/usr/include/pmt/pmt.h is in gnuradio-dev 3.7.9.1-2ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 | /* -*- c++ -*- */
/*
* Copyright 2006,2009,2010,2013 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#ifndef INCLUDED_PMT_H
#define INCLUDED_PMT_H
#include <pmt/api.h>
#include <boost/intrusive_ptr.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/any.hpp>
#include <complex>
#include <string>
#include <stdint.h>
#include <iosfwd>
#include <stdexcept>
#include <vector>
namespace gr {
namespace messages {
class msg_accepter;
}
}
/*!
* This file defines a polymorphic type and the operations on it.
*
* It draws heavily on the idea of scheme and lisp data types.
* The interface parallels that in Guile 1.8, with the notable
* exception that these objects are transparently reference counted.
*/
namespace pmt {
/*!
* \brief base class of all pmt types
*/
class pmt_base;
/*!
* \brief typedef for shared pointer (transparent reference counting).
* See http://www.boost.org/libs/smart_ptr/smart_ptr.htm
*/
typedef boost::intrusive_ptr<pmt_base> pmt_t;
extern PMT_API void intrusive_ptr_add_ref(pmt_base*);
extern PMT_API void intrusive_ptr_release(pmt_base*);
class PMT_API exception : public std::logic_error
{
public:
exception(const std::string &msg, pmt_t obj);
};
class PMT_API wrong_type : public exception
{
public:
wrong_type(const std::string &msg, pmt_t obj);
};
class PMT_API out_of_range : public exception
{
public:
out_of_range(const std::string &msg, pmt_t obj);
};
class PMT_API notimplemented : public exception
{
public:
notimplemented(const std::string &msg, pmt_t obj);
};
/*
* ------------------------------------------------------------------------
* Constants
* ------------------------------------------------------------------------
*/
PMT_API pmt_t get_PMT_NIL();
PMT_API pmt_t get_PMT_T();
PMT_API pmt_t get_PMT_F();
PMT_API pmt_t get_PMT_EOF();
#define PMT_NIL get_PMT_NIL()
#define PMT_T get_PMT_T()
#define PMT_F get_PMT_F()
#define PMT_EOF get_PMT_EOF()
/*
* ------------------------------------------------------------------------
* Booleans. Two constants, #t and #f.
*
* In predicates, anything that is not #f is considered true.
* I.e., there is a single false value, #f.
* ------------------------------------------------------------------------
*/
//! Return true if obj is \#t or \#f, else return false.
PMT_API bool is_bool(pmt_t obj);
//! Return false if obj is \#f, else return true.
PMT_API bool is_true(pmt_t obj);
//! Return true if obj is \#f, else return true.
PMT_API bool is_false(pmt_t obj);
//! Return \#f is val is false, else return \#t.
PMT_API pmt_t from_bool(bool val);
//! Return true if val is pmt::True, return false when val is pmt::PMT_F,
// else raise wrong_type exception.
PMT_API bool to_bool(pmt_t val);
/*
* ------------------------------------------------------------------------
* Symbols
* ------------------------------------------------------------------------
*/
//! Return true if obj is a symbol, else false.
PMT_API bool is_symbol(const pmt_t& obj);
//! Return the symbol whose name is \p s.
PMT_API pmt_t string_to_symbol(const std::string &s);
//! Alias for pmt_string_to_symbol
PMT_API pmt_t intern(const std::string &s);
/*!
* If \p is a symbol, return the name of the symbol as a string.
* Otherwise, raise the wrong_type exception.
*/
PMT_API const std::string symbol_to_string(const pmt_t& sym);
/*
* ------------------------------------------------------------------------
* Numbers: we support integer, real and complex
* ------------------------------------------------------------------------
*/
//! Return true if obj is any kind of number, else false.
PMT_API bool is_number(pmt_t obj);
/*
* ------------------------------------------------------------------------
* Integers
* ------------------------------------------------------------------------
*/
//! Return true if \p x is an integer number, else false
PMT_API bool is_integer(pmt_t x);
//! Return the pmt value that represents the integer \p x.
PMT_API pmt_t from_long(long x);
/*!
* \brief Convert pmt to long if possible.
*
* When \p x represents an exact integer that fits in a long,
* return that integer. Else raise an exception, either wrong_type
* when x is not an exact integer, or out_of_range when it doesn't fit.
