This file is indexed.

/usr/include/libalglib/fasttransforms.h is in libalglib-dev 3.10.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
/*************************************************************************
ALGLIB 3.10.0 (source code generated 2015-08-19)
Copyright (c) Sergey Bochkanov (ALGLIB project).

>>> SOURCE LICENSE >>>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation (www.fsf.org); either version 2 of the 
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

A copy of the GNU General Public License is available at
http://www.fsf.org/licensing/licenses
>>> END OF LICENSE >>>
*************************************************************************/
#ifndef _fasttransforms_pkg_h
#define _fasttransforms_pkg_h
#include "ap.h"
#include "alglibinternal.h"

/////////////////////////////////////////////////////////////////////////
//
// THIS SECTION CONTAINS COMPUTATIONAL CORE DECLARATIONS (DATATYPES)
//
/////////////////////////////////////////////////////////////////////////
namespace alglib_impl
{

}

/////////////////////////////////////////////////////////////////////////
//
// THIS SECTION CONTAINS C++ INTERFACE
//
/////////////////////////////////////////////////////////////////////////
namespace alglib
{


/*************************************************************************
1-dimensional complex FFT.

Array size N may be arbitrary number (composite or prime).  Composite  N's
are handled with cache-oblivious variation of  a  Cooley-Tukey  algorithm.
Small prime-factors are transformed using hard coded  codelets (similar to
FFTW codelets, but without low-level  optimization),  large  prime-factors
are handled with Bluestein's algorithm.

Fastests transforms are for smooth N's (prime factors are 2, 3,  5  only),
most fast for powers of 2. When N have prime factors  larger  than  these,
but orders of magnitude smaller than N, computations will be about 4 times
slower than for nearby highly composite N's. When N itself is prime, speed
will be 6 times lower.

Algorithm has O(N*logN) complexity for any N (composite or prime).

INPUT PARAMETERS
    A   -   array[0..N-1] - complex function to be transformed
    N   -   problem size

OUTPUT PARAMETERS
    A   -   DFT of a input array, array[0..N-1]
            A_out[j] = SUM(A_in[k]*exp(-2*pi*sqrt(-1)*j*k/N), k = 0..N-1)


  -- ALGLIB --
     Copyright 29.05.2009 by Bochkanov Sergey
*************************************************************************/
void fftc1d(complex_1d_array &a, const ae_int_t n);
void fftc1d(complex_1d_array &a);


/*************************************************************************
1-dimensional complex inverse FFT.

Array size N may be arbitrary number (composite or prime).  Algorithm  has
O(N*logN) complexity for any N (composite or prime).

See FFTC1D() description for more information about algorithm performance.

INPUT PARAMETERS
    A   -   array[0..N-1] - complex array to be transformed
    N   -   problem size

OUTPUT PARAMETERS
    A   -   inverse DFT of a input array, array[0..N-1]
            A_out[j] = SUM(A_in[k]/N*exp(+2*pi*sqrt(-1)*j*k/N), k = 0..N-1)


  -- ALGLIB --
     Copyright 29.05.2009 by Bochkanov Sergey
*************************************************************************/
void fftc1dinv(complex_1d_array &a, const ae_int_t n);
void fftc1dinv(complex_1d_array &a);


/*************************************************************************
1-dimensional real FFT.

Algorithm has O(N*logN) complexity for any N (composite or prime).

INPUT PARAMETERS
    A   -   array[0..N-1] - real function to be transformed
    N   -   problem size

OUTPUT PARAMETERS
    F   -   DFT of a input array, array[0..N-1]
            F[j] = SUM(A[k]*exp(-2*pi*sqrt(-1)*j*k/N), k = 0..N-1)

NOTE:
    F[] satisfies symmetry property F[k] = conj(F[N-k]),  so just one half
of  array  is  usually needed. But for convinience subroutine returns full
complex array (with frequencies above N/2), so its result may be  used  by
other FFT-related subroutines.


  -- ALGLIB --
     Copyright 01.06.2009 by Bochkanov Sergey
*************************************************************************/
void fftr1d(const real_1d_array &a, const ae_int_t n, complex_1d_array &f);
void fftr1d(const real_1d_array &a, complex_1d_array &f);


/*************************************************************************
1-dimensional real inverse FFT.

