This file is indexed.

/usr/include/libalglib/interpolation.h is in libalglib-dev 3.10.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
/*************************************************************************
ALGLIB 3.10.0 (source code generated 2015-08-19)
Copyright (c) Sergey Bochkanov (ALGLIB project).

>>> SOURCE LICENSE >>>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation (www.fsf.org); either version 2 of the 
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

A copy of the GNU General Public License is available at
http://www.fsf.org/licensing/licenses
>>> END OF LICENSE >>>
*************************************************************************/
#ifndef _interpolation_pkg_h
#define _interpolation_pkg_h
#include "ap.h"
#include "alglibinternal.h"
#include "alglibmisc.h"
#include "linalg.h"
#include "solvers.h"
#include "optimization.h"
#include "specialfunctions.h"
#include "integration.h"

/////////////////////////////////////////////////////////////////////////
//
// THIS SECTION CONTAINS COMPUTATIONAL CORE DECLARATIONS (DATATYPES)
//
/////////////////////////////////////////////////////////////////////////
namespace alglib_impl
{
typedef struct
{
    ae_int_t n;
    ae_int_t nx;
    ae_int_t d;
    double r;
    ae_int_t nw;
    kdtree tree;
    ae_int_t modeltype;
    ae_matrix q;
    ae_vector xbuf;
    ae_vector tbuf;
    ae_vector rbuf;
    ae_matrix xybuf;
    ae_int_t debugsolverfailures;
    double debugworstrcond;
    double debugbestrcond;
} idwinterpolant;
typedef struct
{
    ae_int_t n;
    double sy;
    ae_vector x;
    ae_vector y;
    ae_vector w;
} barycentricinterpolant;
typedef struct
{
    ae_bool periodic;
    ae_int_t n;
    ae_int_t k;
    ae_int_t continuity;
    ae_vector x;
    ae_vector c;
} spline1dinterpolant;
typedef struct
{
    double taskrcond;
    double rmserror;
    double avgerror;
    double avgrelerror;
    double maxerror;
} polynomialfitreport;
typedef struct
{
    double taskrcond;
    ae_int_t dbest;
    double rmserror;
    double avgerror;
    double avgrelerror;
    double maxerror;
} barycentricfitreport;
typedef struct
{
    double taskrcond;
    double rmserror;
    double avgerror;
    double avgrelerror;
    double maxerror;
} spline1dfitreport;
typedef struct
{
    double taskrcond;
    ae_int_t iterationscount;
    ae_int_t varidx;
    double rmserror;
    double avgerror;
    double avgrelerror;
    double maxerror;
    double wrmserror;
    ae_matrix covpar;
    ae_vector errpar;
    ae_vector errcurve;
    ae_vector noise;
    double r2;
} lsfitreport;
typedef struct
{
    ae_int_t optalgo;
    ae_int_t m;
    ae_int_t k;
    double epsf;
    double epsx;
    ae_int_t maxits;
    double stpmax;
    ae_bool xrep;
    ae_vector s;
    ae_vector bndl;
    ae_vector bndu;
    ae_matrix taskx;
    ae_vector tasky;
    ae_int_t npoints;
    ae_vector taskw;
    ae_int_t nweights;
    ae_int_t wkind;
    ae_int_t wits;
    double diffstep;
    double teststep;
    ae_bool xupdated;
    ae_bool needf;
    ae_bool needfg;
    ae_bool needfgh;
    ae_int_t pointindex;
    ae_vector x;
    ae_vector c;
    double f;
    ae_vector g;
    ae_matrix h;
    ae_vector wcur;
    ae_vector tmp;
    ae_vector tmpf;
    ae_matrix tmpjac;
    ae_matrix tmpjacw;
    double tmpnoise;
    matinvreport invrep;
    ae_int_t repiterationscount;
    ae_int_t repterminationtype;
    ae_int_t repvaridx;
    double reprmserror;
    double repavgerror;
    double repavgrelerror;
    double repmaxerror;
    double repwrmserror;
    lsfitreport rep;
    minlmstate optstate;
    minlmreport optrep;
    ae_int_t prevnpt;
    ae_int_t prevalgo;
    rcommstate rstate;
} lsfitstate;
typedef struct
{
    ae_int_t n;
    ae_bool periodic;
    ae_vector p;
    spline1dinterpolant x;
    spline1dinterpolant y;
} pspline2interpolant;
typedef struct
{
    ae_int_t n;
    ae_bool periodic;
    ae_vector p;
    spline1dinterpolant x;
    spline1dinterpolant y;
    spline1dinterpolant z;
} pspline3interpolant;
typedef struct
{
    ae_int_t ny;
    ae_int_t nx;
    ae_int_t nc;
    ae_int_t nl;
    kdtree tree;
    ae_matrix xc;
    ae_matrix wr;
    double rmax;
    ae_matrix v;
    ae_int_t gridtype;
    ae_bool fixrad;
    double lambdav;
    double radvalue;
    double radzvalue;
    ae_int_t nlayers;
    ae_int_t aterm;
    ae_int_t algorithmtype;
    double epsort;
    double epserr;
    ae_int_t maxits;
    double h;
    ae_int_t n;
    ae_matrix x;
    ae_matrix y;
    ae_vector calcbufxcx;
    ae_matrix calcbufx;
    ae_vector calcbuftags;
} rbfmodel;
typedef struct
{
    ae_int_t arows;
    ae_int_t acols;
    ae_int_t annz;
    ae_int_t iterationscount;
    ae_int_t nmv;
    ae_int_t terminationtype;
} rbfreport;
typedef struct
{
    ae_int_t k;
    ae_int_t stype;
    ae_int_t n;
    ae_int_t m;
    ae_int_t d;
    ae_vector x;
    ae_vector y;
    ae_vector f;
} spline2dinterpolant;
typedef struct
{
    ae_int_t k;
    ae_int_t stype;
    ae_int_t n;
    ae_int_t m;
    ae_int_t l;
    ae_int_t d;
    ae_vector x;
    ae_vector y;
    ae_vector z;
    ae_vector f;
} spline3dinterpolant;