*/
PMT_API long to_long(pmt_t x);
/*
* ------------------------------------------------------------------------
* uint64_t
* ------------------------------------------------------------------------
*/
//! Return true if \p x is an uint64 number, else false
PMT_API bool is_uint64(pmt_t x);
//! Return the pmt value that represents the uint64 \p x.
PMT_API pmt_t from_uint64(uint64_t x);
/*!
* \brief Convert pmt to uint64 if possible.
*
* When \p x represents an exact integer that fits in a uint64,
* return that uint64. Else raise an exception, either wrong_type
* when x is not an exact uint64, or out_of_range when it doesn't fit.
*/
PMT_API uint64_t to_uint64(pmt_t x);
/*
* ------------------------------------------------------------------------
* Reals
* ------------------------------------------------------------------------
*/
/*
* \brief Return true if \p obj is a real number, else false.
*/
PMT_API bool is_real(pmt_t obj);
//! Return the pmt value that represents double \p x.
PMT_API pmt_t from_double(double x);
PMT_API pmt_t from_float(float x);
/*!
* \brief Convert pmt to double if possible.
*
* Returns the number closest to \p val that is representable
* as a double. The argument \p val must be a real or integer, otherwise
* a wrong_type exception is raised.
*/
PMT_API double to_double(pmt_t x);
/*!
* \brief Convert pmt to float if possible.
*
* This basically is to_double() with a type-cast; the PMT stores
* the value as a double in any case. Use this when strict typing
* is required.
*/
PMT_API float to_float(pmt_t x);
/*
* ------------------------------------------------------------------------
* Complex
* ------------------------------------------------------------------------
*/
/*!
* \brief return true if \p obj is a complex number, false otherwise.
*/
PMT_API bool is_complex(pmt_t obj);
//! Return a complex number constructed of the given real and imaginary parts.
PMT_API pmt_t make_rectangular(double re, double im);
//! Return a complex number constructed of the given real and imaginary parts.
PMT_API pmt_t from_complex(double re, double im);
//! Return a complex number constructed of the given a complex number.
PMT_API pmt_t from_complex(const std::complex<double> &z);
//! Return a complex number constructed of the given real and imaginary parts.
PMT_API pmt_t pmt_from_complex(double re, double im);
//! Return a complex number constructed of the given a complex number.
PMT_API pmt_t pmt_from_complex(const std::complex<double> &z);
/*!
* If \p z is complex, real or integer, return the closest complex<double>.
* Otherwise, raise the wrong_type exception.
*/
PMT_API std::complex<double> to_complex(pmt_t z);
/*
* ------------------------------------------------------------------------
* Pairs
* ------------------------------------------------------------------------
*/
//! Return true if \p x is the empty list, otherwise return false.
PMT_API bool is_null(const pmt_t& x);
//! Return true if \p obj is a pair, else false.
PMT_API bool is_pair(const pmt_t& obj);
//! Return a newly allocated pair whose car is \p x and whose cdr is \p y.
PMT_API pmt_t cons(const pmt_t& x, const pmt_t& y);
//! If \p pair is a pair, return the car of the \p pair, otherwise raise wrong_type.
PMT_API pmt_t car(const pmt_t& pair);
//! If \p pair is a pair, return the cdr of the \p pair, otherwise raise wrong_type.
PMT_API pmt_t cdr(const pmt_t& pair);
//! Stores \p value in the car field of \p pair.
PMT_API void set_car(pmt_t pair, pmt_t value);
//! Stores \p value in the cdr field of \p pair.
PMT_API void set_cdr(pmt_t pair, pmt_t value);
PMT_API pmt_t caar(pmt_t pair);
PMT_API pmt_t cadr(pmt_t pair);
PMT_API pmt_t cdar(pmt_t pair);
PMT_API pmt_t cddr(pmt_t pair);
PMT_API pmt_t caddr(pmt_t pair);
PMT_API pmt_t cadddr(pmt_t pair);
/*
* ------------------------------------------------------------------------
* Tuples
*
* Store a fixed number of objects. Tuples are not modifiable, and thus
* are excellent for use as messages. Indexing is zero based.
* Access time to an element is O(1).
* ------------------------------------------------------------------------
*/
//! Return true if \p x is a tuple, othewise false.