Algorithm has O(N*logN) complexity for any N (composite or prime).

INPUT PARAMETERS
    F   -   array[0..floor(N/2)] - frequencies from forward real FFT
    N   -   problem size

OUTPUT PARAMETERS
    A   -   inverse DFT of a input array, array[0..N-1]

NOTE:
    F[] should satisfy symmetry property F[k] = conj(F[N-k]), so just  one
half of frequencies array is needed - elements from 0 to floor(N/2).  F[0]
is ALWAYS real. If N is even F[floor(N/2)] is real too. If N is odd,  then
F[floor(N/2)] has no special properties.

Relying on properties noted above, FFTR1DInv subroutine uses only elements
from 0th to floor(N/2)-th. It ignores imaginary part of F[0],  and in case
N is even it ignores imaginary part of F[floor(N/2)] too.

When you call this function using full arguments list - "FFTR1DInv(F,N,A)"
- you can pass either either frequencies array with N elements or  reduced
array with roughly N/2 elements - subroutine will  successfully  transform
both.

If you call this function using reduced arguments list -  "FFTR1DInv(F,A)"
- you must pass FULL array with N elements (although higher  N/2 are still
not used) because array size is used to automatically determine FFT length


  -- ALGLIB --
     Copyright 01.06.2009 by Bochkanov Sergey
*************************************************************************/
void fftr1dinv(const complex_1d_array &f, const ae_int_t n, real_1d_array &a);
void fftr1dinv(const complex_1d_array &f, real_1d_array &a);

/*************************************************************************
1-dimensional complex convolution.

For given A/B returns conv(A,B) (non-circular). Subroutine can automatically
choose between three implementations: straightforward O(M*N)  formula  for
very small N (or M), overlap-add algorithm for  cases  where  max(M,N)  is
significantly larger than min(M,N), but O(M*N) algorithm is too slow,  and
general FFT-based formula for cases where two previois algorithms are  too
slow.

Algorithm has max(M,N)*log(max(M,N)) complexity for any M/N.

INPUT PARAMETERS
    A   -   array[0..M-1] - complex function to be transformed
    M   -   problem size
    B   -   array[0..N-1] - complex function to be transformed
    N   -   problem size

OUTPUT PARAMETERS
    R   -   convolution: A*B. array[0..N+M-2].

NOTE:
    It is assumed that A is zero at T<0, B is zero too.  If  one  or  both
functions have non-zero values at negative T's, you  can  still  use  this
subroutine - just shift its result correspondingly.

  -- ALGLIB --
     Copyright 21.07.2009 by Bochkanov Sergey
*************************************************************************/
void convc1d(const complex_1d_array &a, const ae_int_t m, const complex_1d_array &b, const ae_int_t n, complex_1d_array &r);


/*************************************************************************
1-dimensional complex non-circular deconvolution (inverse of ConvC1D()).

Algorithm has M*log(M)) complexity for any M (composite or prime).

INPUT PARAMETERS
    A   -   array[0..M-1] - convolved signal, A = conv(R, B)
    M   -   convolved signal length
    B   -   array[0..N-1] - response
    N   -   response length, N<=M

OUTPUT PARAMETERS
    R   -   deconvolved signal. array[0..M-N].

NOTE:
    deconvolution is unstable process and may result in division  by  zero
(if your response function is degenerate, i.e. has zero Fourier coefficient).

NOTE:
    It is assumed that A is zero at T<0, B is zero too.  If  one  or  both
functions have non-zero values at negative T's, you  can  still  use  this
subroutine - just shift its result correspondingly.

  -- ALGLIB --
     Copyright 21.07.2009 by Bochkanov Sergey
*************************************************************************/
void convc1dinv(const complex_1d_array &a, const ae_int_t m, const complex_1d_array &b, const ae_int_t n, complex_1d_array &r);


/*************************************************************************
1-dimensional circular complex convolution.

For given S/R returns conv(S,R) (circular). Algorithm has linearithmic
complexity for any M/N.

IMPORTANT:  normal convolution is commutative,  i.e.   it  is symmetric  -
conv(A,B)=conv(B,A).  Cyclic convolution IS NOT.  One function - S - is  a
signal,  periodic function, and another - R - is a response,  non-periodic
function with limited length.