}

/////////////////////////////////////////////////////////////////////////
//
// THIS SECTION CONTAINS C++ INTERFACE
//
/////////////////////////////////////////////////////////////////////////
namespace alglib
{

/*************************************************************************
IDW interpolant.
*************************************************************************/
class _idwinterpolant_owner
{
public:
    _idwinterpolant_owner();
    _idwinterpolant_owner(const _idwinterpolant_owner &rhs);
    _idwinterpolant_owner& operator=(const _idwinterpolant_owner &rhs);
    virtual ~_idwinterpolant_owner();
    alglib_impl::idwinterpolant* c_ptr();
    alglib_impl::idwinterpolant* c_ptr() const;
protected:
    alglib_impl::idwinterpolant *p_struct;
};
class idwinterpolant : public _idwinterpolant_owner
{
public:
    idwinterpolant();
    idwinterpolant(const idwinterpolant &rhs);
    idwinterpolant& operator=(const idwinterpolant &rhs);
    virtual ~idwinterpolant();

};

/*************************************************************************
Barycentric interpolant.
*************************************************************************/
class _barycentricinterpolant_owner
{
public:
    _barycentricinterpolant_owner();
    _barycentricinterpolant_owner(const _barycentricinterpolant_owner &rhs);
    _barycentricinterpolant_owner& operator=(const _barycentricinterpolant_owner &rhs);
    virtual ~_barycentricinterpolant_owner();
    alglib_impl::barycentricinterpolant* c_ptr();
    alglib_impl::barycentricinterpolant* c_ptr() const;
protected:
    alglib_impl::barycentricinterpolant *p_struct;
};
class barycentricinterpolant : public _barycentricinterpolant_owner
{
public:
    barycentricinterpolant();
    barycentricinterpolant(const barycentricinterpolant &rhs);
    barycentricinterpolant& operator=(const barycentricinterpolant &rhs);
    virtual ~barycentricinterpolant();

};



/*************************************************************************
1-dimensional spline interpolant
*************************************************************************/
class _spline1dinterpolant_owner
{
public:
    _spline1dinterpolant_owner();
    _spline1dinterpolant_owner(const _spline1dinterpolant_owner &rhs);
    _spline1dinterpolant_owner& operator=(const _spline1dinterpolant_owner &rhs);
    virtual ~_spline1dinterpolant_owner();
    alglib_impl::spline1dinterpolant* c_ptr();
    alglib_impl::spline1dinterpolant* c_ptr() const;
protected:
    alglib_impl::spline1dinterpolant *p_struct;
};
class spline1dinterpolant : public _spline1dinterpolant_owner
{
public:
    spline1dinterpolant();
    spline1dinterpolant(const spline1dinterpolant &rhs);
    spline1dinterpolant& operator=(const spline1dinterpolant &rhs);
    virtual ~spline1dinterpolant();

