/usr/include/gnuradio/nco.h is in gnuradio-dev 3.7.9.1-2ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 | /* -*- c++ -*- */
/*
* Copyright 2002,2013 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#ifndef _GR_NCO_H_
#define _GR_NCO_H_
#include <gnuradio/sincos.h>
#include <gnuradio/gr_complex.h>
#include <vector>
#include <cmath>
namespace gr {
/*!
* \brief base class template for Numerically Controlled Oscillator (NCO)
* \ingroup misc
*/
template<class o_type, class i_type>
class nco
{
public:
nco() : phase(0), phase_inc(0) {}
virtual ~nco() {}
// radians
void set_phase(double angle)
{
phase = angle;
}
void adjust_phase(double delta_phase)
{
phase += delta_phase;
}
// angle_rate is in radians / step
void set_freq(double angle_rate)
{
phase_inc = angle_rate;
}
// angle_rate is a delta in radians / step
void adjust_freq(double delta_angle_rate)
{
phase_inc += delta_angle_rate;
}
// increment current phase angle
void step()
{
phase += phase_inc;
if(fabs(phase) > M_PI) {
while(phase > M_PI)
phase -= 2*M_PI;
while(phase < -M_PI)
phase += 2*M_PI;
}
}
void step(int n)
{
phase += phase_inc * n;
if(fabs(phase) > M_PI){
while(phase > M_PI)
phase -= 2*M_PI;
while(phase < -M_PI)
phase += 2*M_PI;
}
}
// units are radians / step
double get_phase() const { return phase; }
double get_freq() const { return phase_inc; }
// compute sin and cos for current phase angle
void sincos(float *sinx, float *cosx) const;
// compute cos or sin for current phase angle
float cos() const { return std::cos(phase); }
float sin() const { return std::sin(phase); }
// compute a block at a time
void sin(float *output, int noutput_items, double ampl = 1.0);
void cos(float *output, int noutput_items, double ampl = 1.0);
void sincos(gr_complex *output, int noutput_items, double ampl = 1.0);
void sin(short *output, int noutput_items, double ampl = 1.0);
void cos(short *output, int noutput_items, double ampl = 1.0);
void sin(int *output, int noutput_items, double ampl = 1.0);
void cos(int *output, int noutput_items, double ampl = 1.0);
protected:
double phase;
double phase_inc;
};
template<class o_type, class i_type>
void
nco<o_type,i_type>::sincos(float *sinx, float *cosx) const
{
gr::sincosf(phase, sinx, cosx);
}
template<class o_type, class i_type>
void
nco<o_type,i_type>::sin(float *output, int noutput_items, double ampl)
{
for(int i = 0; i < noutput_items; i++) {
output[i] = (float)(sin () * ampl);
step();
}
}
template<class o_type, class i_type>
void
nco<o_type,i_type>::cos(float *output, int noutput_items, double ampl)
{
for(int i = 0; i < noutput_items; i++) {
output[i] = (float)(cos() * ampl);
step();
}
}
template<class o_type, class i_type>
void
nco<o_type,i_type>::sin(short *output, int noutput_items, double ampl)
{
for(int i = 0; i < noutput_items; i++) {
output[i] = (short)(sin() * ampl);
step();
}
}
template<class o_type, class i_type>
void
nco<o_type,i_type>::cos(short *output, int noutput_items, double ampl)
{
for(int i = 0; i < noutput_items; i++) {
output[i] = (short)(cos() * ampl);
step();
}
}
template<class o_type, class i_type>
void
nco<o_type,i_type>::sin(int *output, int noutput_items, double ampl)
{
for(int i = 0; i < noutput_items; i++) {
output[i] = (int)(sin() * ampl);
step();
}
}
template<class o_type, class i_type>
void
nco<o_type,i_type>::cos(int *output, int noutput_items, double ampl)
{
for(int i = 0; i < noutput_items; i++) {
output[i] = (int)(cos() * ampl);
step();
}
}
template<class o_type, class i_type>
void
nco<o_type,i_type>::sincos(gr_complex *output, int noutput_items, double ampl)
{
for(int i = 0; i < noutput_items; i++) {
float cosx, sinx;
nco::sincos(&sinx, &cosx);
output[i] = gr_complex(cosx * ampl, sinx * ampl);
step();
}
}
} /* namespace gr */
#endif /* _NCO_H_ */
|