INPUT PARAMETERS
    S   -   array[0..M-1] - complex periodic signal
    M   -   problem size
    B   -   array[0..N-1] - complex non-periodic response
    N   -   problem size

OUTPUT PARAMETERS
    R   -   convolution: A*B. array[0..M-1].

NOTE:
    It is assumed that B is zero at T<0. If  it  has  non-zero  values  at
negative T's, you can still use this subroutine - just  shift  its  result
correspondingly.

  -- ALGLIB --
     Copyright 21.07.2009 by Bochkanov Sergey
*************************************************************************/
void convc1dcircular(const complex_1d_array &s, const ae_int_t m, const complex_1d_array &r, const ae_int_t n, complex_1d_array &c);


/*************************************************************************
1-dimensional circular complex deconvolution (inverse of ConvC1DCircular()).

Algorithm has M*log(M)) complexity for any M (composite or prime).

INPUT PARAMETERS
    A   -   array[0..M-1] - convolved periodic signal, A = conv(R, B)
    M   -   convolved signal length
    B   -   array[0..N-1] - non-periodic response
    N   -   response length

OUTPUT PARAMETERS
    R   -   deconvolved signal. array[0..M-1].

NOTE:
    deconvolution is unstable process and may result in division  by  zero
(if your response function is degenerate, i.e. has zero Fourier coefficient).

NOTE:
    It is assumed that B is zero at T<0. If  it  has  non-zero  values  at
negative T's, you can still use this subroutine - just  shift  its  result
correspondingly.

  -- ALGLIB --
     Copyright 21.07.2009 by Bochkanov Sergey
*************************************************************************/
void convc1dcircularinv(const complex_1d_array &a, const ae_int_t m, const complex_1d_array &b, const ae_int_t n, complex_1d_array &r);


/*************************************************************************
1-dimensional real convolution.

Analogous to ConvC1D(), see ConvC1D() comments for more details.

INPUT PARAMETERS
    A   -   array[0..M-1] - real function to be transformed
    M   -   problem size
    B   -   array[0..N-1] - real function to be transformed
    N   -   problem size

OUTPUT PARAMETERS
    R   -   convolution: A*B. array[0..N+M-2].

NOTE:
    It is assumed that A is zero at T<0, B is zero too.  If  one  or  both
functions have non-zero values at negative T's, you  can  still  use  this
subroutine - just shift its result correspondingly.

  -- ALGLIB --
     Copyright 21.07.2009 by Bochkanov Sergey
*************************************************************************/
void convr1d(const real_1d_array &a, const ae_int_t m, const real_1d_array &b, const ae_int_t n, real_1d_array &r);


/*************************************************************************
1-dimensional real deconvolution (inverse of ConvC1D()).

Algorithm has M*log(M)) complexity for any M (composite or prime).

INPUT PARAMETERS
    A   -   array[0..M-1] - convolved signal, A = conv(R, B)
    M   -   convolved signal length
    B   -   array[0..N-1] - response
    N   -   response length, N<=M

OUTPUT PARAMETERS
    R   -   deconvolved signal. array[0..M-N].

NOTE:
    deconvolution is unstable process and may result in division  by  zero
(if your response function is degenerate, i.e. has zero Fourier coefficient).

NOTE:
    It is assumed that A is zero at T<0, B is zero too.  If  one  or  both
functions have non-zero values at negative T's, you  can  still  use  this
subroutine - just shift its result correspondingly.

  -- ALGLIB --
     Copyright 21.07.2009 by Bochkanov Sergey
*************************************************************************/
void convr1dinv(const real_1d_array &a, const ae_int_t m, const real_1d_array &b, const ae_int_t n, real_1d_array &r);


/*************************************************************************
1-dimensional circular real convolution.

Analogous to ConvC1DCircular(), see ConvC1DCircular() comments for more details.

INPUT PARAMETERS
    S   -   array[0..M-1] - real signal
    M   -   problem size
    B   -   array[0..N-1] - real response
    N   -   problem size

OUTPUT PARAMETERS
    R   -   convolution: A*B. array[0..M-1].