};

/*************************************************************************
Polynomial fitting report:
    TaskRCond       reciprocal of task's condition number
    RMSError        RMS error
    AvgError        average error
    AvgRelError     average relative error (for non-zero Y[I])
    MaxError        maximum error
*************************************************************************/
class _polynomialfitreport_owner
{
public:
    _polynomialfitreport_owner();
    _polynomialfitreport_owner(const _polynomialfitreport_owner &rhs);
    _polynomialfitreport_owner& operator=(const _polynomialfitreport_owner &rhs);
    virtual ~_polynomialfitreport_owner();
    alglib_impl::polynomialfitreport* c_ptr();
    alglib_impl::polynomialfitreport* c_ptr() const;
protected:
    alglib_impl::polynomialfitreport *p_struct;
};
class polynomialfitreport : public _polynomialfitreport_owner
{
public:
    polynomialfitreport();
    polynomialfitreport(const polynomialfitreport &rhs);
    polynomialfitreport& operator=(const polynomialfitreport &rhs);
    virtual ~polynomialfitreport();
    double &taskrcond;
    double &rmserror;
    double &avgerror;
    double &avgrelerror;
    double &maxerror;

};


/*************************************************************************
Barycentric fitting report:
    RMSError        RMS error
    AvgError        average error
    AvgRelError     average relative error (for non-zero Y[I])
    MaxError        maximum error
    TaskRCond       reciprocal of task's condition number
*************************************************************************/
class _barycentricfitreport_owner
{
public:
    _barycentricfitreport_owner();
    _barycentricfitreport_owner(const _barycentricfitreport_owner &rhs);
    _barycentricfitreport_owner& operator=(const _barycentricfitreport_owner &rhs);
    virtual ~_barycentricfitreport_owner();
    alglib_impl::barycentricfitreport* c_ptr();
    alglib_impl::barycentricfitreport* c_ptr() const;
protected:
    alglib_impl::barycentricfitreport *p_struct;
};
class barycentricfitreport : public _barycentricfitreport_owner
{
public:
    barycentricfitreport();
    barycentricfitreport(const barycentricfitreport &rhs);
    barycentricfitreport& operator=(const barycentricfitreport &rhs);
    virtual ~barycentricfitreport();
    double &taskrcond;
    ae_int_t &dbest;
    double &rmserror;
    double &avgerror;
    double &avgrelerror;
    double &maxerror;

};


/*************************************************************************
Spline fitting report:
    RMSError        RMS error
    AvgError        average error
    AvgRelError     average relative error (for non-zero Y[I])
    MaxError        maximum error

Fields  below are  filled  by   obsolete    functions   (Spline1DFitCubic,
Spline1DFitHermite). Modern fitting functions do NOT fill these fields:
    TaskRCond       reciprocal of task's condition number
*************************************************************************/
class _spline1dfitreport_owner
{
public:
    _spline1dfitreport_owner();
    _spline1dfitreport_owner(const _spline1dfitreport_owner &rhs);
    _spline1dfitreport_owner& operator=(const _spline1dfitreport_owner &rhs);
    virtual ~_spline1dfitreport_owner();
    alglib_impl::spline1dfitreport* c_ptr();
    alglib_impl::spline1dfitreport* c_ptr() const;
protected:
    alglib_impl::spline1dfitreport *p_struct;
};
class spline1dfitreport : public _spline1dfitreport_owner
{
public:
    spline1dfitreport();
    spline1dfitreport(const spline1dfitreport &rhs);
    spline1dfitreport& operator=(const spline1dfitreport &rhs);
    virtual ~spline1dfitreport();
    double &taskrcond;
    double &rmserror;
    double &avgerror;
    double &avgrelerror;
    double &maxerror;

};


/*************************************************************************
Least squares fitting report. This structure contains informational fields
which are set by fitting functions provided by this unit.

Different functions initialize different sets of  fields,  so  you  should
read documentation on specific function you used in order  to  know  which
fields are initialized.

    TaskRCond       reciprocal of task's condition number
    IterationsCount number of internal iterations

    VarIdx          if user-supplied gradient contains errors  which  were
                    detected by nonlinear fitter, this  field  is  set  to
                    index  of  the  first  component  of gradient which is
                    suspected to be spoiled by bugs.