PMT_API bool is_tuple(pmt_t x);
PMT_API pmt_t make_tuple();
PMT_API pmt_t make_tuple(const pmt_t &e0);
PMT_API pmt_t make_tuple(const pmt_t &e0, const pmt_t &e1);
PMT_API pmt_t make_tuple(const pmt_t &e0, const pmt_t &e1, const pmt_t &e2);
PMT_API pmt_t make_tuple(const pmt_t &e0, const pmt_t &e1, const pmt_t &e2, const pmt_t &e3);
PMT_API pmt_t make_tuple(const pmt_t &e0, const pmt_t &e1, const pmt_t &e2, const pmt_t &e3, const pmt_t &e4);
PMT_API pmt_t make_tuple(const pmt_t &e0, const pmt_t &e1, const pmt_t &e2, const pmt_t &e3, const pmt_t &e4, const pmt_t &e5);
PMT_API pmt_t make_tuple(const pmt_t &e0, const pmt_t &e1, const pmt_t &e2, const pmt_t &e3, const pmt_t &e4, const pmt_t &e5, const pmt_t &e6);
PMT_API pmt_t make_tuple(const pmt_t &e0, const pmt_t &e1, const pmt_t &e2, const pmt_t &e3, const pmt_t &e4, const pmt_t &e5, const pmt_t &e6, const pmt_t &e7);
PMT_API pmt_t make_tuple(const pmt_t &e0, const pmt_t &e1, const pmt_t &e2, const pmt_t &e3, const pmt_t &e4, const pmt_t &e5, const pmt_t &e6, const pmt_t &e7, const pmt_t &e8);
PMT_API pmt_t make_tuple(const pmt_t &e0, const pmt_t &e1, const pmt_t &e2, const pmt_t &e3, const pmt_t &e4, const pmt_t &e5, const pmt_t &e6, const pmt_t &e7, const pmt_t &e8, const pmt_t &e9);
/*!
* If \p x is a vector or proper list, return a tuple containing the elements of x
*/
PMT_API pmt_t to_tuple(const pmt_t &x);
/*!
* Return the contents of position \p k of \p tuple.
* \p k must be a valid index of \p tuple.
*/
PMT_API pmt_t tuple_ref(const pmt_t &tuple, size_t k);
/*
* ------------------------------------------------------------------------
* Vectors
*
* These vectors can hold any kind of objects. Indexing is zero based.
* ------------------------------------------------------------------------
*/
//! Return true if \p x is a vector, othewise false.
PMT_API bool is_vector(pmt_t x);
//! Make a vector of length \p k, with initial values set to \p fill
PMT_API pmt_t make_vector(size_t k, pmt_t fill);
/*!
* Return the contents of position \p k of \p vector.
* \p k must be a valid index of \p vector.
*/
PMT_API pmt_t vector_ref(pmt_t vector, size_t k);
//! Store \p obj in position \p k.
PMT_API void vector_set(pmt_t vector, size_t k, pmt_t obj);
//! Store \p fill in every position of \p vector
PMT_API void vector_fill(pmt_t vector, pmt_t fill);
/*
* ------------------------------------------------------------------------
* Binary Large Objects (BLOBs)
*
* Handy for passing around uninterpreted chunks of memory.
* ------------------------------------------------------------------------
*/
//! Return true if \p x is a blob, othewise false.
PMT_API bool is_blob(pmt_t x);
/*!
* \brief Make a blob given a pointer and length in bytes
*
* \param buf is the pointer to data to use to create blob
* \param len is the size of the data in bytes.
*
* The data is copied into the blob.
*/
PMT_API pmt_t make_blob(const void *buf, size_t len);
//! Return a pointer to the blob's data
PMT_API const void *blob_data(pmt_t blob);
//! Return the blob's length in bytes
PMT_API size_t blob_length(pmt_t blob);
/*!
* <pre>
* Uniform Numeric Vectors
*
* A uniform numeric vector is a vector whose elements are all of single
* numeric type. pmt offers uniform numeric vectors for signed and
* unsigned 8-bit, 16-bit, 32-bit, and 64-bit integers, two sizes of
* floating point values, and complex floating-point numbers of these
* two sizes. Indexing is zero based.