NOTE:
    It is assumed that B is zero at T<0. If  it  has  non-zero  values  at
negative T's, you can still use this subroutine - just  shift  its  result
correspondingly.

  -- ALGLIB --
     Copyright 21.07.2009 by Bochkanov Sergey
*************************************************************************/
void convr1dcircular(const real_1d_array &s, const ae_int_t m, const real_1d_array &r, const ae_int_t n, real_1d_array &c);


/*************************************************************************
1-dimensional complex deconvolution (inverse of ConvC1D()).

Algorithm has M*log(M)) complexity for any M (composite or prime).

INPUT PARAMETERS
    A   -   array[0..M-1] - convolved signal, A = conv(R, B)
    M   -   convolved signal length
    B   -   array[0..N-1] - response
    N   -   response length

OUTPUT PARAMETERS
    R   -   deconvolved signal. array[0..M-N].

NOTE:
    deconvolution is unstable process and may result in division  by  zero
(if your response function is degenerate, i.e. has zero Fourier coefficient).

NOTE:
    It is assumed that B is zero at T<0. If  it  has  non-zero  values  at
negative T's, you can still use this subroutine - just  shift  its  result
correspondingly.

  -- ALGLIB --
     Copyright 21.07.2009 by Bochkanov Sergey
*************************************************************************/
void convr1dcircularinv(const real_1d_array &a, const ae_int_t m, const real_1d_array &b, const ae_int_t n, real_1d_array &r);

/*************************************************************************
1-dimensional complex cross-correlation.

For given Pattern/Signal returns corr(Pattern,Signal) (non-circular).

Correlation is calculated using reduction to  convolution.  Algorithm with
max(N,N)*log(max(N,N)) complexity is used (see  ConvC1D()  for  more  info
about performance).

IMPORTANT:
    for  historical reasons subroutine accepts its parameters in  reversed
    order: CorrC1D(Signal, Pattern) = Pattern x Signal (using  traditional
    definition of cross-correlation, denoting cross-correlation as "x").

INPUT PARAMETERS
    Signal  -   array[0..N-1] - complex function to be transformed,
                signal containing pattern
    N       -   problem size
    Pattern -   array[0..M-1] - complex function to be transformed,
                pattern to search withing signal
    M       -   problem size

OUTPUT PARAMETERS
    R       -   cross-correlation, array[0..N+M-2]:
                * positive lags are stored in R[0..N-1],
                  R[i] = sum(conj(pattern[j])*signal[i+j]
                * negative lags are stored in R[N..N+M-2],
                  R[N+M-1-i] = sum(conj(pattern[j])*signal[-i+j]

NOTE:
    It is assumed that pattern domain is [0..M-1].  If Pattern is non-zero
on [-K..M-1],  you can still use this subroutine, just shift result by K.

  -- ALGLIB --
     Copyright 21.07.2009 by Bochkanov Sergey
*************************************************************************/
void corrc1d(const complex_1d_array &signal, const ae_int_t n, const complex_1d_array &pattern, const ae_int_t m, complex_1d_array &r);


/*************************************************************************
1-dimensional circular complex cross-correlation.

For given Pattern/Signal returns corr(Pattern,Signal) (circular).
Algorithm has linearithmic complexity for any M/N.

IMPORTANT:
    for  historical reasons subroutine accepts its parameters in  reversed
    order:   CorrC1DCircular(Signal, Pattern) = Pattern x Signal    (using
    traditional definition of cross-correlation, denoting cross-correlation
    as "x").

INPUT PARAMETERS
    Signal  -   array[0..N-1] - complex function to be transformed,
                periodic signal containing pattern
    N       -   problem size
    Pattern -   array[0..M-1] - complex function to be transformed,
                non-periodic pattern to search withing signal
    M       -   problem size

OUTPUT PARAMETERS
    R   -   convolution: A*B. array[0..M-1].


  -- ALGLIB --
     Copyright 21.07.2009 by Bochkanov Sergey
*************************************************************************/
void corrc1dcircular(const complex_1d_array &signal, const ae_int_t m, const complex_1d_array &pattern, const ae_int_t n, complex_1d_array &c);


/*************************************************************************
1-dimensional real cross-correlation.

For given Pattern/Signal returns corr(Pattern,Signal) (non-circular).