    RMSError        RMS error
    AvgError        average error
    AvgRelError     average relative error (for non-zero Y[I])
    MaxError        maximum error

    WRMSError       weighted RMS error

    CovPar          covariance matrix for parameters, filled by some solvers
    ErrPar          vector of errors in parameters, filled by some solvers
    ErrCurve        vector of fit errors -  variability  of  the  best-fit
                    curve, filled by some solvers.
    Noise           vector of per-point noise estimates, filled by
                    some solvers.
    R2              coefficient of determination (non-weighted, non-adjusted),
                    filled by some solvers.
*************************************************************************/
class _lsfitreport_owner
{
public:
    _lsfitreport_owner();
    _lsfitreport_owner(const _lsfitreport_owner &rhs);
    _lsfitreport_owner& operator=(const _lsfitreport_owner &rhs);
    virtual ~_lsfitreport_owner();
    alglib_impl::lsfitreport* c_ptr();
    alglib_impl::lsfitreport* c_ptr() const;
protected:
    alglib_impl::lsfitreport *p_struct;
};
class lsfitreport : public _lsfitreport_owner
{
public:
    lsfitreport();
    lsfitreport(const lsfitreport &rhs);
    lsfitreport& operator=(const lsfitreport &rhs);
    virtual ~lsfitreport();
    double &taskrcond;
    ae_int_t &iterationscount;
    ae_int_t &varidx;
    double &rmserror;
    double &avgerror;
    double &avgrelerror;
    double &maxerror;
    double &wrmserror;
    real_2d_array covpar;
    real_1d_array errpar;
    real_1d_array errcurve;
    real_1d_array noise;
    double &r2;

};


/*************************************************************************
Nonlinear fitter.

You should use ALGLIB functions to work with fitter.
Never try to access its fields directly!
*************************************************************************/
class _lsfitstate_owner
{
public:
    _lsfitstate_owner();
    _lsfitstate_owner(const _lsfitstate_owner &rhs);
    _lsfitstate_owner& operator=(const _lsfitstate_owner &rhs);
    virtual ~_lsfitstate_owner();
    alglib_impl::lsfitstate* c_ptr();
    alglib_impl::lsfitstate* c_ptr() const;
protected:
    alglib_impl::lsfitstate *p_struct;
};
class lsfitstate : public _lsfitstate_owner
{
public:
    lsfitstate();
    lsfitstate(const lsfitstate &rhs);
    lsfitstate& operator=(const lsfitstate &rhs);
    virtual ~lsfitstate();
    ae_bool &needf;
    ae_bool &needfg;
    ae_bool &needfgh;
    ae_bool &xupdated;
    real_1d_array c;
    double &f;
    real_1d_array g;
    real_2d_array h;
    real_1d_array x;

};

/*************************************************************************
Parametric spline inteprolant: 2-dimensional curve.

You should not try to access its members directly - use PSpline2XXXXXXXX()
functions instead.
*************************************************************************/
class _pspline2interpolant_owner
{
public:
    _pspline2interpolant_owner();
    _pspline2interpolant_owner(const _pspline2interpolant_owner &rhs);
    _pspline2interpolant_owner& operator=(const _pspline2interpolant_owner &rhs);
    virtual ~_pspline2interpolant_owner();
    alglib_impl::pspline2interpolant* c_ptr();
    alglib_impl::pspline2interpolant* c_ptr() const;
protected:
    alglib_impl::pspline2interpolant *p_struct;
};
class pspline2interpolant : public _pspline2interpolant_owner
{
public:
    pspline2interpolant();
    pspline2interpolant(const pspline2interpolant &rhs);
    pspline2interpolant& operator=(const pspline2interpolant &rhs);
    virtual ~pspline2interpolant();

};


/*************************************************************************
Parametric spline inteprolant: 3-dimensional curve.

You should not try to access its members directly - use PSpline3XXXXXXXX()
functions instead.
*************************************************************************/
class _pspline3interpolant_owner
{
public:
    _pspline3interpolant_owner();
    _pspline3interpolant_owner(const _pspline3interpolant_owner &rhs);
    _pspline3interpolant_owner& operator=(const _pspline3interpolant_owner &rhs);
    virtual ~_pspline3interpolant_owner();
    alglib_impl::pspline3interpolant* c_ptr();
    alglib_impl::pspline3interpolant* c_ptr() const;
protected:
    alglib_impl::pspline3interpolant *p_struct;
};
class pspline3interpolant : public _pspline3interpolant_owner
{
public:
    pspline3interpolant();
    pspline3interpolant(const pspline3interpolant &rhs);
    pspline3interpolant& operator=(const pspline3interpolant &rhs);
    virtual ~pspline3interpolant();

};

/*************************************************************************
RBF model.