*
* The names of the functions include these tags in their names:
*
* u8 unsigned 8-bit integers
* s8 signed 8-bit integers
* u16 unsigned 16-bit integers
* s16 signed 16-bit integers
* u32 unsigned 32-bit integers
* s32 signed 32-bit integers
* u64 unsigned 64-bit integers
* s64 signed 64-bit integers
* f32 the C++ type float
* f64 the C++ type double
* c32 the C++ type complex<float>
* c64 the C++ type complex<double>
* </pre>
*/
//! true if \p x is any kind of uniform numeric vector
PMT_API bool is_uniform_vector(pmt_t x);
PMT_API bool is_u8vector(pmt_t x);
PMT_API bool is_s8vector(pmt_t x);
PMT_API bool is_u16vector(pmt_t x);
PMT_API bool is_s16vector(pmt_t x);
PMT_API bool is_u32vector(pmt_t x);
PMT_API bool is_s32vector(pmt_t x);
PMT_API bool is_u64vector(pmt_t x);
PMT_API bool is_s64vector(pmt_t x);
PMT_API bool is_f32vector(pmt_t x);
PMT_API bool is_f64vector(pmt_t x);
PMT_API bool is_c32vector(pmt_t x);
PMT_API bool is_c64vector(pmt_t x);
//! item size in bytes if \p x is any kind of uniform numeric vector
PMT_API size_t uniform_vector_itemsize(pmt_t x);
PMT_API pmt_t make_u8vector(size_t k, uint8_t fill);
PMT_API pmt_t make_s8vector(size_t k, int8_t fill);
PMT_API pmt_t make_u16vector(size_t k, uint16_t fill);
PMT_API pmt_t make_s16vector(size_t k, int16_t fill);
PMT_API pmt_t make_u32vector(size_t k, uint32_t fill);
PMT_API pmt_t make_s32vector(size_t k, int32_t fill);
PMT_API pmt_t make_u64vector(size_t k, uint64_t fill);
PMT_API pmt_t make_s64vector(size_t k, int64_t fill);
PMT_API pmt_t make_f32vector(size_t k, float fill);
PMT_API pmt_t make_f64vector(size_t k, double fill);
PMT_API pmt_t make_c32vector(size_t k, std::complex<float> fill);
PMT_API pmt_t make_c64vector(size_t k, std::complex<double> fill);
PMT_API pmt_t init_u8vector(size_t k, const uint8_t *data);
PMT_API pmt_t init_u8vector(size_t k, const std::vector<uint8_t> &data);
PMT_API pmt_t init_s8vector(size_t k, const int8_t *data);
PMT_API pmt_t init_s8vector(size_t k, const std::vector<int8_t> &data);
PMT_API pmt_t init_u16vector(size_t k, const uint16_t *data);
PMT_API pmt_t init_u16vector(size_t k, const std::vector<uint16_t> &data);
PMT_API pmt_t init_s16vector(size_t k, const int16_t *data);
PMT_API pmt_t init_s16vector(size_t k, const std::vector<int16_t> &data);
PMT_API pmt_t init_u32vector(size_t k, const uint32_t *data);
PMT_API pmt_t init_u32vector(size_t k, const std::vector<uint32_t> &data);
PMT_API pmt_t init_s32vector(size_t k, const int32_t *data);
PMT_API pmt_t init_s32vector(size_t k, const std::vector<int32_t> &data);
PMT_API pmt_t init_u64vector(size_t k, const uint64_t *data);
PMT_API pmt_t init_u64vector(size_t k, const std::vector<uint64_t> &data);
PMT_API pmt_t init_s64vector(size_t k, const int64_t *data);
PMT_API pmt_t init_s64vector(size_t k, const std::vector<int64_t> &data);
PMT_API pmt_t init_f32vector(size_t k, const float *data);
PMT_API pmt_t init_f32vector(size_t k, const std::vector<float> &data);
PMT_API pmt_t init_f64vector(size_t k, const double *data);
PMT_API pmt_t init_f64vector(size_t k, const std::vector<double> &data);
PMT_API pmt_t init_c32vector(size_t k, const std::complex<float> *data);
PMT_API pmt_t init_c32vector(size_t k, const std::vector<std::complex<float> > &data);
PMT_API pmt_t init_c64vector(size_t k, const std::complex<double> *data);
PMT_API pmt_t init_c64vector(size_t k, const std::vector<std::complex<double> > &data);
PMT_API uint8_t u8vector_ref(pmt_t v, size_t k);
PMT_API int8_t s8vector_ref(pmt_t v, size_t k);
PMT_API uint16_t u16vector_ref(pmt_t v, size_t k);
PMT_API int16_t s16vector_ref(pmt_t v, size_t k);
PMT_API uint32_t u32vector_ref(pmt_t v, size_t k);
PMT_API int32_t s32vector_ref(pmt_t v, size_t k);
PMT_API uint64_t u64vector_ref(pmt_t v, size_t k);
PMT_API int64_t s64vector_ref(pmt_t v, size_t k);
PMT_API float f32vector_ref(pmt_t v, size_t k);
PMT_API double f64vector_ref(pmt_t v, size_t k);
