output;
}
void scaleN(float output[], const float input[], unsigned n)
{
for(unsigned i = 0; i < n; i++)
output[i] = scale (input[i]);
}
protected:
float _rate; // adjustment rate
float _reference; // reference value
float _gain; // current gain
float _max_gain; // maximum gain
};
} /* namespace kernel */
} /* namespace analog */
} /* namespace gr */
#endif /* INCLUDED_ANALOG_AGC_H */
|