Never try to directly work with fields of this object - always use  ALGLIB
functions to use this object.
*************************************************************************/
class _rbfmodel_owner
{
public:
    _rbfmodel_owner();
    _rbfmodel_owner(const _rbfmodel_owner &rhs);
    _rbfmodel_owner& operator=(const _rbfmodel_owner &rhs);
    virtual ~_rbfmodel_owner();
    alglib_impl::rbfmodel* c_ptr();
    alglib_impl::rbfmodel* c_ptr() const;
protected:
    alglib_impl::rbfmodel *p_struct;
};
class rbfmodel : public _rbfmodel_owner
{
public:
    rbfmodel();
    rbfmodel(const rbfmodel &rhs);
    rbfmodel& operator=(const rbfmodel &rhs);
    virtual ~rbfmodel();

};


/*************************************************************************
RBF solution report:
* TerminationType   -   termination type, positive values - success,
                        non-positive - failure.
*************************************************************************/
class _rbfreport_owner
{
public:
    _rbfreport_owner();
    _rbfreport_owner(const _rbfreport_owner &rhs);
    _rbfreport_owner& operator=(const _rbfreport_owner &rhs);
    virtual ~_rbfreport_owner();
    alglib_impl::rbfreport* c_ptr();
    alglib_impl::rbfreport* c_ptr() const;
protected:
    alglib_impl::rbfreport *p_struct;
};
class rbfreport : public _rbfreport_owner
{
public:
    rbfreport();
    rbfreport(const rbfreport &rhs);
    rbfreport& operator=(const rbfreport &rhs);
    virtual ~rbfreport();
    ae_int_t &arows;
    ae_int_t &acols;
    ae_int_t &annz;
    ae_int_t &iterationscount;
    ae_int_t &nmv;
    ae_int_t &terminationtype;

};

/*************************************************************************
2-dimensional spline inteprolant
*************************************************************************/
class _spline2dinterpolant_owner
{
public:
    _spline2dinterpolant_owner();
    _spline2dinterpolant_owner(const _spline2dinterpolant_owner &rhs);
    _spline2dinterpolant_owner& operator=(const _spline2dinterpolant_owner &rhs);
    virtual ~_spline2dinterpolant_owner();
    alglib_impl::spline2dinterpolant* c_ptr();
    alglib_impl::spline2dinterpolant* c_ptr() const;
protected:
    alglib_impl::spline2dinterpolant *p_struct;
};
class spline2dinterpolant : public _spline2dinterpolant_owner
{
public:
    spline2dinterpolant();
    spline2dinterpolant(const spline2dinterpolant &rhs);
    spline2dinterpolant& operator=(const spline2dinterpolant &rhs);
    virtual ~spline2dinterpolant();

};

/*************************************************************************
3-dimensional spline inteprolant
*************************************************************************/
class _spline3dinterpolant_owner
{
public:
    _spline3dinterpolant_owner();
    _spline3dinterpolant_owner(const _spline3dinterpolant_owner &rhs);
    _spline3dinterpolant_owner& operator=(const _spline3dinterpolant_owner &rhs);
    virtual ~_spline3dinterpolant_owner();
    alglib_impl::spline3dinterpolant* c_ptr();
    alglib_impl::spline3dinterpolant* c_ptr() const;
protected:
    alglib_impl::spline3dinterpolant *p_struct;
};
class spline3dinterpolant : public _spline3dinterpolant_owner
{
public:
    spline3dinterpolant();
    spline3dinterpolant(const spline3dinterpolant &rhs);
    spline3dinterpolant& operator=(const spline3dinterpolant &rhs);
    virtual ~spline3dinterpolant();

};

/*************************************************************************
IDW interpolation

INPUT PARAMETERS:
    Z   -   IDW interpolant built with one of model building
            subroutines.
    X   -   array[0..NX-1], interpolation point

Result:
    IDW interpolant Z(X)

  -- ALGLIB --
     Copyright 02.03.2010 by Bochkanov Sergey
*************************************************************************/
double idwcalc(const idwinterpolant &z, const real_1d_array &x);


/*************************************************************************
IDW interpolant using modified Shepard method for uniform point
distributions.