PMT_API std::complex<float> c32vector_ref(pmt_t v, size_t k);
PMT_API std::complex<double> c64vector_ref(pmt_t v, size_t k);
PMT_API void u8vector_set(pmt_t v, size_t k, uint8_t x); //< v[k] = x
PMT_API void s8vector_set(pmt_t v, size_t k, int8_t x);
PMT_API void u16vector_set(pmt_t v, size_t k, uint16_t x);
PMT_API void s16vector_set(pmt_t v, size_t k, int16_t x);
PMT_API void u32vector_set(pmt_t v, size_t k, uint32_t x);
PMT_API void s32vector_set(pmt_t v, size_t k, int32_t x);
PMT_API void u64vector_set(pmt_t v, size_t k, uint64_t x);
PMT_API void s64vector_set(pmt_t v, size_t k, int64_t x);
PMT_API void f32vector_set(pmt_t v, size_t k, float x);
PMT_API void f64vector_set(pmt_t v, size_t k, double x);
PMT_API void c32vector_set(pmt_t v, size_t k, std::complex<float> x);
PMT_API void c64vector_set(pmt_t v, size_t k, std::complex<double> x);
// Return const pointers to the elements
PMT_API const void *uniform_vector_elements(pmt_t v, size_t &len); //< works with any; len is in bytes
PMT_API const uint8_t *u8vector_elements(pmt_t v, size_t &len); //< len is in elements
PMT_API const int8_t *s8vector_elements(pmt_t v, size_t &len); //< len is in elements
PMT_API const uint16_t *u16vector_elements(pmt_t v, size_t &len); //< len is in elements
PMT_API const int16_t *s16vector_elements(pmt_t v, size_t &len); //< len is in elements
PMT_API const uint32_t *u32vector_elements(pmt_t v, size_t &len); //< len is in elements
PMT_API const int32_t *s32vector_elements(pmt_t v, size_t &len); //< len is in elements
PMT_API const uint64_t *u64vector_elements(pmt_t v, size_t &len); //< len is in elements
PMT_API const int64_t *s64vector_elements(pmt_t v, size_t &len); //< len is in elements
PMT_API const float *f32vector_elements(pmt_t v, size_t &len); //< len is in elements
PMT_API const double *f64vector_elements(pmt_t v, size_t &len); //< len is in elements
PMT_API const std::complex<float> *c32vector_elements(pmt_t v, size_t &len); //< len is in elements
PMT_API const std::complex<double> *c64vector_elements(pmt_t v, size_t &len); //< len is in elements
// len is in elements
PMT_API const std::vector<uint8_t> u8vector_elements(pmt_t v);
PMT_API const std::vector<int8_t> s8vector_elements(pmt_t v);
PMT_API const std::vector<uint16_t> u16vector_elements(pmt_t v);
PMT_API const std::vector<int16_t> s16vector_elements(pmt_t v);
PMT_API const std::vector<uint32_t> u32vector_elements(pmt_t v);
PMT_API const std::vector<int32_t> s32vector_elements(pmt_t v);
PMT_API const std::vector<uint64_t> u64vector_elements(pmt_t v);
PMT_API const std::vector<int64_t> s64vector_elements(pmt_t v);
PMT_API const std::vector<float> f32vector_elements(pmt_t v);
PMT_API const std::vector<double> f64vector_elements(pmt_t v);
PMT_API const std::vector<std::complex<float> > c32vector_elements(pmt_t v);
PMT_API const std::vector<std::complex<double> > c64vector_elements(pmt_t v);
// len is in elements
PMT_API const std::vector<uint8_t> pmt_u8vector_elements(pmt_t v);
PMT_API const std::vector<int8_t> pmt_s8vector_elements(pmt_t v);
PMT_API const std::vector<uint16_t> pmt_u16vector_elements(pmt_t v);
PMT_API const std::vector<int16_t> pmt_s16vector_elements(pmt_t v);
PMT_API const std::vector<uint32_t> pmt_u32vector_elements(pmt_t v);
PMT_API const std::vector<int32_t> pmt_s32vector_elements(pmt_t v);
PMT_API const std::vector<uint64_t> pmt_u64vector_elements(pmt_t v);
PMT_API const std::vector<int64_t> pmt_s64vector_elements(pmt_t v);
PMT_API const std::vector<float> pmt_f32vector_elements(pmt_t v);
PMT_API const std::vector<double> pmt_f64vector_elements(pmt_t v);
PMT_API const std::vector<std::complex<float> > pmt_c32vector_elements(pmt_t v);
PMT_API const std::vector<std::complex<double> > pmt_c64vector_elements(pmt_t v);
// Return non-const pointers to the elements
PMT_API void *uniform_vector_writable_elements(pmt_t v, size_t &len); //< works with any; len is in bytes