Correlation is calculated using reduction to  convolution.  Algorithm with
max(N,N)*log(max(N,N)) complexity is used (see  ConvC1D()  for  more  info
about performance).

IMPORTANT:
    for  historical reasons subroutine accepts its parameters in  reversed
    order: CorrR1D(Signal, Pattern) = Pattern x Signal (using  traditional
    definition of cross-correlation, denoting cross-correlation as "x").

INPUT PARAMETERS
    Signal  -   array[0..N-1] - real function to be transformed,
                signal containing pattern
    N       -   problem size
    Pattern -   array[0..M-1] - real function to be transformed,
                pattern to search withing signal
    M       -   problem size

OUTPUT PARAMETERS
    R       -   cross-correlation, array[0..N+M-2]:
                * positive lags are stored in R[0..N-1],
                  R[i] = sum(pattern[j]*signal[i+j]
                * negative lags are stored in R[N..N+M-2],
                  R[N+M-1-i] = sum(pattern[j]*signal[-i+j]

NOTE:
    It is assumed that pattern domain is [0..M-1].  If Pattern is non-zero
on [-K..M-1],  you can still use this subroutine, just shift result by K.

  -- ALGLIB --
     Copyright 21.07.2009 by Bochkanov Sergey
*************************************************************************/
void corrr1d(const real_1d_array &signal, const ae_int_t n, const real_1d_array &pattern, const ae_int_t m, real_1d_array &r);


/*************************************************************************
1-dimensional circular real cross-correlation.

For given Pattern/Signal returns corr(Pattern,Signal) (circular).
Algorithm has linearithmic complexity for any M/N.

IMPORTANT:
    for  historical reasons subroutine accepts its parameters in  reversed
    order:   CorrR1DCircular(Signal, Pattern) = Pattern x Signal    (using
    traditional definition of cross-correlation, denoting cross-correlation
    as "x").

INPUT PARAMETERS
    Signal  -   array[0..N-1] - real function to be transformed,
                periodic signal containing pattern
    N       -   problem size
    Pattern -   array[0..M-1] - real function to be transformed,
                non-periodic pattern to search withing signal
    M       -   problem size

OUTPUT PARAMETERS
    R   -   convolution: A*B. array[0..M-1].


  -- ALGLIB --
     Copyright 21.07.2009 by Bochkanov Sergey
*************************************************************************/
void corrr1dcircular(const real_1d_array &signal, const ae_int_t m, const real_1d_array &pattern, const ae_int_t n, real_1d_array &c);

/*************************************************************************
1-dimensional Fast Hartley Transform.

Algorithm has O(N*logN) complexity for any N (composite or prime).

INPUT PARAMETERS
    A   -   array[0..N-1] - real function to be transformed
    N   -   problem size

OUTPUT PARAMETERS
    A   -   FHT of a input array, array[0..N-1],
            A_out[k] = sum(A_in[j]*(cos(2*pi*j*k/N)+sin(2*pi*j*k/N)), j=0..N-1)


  -- ALGLIB --
     Copyright 04.06.2009 by Bochkanov Sergey
*************************************************************************/
void fhtr1d(real_1d_array &a, const ae_int_t n);


/*************************************************************************
1-dimensional inverse FHT.

Algorithm has O(N*logN) complexity for any N (composite or prime).

INPUT PARAMETERS
    A   -   array[0..N-1] - complex array to be transformed
    N   -   problem size

OUTPUT PARAMETERS
    A   -   inverse FHT of a input array, array[0..N-1]


  -- ALGLIB --
     Copyright 29.05.2009 by Bochkanov Sergey
*************************************************************************/
void fhtr1dinv(real_1d_array &a, const ae_int_t n);
}