INPUT PARAMETERS:
    XY  -   X and Y values, array[0..N-1,0..NX].
            First NX columns contain X-values, last column contain
            Y-values.
    N   -   number of nodes, N>0.
    NX  -   space dimension, NX>=1.
    D   -   nodal function type, either:
            * 0     constant  model.  Just  for  demonstration only, worst
                    model ever.
            * 1     linear model, least squares fitting. Simpe  model  for
                    datasets too small for quadratic models
            * 2     quadratic  model,  least  squares  fitting. Best model
                    available (if your dataset is large enough).
            * -1    "fast"  linear  model,  use  with  caution!!!   It  is
                    significantly  faster than linear/quadratic and better
                    than constant model. But it is less robust (especially
                    in the presence of noise).
    NQ  -   number of points used to calculate  nodal  functions  (ignored
            for constant models). NQ should be LARGER than:
            * max(1.5*(1+NX),2^NX+1) for linear model,
            * max(3/4*(NX+2)*(NX+1),2^NX+1) for quadratic model.
            Values less than this threshold will be silently increased.
    NW  -   number of points used to calculate weights and to interpolate.
            Required: >=2^NX+1, values less than this  threshold  will  be
            silently increased.
            Recommended value: about 2*NQ

OUTPUT PARAMETERS:
    Z   -   IDW interpolant.

NOTES:
  * best results are obtained with quadratic models, worst - with constant
    models
  * when N is large, NQ and NW must be significantly smaller than  N  both
    to obtain optimal performance and to obtain optimal accuracy. In 2  or
    3-dimensional tasks NQ=15 and NW=25 are good values to start with.
  * NQ  and  NW  may  be  greater  than  N.  In  such  cases  they will be
    automatically decreased.
  * this subroutine is always succeeds (as long as correct parameters  are
    passed).
  * see  'Multivariate  Interpolation  of Large Sets of Scattered Data' by
    Robert J. Renka for more information on this algorithm.
  * this subroutine assumes that point distribution is uniform at the small
    scales.  If  it  isn't  -  for  example,  points are concentrated along
    "lines", but "lines" distribution is uniform at the larger scale - then
    you should use IDWBuildModifiedShepardR()


  -- ALGLIB PROJECT --
     Copyright 02.03.2010 by Bochkanov Sergey
*************************************************************************/
void idwbuildmodifiedshepard(const real_2d_array &xy, const ae_int_t n, const ae_int_t nx, const ae_int_t d, const ae_int_t nq, const ae_int_t nw, idwinterpolant &z);


/*************************************************************************
IDW interpolant using modified Shepard method for non-uniform datasets.

This type of model uses  constant  nodal  functions and interpolates using
all nodes which are closer than user-specified radius R. It  may  be  used
when points distribution is non-uniform at the small scale, but it  is  at
the distances as large as R.

INPUT PARAMETERS:
    XY  -   X and Y values, array[0..N-1,0..NX].
            First NX columns contain X-values, last column contain
            Y-values.
    N   -   number of nodes, N>0.
    NX  -   space dimension, NX>=1.
    R   -   radius, R>0

OUTPUT PARAMETERS:
    Z   -   IDW interpolant.

NOTES:
* if there is less than IDWKMin points within  R-ball,  algorithm  selects
  IDWKMin closest ones, so that continuity properties of  interpolant  are
  preserved even far from points.

  -- ALGLIB PROJECT --
     Copyright 11.04.2010 by Bochkanov Sergey
*************************************************************************/
void idwbuildmodifiedshepardr(const real_2d_array &xy, const ae_int_t n, const ae_int_t nx, const double r, idwinterpolant &z);


/*************************************************************************
IDW model for noisy data.

This subroutine may be used to handle noisy data, i.e. data with noise  in
OUTPUT values.  It differs from IDWBuildModifiedShepard() in the following
aspects:
* nodal functions are not constrained to pass through  nodes:  Qi(xi)<>yi,
  i.e. we have fitting  instead  of  interpolation.
* weights which are used during least  squares fitting stage are all equal
  to 1.0 (independently of distance)
* "fast"-linear or constant nodal functions are not supported (either  not
  robust enough or too rigid)

This problem require far more complex tuning than interpolation  problems.
Below you can find some recommendations regarding this problem:
* focus on tuning NQ; it controls noise reduction. As for NW, you can just
  make it equal to 2*NQ.
* you can use cross-validation to determine optimal NQ.
* optimal NQ is a result of complex tradeoff  between  noise  level  (more
  noise = larger NQ required) and underlying  function  complexity  (given
  fixed N, larger NQ means smoothing of compex features in the data).  For
  example, NQ=N will reduce noise to the minimum level possible,  but  you
  will end up with just constant/linear/quadratic (depending on  D)  least
  squares model for the whole dataset.