PMT_API uint8_t *u8vector_writable_elements(pmt_t v, size_t &len); //< len is in elements
PMT_API int8_t *s8vector_writable_elements(pmt_t v, size_t &len); //< len is in elements
PMT_API uint16_t *u16vector_writable_elements(pmt_t v, size_t &len); //< len is in elements
PMT_API int16_t *s16vector_writable_elements(pmt_t v, size_t &len); //< len is in elements
PMT_API uint32_t *u32vector_writable_elements(pmt_t v, size_t &len); //< len is in elements
PMT_API int32_t *s32vector_writable_elements(pmt_t v, size_t &len); //< len is in elements
PMT_API uint64_t *u64vector_writable_elements(pmt_t v, size_t &len); //< len is in elements
PMT_API int64_t *s64vector_writable_elements(pmt_t v, size_t &len); //< len is in elements
PMT_API float *f32vector_writable_elements(pmt_t v, size_t &len); //< len is in elements
PMT_API double *f64vector_writable_elements(pmt_t v, size_t &len); //< len is in elements
PMT_API std::complex<float> *c32vector_writable_elements(pmt_t v, size_t &len); //< len is in elements
PMT_API std::complex<double> *c64vector_writable_elements(pmt_t v, size_t &len); //< len is in elements
/*
* ------------------------------------------------------------------------
* Dictionary (a.k.a associative array, hash, map)
*
* This is a functional data structure that is persistent. Updating a
* functional data structure does not destroy the existing version, but
* rather creates a new version that coexists with the old.
* ------------------------------------------------------------------------
*/
//! Return true if \p obj is a dictionary
PMT_API bool is_dict(const pmt_t &obj);
//! Make an empty dictionary
PMT_API pmt_t make_dict();
//! Return a new dictionary with \p key associated with \p value.
PMT_API pmt_t dict_add(const pmt_t &dict, const pmt_t &key, const pmt_t &value);
//! Return a new dictionary with \p key removed.
PMT_API pmt_t dict_delete(const pmt_t &dict, const pmt_t &key);
//! Return true if \p key exists in \p dict
PMT_API bool dict_has_key(const pmt_t &dict, const pmt_t &key);
//! If \p key exists in \p dict, return associated value; otherwise return \p not_found.
PMT_API pmt_t dict_ref(const pmt_t &dict, const pmt_t &key, const pmt_t ¬_found);
//! Return list of (key . value) pairs
PMT_API pmt_t dict_items(pmt_t dict);
//! Return list of keys
PMT_API pmt_t dict_keys(pmt_t dict);
//! Return a new dictionary \p dict1 with k=>v pairs from \p dict2 added.
PMT_API pmt_t dict_update(const pmt_t &dict1, const pmt_t &dict2);
//! Return list of values
PMT_API pmt_t dict_values(pmt_t dict);
/*
* ------------------------------------------------------------------------
* Any (wraps boost::any -- can be used to wrap pretty much anything)
*
* Cannot be serialized or used across process boundaries.
* See http://www.boost.org/doc/html/any.html
* ------------------------------------------------------------------------
*/
//! Return true if \p obj is an any
PMT_API bool is_any(pmt_t obj);
//! make an any
PMT_API pmt_t make_any(const boost::any &any);
//! Return underlying boost::any
PMT_API boost::any any_ref(pmt_t obj);
//! Store \p any in \p obj
PMT_API void any_set(pmt_t obj, const boost::any &any);
/*
* ------------------------------------------------------------------------
* msg_accepter -- pmt representation of pmt::msg_accepter
* ------------------------------------------------------------------------
*/
//! Return true if \p obj is a msg_accepter
PMT_API bool is_msg_accepter(const pmt_t &obj);
//! make a msg_accepter
PMT_API pmt_t make_msg_accepter(boost::shared_ptr<gr::messages::msg_accepter> ma);
//! Return underlying msg_accepter
PMT_API boost::shared_ptr<gr::messages::msg_accepter> msg_accepter_ref(const pmt_t &obj);
/*
* ------------------------------------------------------------------------
* General functions
* ------------------------------------------------------------------------
*/
//! Return true if x and y are the same object; otherwise return false.