/////////////////////////////////////////////////////////////////////////
//
// THIS SECTION CONTAINS COMPUTATIONAL CORE DECLARATIONS (FUNCTIONS)
//
/////////////////////////////////////////////////////////////////////////
namespace alglib_impl
{
void fftc1d(/* Complex */ ae_vector* a, ae_int_t n, ae_state *_state);
void fftc1dinv(/* Complex */ ae_vector* a, ae_int_t n, ae_state *_state);
void fftr1d(/* Real    */ ae_vector* a,
     ae_int_t n,
     /* Complex */ ae_vector* f,
     ae_state *_state);
void fftr1dinv(/* Complex */ ae_vector* f,
     ae_int_t n,
     /* Real    */ ae_vector* a,
     ae_state *_state);
void fftr1dinternaleven(/* Real    */ ae_vector* a,
     ae_int_t n,
     /* Real    */ ae_vector* buf,
     fasttransformplan* plan,
     ae_state *_state);
void fftr1dinvinternaleven(/* Real    */ ae_vector* a,
     ae_int_t n,
     /* Real    */ ae_vector* buf,
     fasttransformplan* plan,
     ae_state *_state);
void convc1d(/* Complex */ ae_vector* a,
     ae_int_t m,
     /* Complex */ ae_vector* b,
     ae_int_t n,
     /* Complex */ ae_vector* r,
     ae_state *_state);
void convc1dinv(/* Complex */ ae_vector* a,
     ae_int_t m,
     /* Complex */ ae_vector* b,
     ae_int_t n,
     /* Complex */ ae_vector* r,
     ae_state *_state);
void convc1dcircular(/* Complex */ ae_vector* s,
     ae_int_t m,
     /* Complex */ ae_vector* r,
     ae_int_t n,
     /* Complex */ ae_vector* c,
     ae_state *_state);
void convc1dcircularinv(/* Complex */ ae_vector* a,
     ae_int_t m,
     /* Complex */ ae_vector* b,
     ae_int_t n,
     /* Complex */ ae_vector* r,
     ae_state *_state);
void convr1d(/* Real    */ ae_vector* a,
     ae_int_t m,
     /* Real    */ ae_vector* b,
     ae_int_t n,
     /* Real    */ ae_vector* r,
     ae_state *_state);
void convr1dinv(/* Real    */ ae_vector* a,
     ae_int_t m,
     /* Real    */ ae_vector* b,
     ae_int_t n,
     /* Real    */ ae_vector* r,
     ae_state *_state);
void convr1dcircular(/* Real    */ ae_vector* s,
     ae_int_t m,
     /* Real    */ ae_vector* r,
     ae_int_t n,
     /* Real    */ ae_vector* c,
     ae_state *_state);
void convr1dcircularinv(/* Real    */ ae_vector* a,
     ae_int_t m,
     /* Real    */ ae_vector* b,
     ae_int_t n,
     /* Real    */ ae_vector* r,
     ae_state *_state);
void convc1dx(/* Complex */ ae_vector* a,
     ae_int_t m,
     /* Complex */ ae_vector* b,
     ae_int_t n,
     ae_bool circular,
     ae_int_t alg,
     ae_int_t q,
     /* Complex */ ae_vector* r,
     ae_state *_state);
void convr1dx(/* Real    */ ae_vector* a,
     ae_int_t m,
     /* Real    */ ae_vector* b,
     ae_int_t n,
     ae_bool circular,
     ae_int_t alg,
     ae_int_t q,
     /* Real    */ ae_vector* r,
     ae_state *_state);
void corrc1d(/* Complex */ ae_vector* signal,
     ae_int_t n,
     /* Complex */ ae_vector* pattern,
     ae_int_t m,
     /* Complex */ ae_vector* r,
     ae_state *_state);
void corrc1dcircular(/* Complex */ ae_vector* signal,
     ae_int_t m,
     /* Complex */ ae_vector* pattern,
     ae_int_t n,
     /* Complex */ ae_vector* c,
     ae_state *_state);
void corrr1d(/* Real    */ ae_vector* signal,
     ae_int_t n,
     /* Real    */ ae_vector* pattern,
     ae_int_t m,
     /* Real    */ ae_vector* r,
     ae_state *_state);
void corrr1dcircular(/* Real    */ ae_vector* signal,
     ae_int_t m,
     /* Real    */ ae_vector* pattern,
     ae_int_t n,
     /* Real    */ ae_vector* c,
     ae_state *_state);
void fhtr1d(/* Real    */ ae_vector* a, ae_int_t n, ae_state *_state);
void fhtr1dinv(/* Real    */ ae_vector* a, ae_int_t n, ae_state *_state);

}
#endif