/usr/include/gnuradio/math.h is in gnuradio-dev 3.7.9.1-2ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 | /* -*- c++ -*- */
/*
* Copyright 2003,2005,2008,2013 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
/*
* mathematical odds and ends.
*/
#ifndef _GR_MATH_H_
#define _GR_MATH_H_
#include <cmath>
#include <gnuradio/api.h>
#include <gnuradio/gr_complex.h>
namespace gr {
static inline bool
is_power_of_2(long x)
{
return x != 0 && (x & (x-1)) == 0;
}
/*!
* \brief Fast arc tangent using table lookup and linear interpolation
* \ingroup misc
*
* \param y component of input vector
* \param x component of input vector
* \returns float angle angle of vector (x, y) in radians
*
* This function calculates the angle of the vector (x,y) based on a
* table lookup and linear interpolation. The table uses a 256 point
* table covering -45 to +45 degrees and uses symetry to determine
* the final angle value in the range of -180 to 180 degrees. Note
* that this function uses the small angle approximation for values
* close to zero. This routine calculates the arc tangent with an
* average error of +/- 0.045 degrees.
*/
GR_RUNTIME_API float fast_atan2f(float y, float x);
static inline float
fast_atan2f(gr_complex z)
{
return fast_atan2f(z.imag(), z.real());
}
/* This bounds x by +/- clip without a branch */
static inline float
branchless_clip(float x, float clip)
{
float x1 = fabsf(x+clip);
float x2 = fabsf(x-clip);
x1 -= x2;
return 0.5*x1;
}
static inline float
clip(float x, float clip)
{
float y = x;
if(x > clip)
y = clip;
else if(x < -clip)
y = -clip;
return y;
}
// Slicer Functions
static inline unsigned int
binary_slicer(float x)
{
if(x >= 0)
return 1;
else
return 0;
}
static inline unsigned int
quad_45deg_slicer(float r, float i)
{
unsigned int ret = 0;
if((r >= 0) && (i >= 0))
ret = 0;
else if((r < 0) && (i >= 0))
ret = 1;
else if((r < 0) && (i < 0))
ret = 2;
else
ret = 3;
return ret;
}
static inline unsigned int
quad_0deg_slicer(float r, float i)
{
unsigned int ret = 0;
if(fabsf(r) > fabsf(i)) {
if(r > 0)
ret = 0;
else
ret = 2;
}
else {
if(i > 0)
ret = 1;
else
ret = 3;
}
return ret;
}
static inline unsigned int
quad_45deg_slicer(gr_complex x)
{
return quad_45deg_slicer(x.real(), x.imag());
}
static inline unsigned int
quad_0deg_slicer(gr_complex x)
{
return quad_0deg_slicer(x.real(), x.imag());
}
// Branchless Slicer Functions
static inline unsigned int
branchless_binary_slicer(float x)
{
return (x >= 0);
}
static inline unsigned int
branchless_quad_0deg_slicer(float r, float i)
{
unsigned int ret = 0;
ret = (fabsf(r) > fabsf(i)) * (((r < 0) << 0x1)); // either 0 (00) or 2 (10)
ret |= (fabsf(i) > fabsf(r)) * (((i < 0) << 0x1) | 0x1); // either 1 (01) or 3 (11)
return ret;
}
static inline unsigned int
branchless_quad_0deg_slicer(gr_complex x)
{
return branchless_quad_0deg_slicer(x.real(), x.imag());
}
static inline unsigned int
branchless_quad_45deg_slicer(float r, float i)
{
char ret = (r <= 0);
ret |= ((i <= 0) << 1);
return (ret ^ ((ret & 0x2) >> 0x1));
}
static inline unsigned int
branchless_quad_45deg_slicer(gr_complex x)
{
return branchless_quad_45deg_slicer(x.real(), x.imag());
}
/*!
* \param x any value
* \param pow2 must be a power of 2
* \returns \p x rounded down to a multiple of \p pow2.
*/
static inline size_t
p2_round_down(size_t x, size_t pow2)
{
return x & -pow2;
}
/*!
* \param x any value
* \param pow2 must be a power of 2
* \returns \p x rounded up to a multiple of \p pow2.
*/
static inline size_t
p2_round_up(size_t x, size_t pow2)
{
return p2_round_down(x + pow2 - 1, pow2);
}
/*!
* \param x any value
* \param pow2 must be a power of 2
* \returns \p x modulo \p pow2.
*/
static inline size_t
p2_modulo(size_t x, size_t pow2)
{
return x & (pow2 - 1);
}
/*!
* \param x any value
* \param pow2 must be a power of 2
* \returns \p pow2 - (\p x modulo \p pow2).
*/
static inline size_t
p2_modulo_neg(size_t x, size_t pow2)
{
return pow2 - p2_modulo(x, pow2);
}
} /* namespace gr */
#endif /* _GR_MATH_H_ */
|