PMT_API bool eq(const pmt_t& x, const pmt_t& y);
/*!
* \brief Return true if x and y should normally be regarded as the same object, else false.
*
* <pre>
* eqv returns true if:
* x and y are the same object.
* x and y are both \#t or both \#f.
* x and y are both symbols and their names are the same.
* x and y are both numbers, and are numerically equal.
* x and y are both the empty list (nil).
* x and y are pairs or vectors that denote same location in store.
* </pre>
*/
PMT_API bool eqv(const pmt_t& x, const pmt_t& y);
/*!
* pmt::equal recursively compares the contents of pairs and vectors,
* applying pmt::eqv on other objects such as numbers and symbols.
* pmt::equal may fail to terminate if its arguments are circular data
* structures.
*/
PMT_API bool equal(const pmt_t& x, const pmt_t& y);
//! Return the number of elements in v
PMT_API size_t length(const pmt_t& v);
/*!
* \brief Find the first pair in \p alist whose car field is \p obj
* and return that pair.
*
* \p alist (for "association list") must be a list of pairs. If no pair
* in \p alist has \p obj as its car then \#f is returned.
* Uses pmt::eq to compare \p obj with car fields of the pairs in \p alist.
*/
PMT_API pmt_t assq(pmt_t obj, pmt_t alist);
/*!
* \brief Find the first pair in \p alist whose car field is \p obj
* and return that pair.
*
* \p alist (for "association list") must be a list of pairs. If no pair
* in \p alist has \p obj as its car then \#f is returned.
* Uses pmt::eqv to compare \p obj with car fields of the pairs in \p alist.
*/
PMT_API pmt_t assv(pmt_t obj, pmt_t alist);
/*!
* \brief Find the first pair in \p alist whose car field is \p obj
* and return that pair.
*
* \p alist (for "association list") must be a list of pairs. If no pair
* in \p alist has \p obj as its car then \#f is returned.
* Uses pmt::equal to compare \p obj with car fields of the pairs in \p alist.
*/
PMT_API pmt_t assoc(pmt_t obj, pmt_t alist);
/*!
* \brief Apply \p proc element-wise to the elements of list and returns
* a list of the results, in order.
*
* \p list must be a list. The dynamic order in which \p proc is
* applied to the elements of \p list is unspecified.
*/
PMT_API pmt_t map(pmt_t proc(const pmt_t&), pmt_t list);
/*!
* \brief reverse \p list.
*
* \p list must be a proper list.
*/
PMT_API pmt_t reverse(pmt_t list);
/*!
* \brief destructively reverse \p list.
*
* \p list must be a proper list.
*/
PMT_API pmt_t reverse_x(pmt_t list);
/*!
* \brief (acons x y a) == (cons (cons x y) a)
*/
inline static pmt_t
acons(pmt_t x, pmt_t y, pmt_t a)
{
return cons(cons(x, y), a);
}
/*!
* \brief locates \p nth element of \n list where the car is the 'zeroth' element.
*/
PMT_API pmt_t nth(size_t n, pmt_t list);
/*!
* \brief returns the tail of \p list that would be obtained by calling
* cdr \p n times in succession.
*/
PMT_API pmt_t nthcdr(size_t n, pmt_t list);
/*!
* \brief Return the first sublist of \p list whose car is \p obj.
* If \p obj does not occur in \p list, then \#f is returned.
* pmt::memq use pmt::eq to compare \p obj with the elements of \p list.
*/
PMT_API pmt_t memq(pmt_t obj, pmt_t list);
/*!
* \brief Return the first sublist of \p list whose car is \p obj.
* If \p obj does not occur in \p list, then \#f is returned.
* pmt::memv use pmt::eqv to compare \p obj with the elements of \p list.
*/
PMT_API pmt_t memv(pmt_t obj, pmt_t list);
/*!
* \brief Return the first sublist of \p list whose car is \p obj.
* If \p obj does not occur in \p list, then \#f is returned.
* pmt::member use pmt::equal to compare \p obj with the elements of \p list.
*/
PMT_API pmt_t member(pmt_t obj, pmt_t list);
/*!
* \brief Return true if every element of \p list1 appears in \p list2, and false otherwise.
* Comparisons are done with pmt::eqv.
*/
PMT_API bool subsetp(pmt_t list1, pmt_t list2);
/*!
* \brief Return a list of length 1 containing \p x1
*/
PMT_API pmt_t list1(const pmt_t& x1);
/*!
* \brief Return a list of length 2 containing \p x1, \p x2
*/
PMT_API pmt_t list2(const pmt_t& x1, const pmt_t& x2);
/*!
* \brief Return a list of length 3 containing \p x1, \p x2, \p x3
*/
PMT_API pmt_t list3(const pmt_t& x1, const pmt_t& x2, const pmt_t& x3);
/*!
* \brief Return a list of length 4 containing \p x1, \p x2, \p x3, \p x4
*/
PMT_API pmt_t list4(const pmt_t& x1, const pmt_t& x2, const pmt_t& x3, const pmt_t& x4);
/*!
* \brief Return a list of length 5 containing \p x1, \p x2, \p x3, \p x4, \p x5
*/
PMT_API pmt_t list5(const pmt_t& x1, const pmt_t& x2, const pmt_t& x3, const pmt_t& x4, const pmt_t& x5);
/*!
* \brief Return a list of length 6 containing \p x1, \p x2, \p x3, \p x4, \p
* x5, \p x6
*/
PMT_API pmt_t list6(const pmt_t& x1, const pmt_t& x2, const pmt_t& x3, const pmt_t& x4, const pmt_t& x5, const pmt_t& x6);
/*!
* \brief Return \p list with \p item added to it.
*/
PMT_API pmt_t list_add(pmt_t list, const pmt_t& item);
/*!
* \brief Return \p list with \p item removed from it.
*/
PMT_API pmt_t list_rm(pmt_t list, const pmt_t& item);
/*!
* \brief Return bool of \p list contains \p item
*/
PMT_API bool list_has(pmt_t list, const pmt_t& item);
/*
* ------------------------------------------------------------------------
* read / write
* ------------------------------------------------------------------------
*/
//! return true if obj is the EOF object, otherwise return false.
PMT_API bool is_eof_object(pmt_t obj);
/*!
* read converts external representations of pmt objects into the
* objects themselves. Read returns the next object parsable from
* the given input port, updating port to point to the first
* character past the end of the external representation of the
* object.
*
* If an end of file is encountered in the input before any
* characters are found that can begin an object, then an end of file
* object is returned. The port remains open, and further attempts
* to read will also return an end of file object. If an end of file
* is encountered after the beginning of an object's external
* representation, but the external representation is incomplete and
* therefore not parsable, an error is signaled.
*/
PMT_API pmt_t read(std::istream &port);
/*!
* Write a written representation of \p obj to the given \p port.
*/
PMT_API void write(pmt_t obj, std::ostream &port);
/*!
* Return a string representation of \p obj.
* This is the same output as would be generated by pmt::write.
*/
PMT_API std::string write_string(pmt_t obj);
PMT_API std::ostream& operator<<(std::ostream &os, pmt_t obj);
/*!
* \brief Write pmt string representation to stdout.
*/
PMT_API void print(pmt_t v);
/*
* ------------------------------------------------------------------------
* portable byte stream representation
* ------------------------------------------------------------------------
*/
/*!
* \brief Write portable byte-serial representation of \p obj to \p sink
*/
PMT_API bool serialize(pmt_t obj, std::streambuf &sink);
/*!
* \brief Create obj from portable byte-serial representation
*/
PMT_API pmt_t deserialize(std::streambuf &source);
PMT_API void dump_sizeof(); // debugging
/*!
* \brief Provide a simple string generating interface to pmt's serialize function
*/
PMT_API std::string serialize_str(pmt_t obj);
/*!
* \brief Provide a simple string generating interface to pmt's deserialize function
*/
PMT_API pmt_t deserialize_str(std::string str);
/*!
* \brief Provide a comparator function object to allow pmt use in stl types
*/
class comparator {
public:
bool operator()(pmt::pmt_t const& p1, pmt::pmt_t const& p2) const
{ return pmt::eqv(p1,p2)?false:p1.get()>p2.get(); }
};
// FIXME: Remove in 3.8.
class comperator {
public:
bool operator()(pmt::pmt_t const& p1, pmt::pmt_t const& p2) const
{ return pmt::eqv(p1,p2)?false:p1.get()>p2.get(); }
};
} /* namespace pmt */
#include <pmt/pmt_sugar.h>
#endif /* INCLUDED_PMT_H */
|