INPUT PARAMETERS:
    XY  -   X and Y values, array[0..N-1,0..NX].
            First NX columns contain X-values, last column contain
            Y-values.
    N   -   number of nodes, N>0.
    NX  -   space dimension, NX>=1.
    D   -   nodal function degree, either:
            * 1     linear model, least squares fitting. Simpe  model  for
                    datasets too small for quadratic models (or  for  very
                    noisy problems).
            * 2     quadratic  model,  least  squares  fitting. Best model
                    available (if your dataset is large enough).
    NQ  -   number of points used to calculate nodal functions.  NQ should
            be  significantly   larger   than  1.5  times  the  number  of
            coefficients in a nodal function to overcome effects of noise:
            * larger than 1.5*(1+NX) for linear model,
            * larger than 3/4*(NX+2)*(NX+1) for quadratic model.
            Values less than this threshold will be silently increased.
    NW  -   number of points used to calculate weights and to interpolate.
            Required: >=2^NX+1, values less than this  threshold  will  be
            silently increased.
            Recommended value: about 2*NQ or larger

OUTPUT PARAMETERS:
    Z   -   IDW interpolant.

NOTES:
  * best results are obtained with quadratic models, linear models are not
    recommended to use unless you are pretty sure that it is what you want
  * this subroutine is always succeeds (as long as correct parameters  are
    passed).
  * see  'Multivariate  Interpolation  of Large Sets of Scattered Data' by
    Robert J. Renka for more information on this algorithm.


  -- ALGLIB PROJECT --
     Copyright 02.03.2010 by Bochkanov Sergey
*************************************************************************/
void idwbuildnoisy(const real_2d_array &xy, const ae_int_t n, const ae_int_t nx, const ae_int_t d, const ae_int_t nq, const ae_int_t nw, idwinterpolant &z);

/*************************************************************************
Rational interpolation using barycentric formula

F(t) = SUM(i=0,n-1,w[i]*f[i]/(t-x[i])) / SUM(i=0,n-1,w[i]/(t-x[i]))

Input parameters:
    B   -   barycentric interpolant built with one of model building
            subroutines.
    T   -   interpolation point

Result:
    barycentric interpolant F(t)

  -- ALGLIB --
     Copyright 17.08.2009 by Bochkanov Sergey
*************************************************************************/
double barycentriccalc(const barycentricinterpolant &b, const double t);


/*************************************************************************
Differentiation of barycentric interpolant: first derivative.

Algorithm used in this subroutine is very robust and should not fail until
provided with values too close to MaxRealNumber  (usually  MaxRealNumber/N
or greater will overflow).

INPUT PARAMETERS:
    B   -   barycentric interpolant built with one of model building
            subroutines.
    T   -   interpolation point

OUTPUT PARAMETERS:
    F   -   barycentric interpolant at T
    DF  -   first derivative

NOTE


  -- ALGLIB --
     Copyright 17.08.2009 by Bochkanov Sergey
*************************************************************************/
void barycentricdiff1(const barycentricinterpolant &b, const double t, double &f, double &df);


/*************************************************************************
Differentiation of barycentric interpolant: first/second derivatives.

INPUT PARAMETERS:
    B   -   barycentric interpolant built with one of model building
            subroutines.
    T   -   interpolation point

OUTPUT PARAMETERS:
    F   -   barycentric interpolant at T
    DF  -   first derivative
    D2F -   second derivative

NOTE: this algorithm may fail due to overflow/underflor if  used  on  data
whose values are close to MaxRealNumber or MinRealNumber.  Use more robust
BarycentricDiff1() subroutine in such cases.


  -- ALGLIB --
     Copyright 17.08.2009 by Bochkanov Sergey
*************************************************************************/
void barycentricdiff2(const barycentricinterpolant &b, const double t, double &f, double &df, double &d2f);


/*************************************************************************
This subroutine performs linear transformation of the argument.

INPUT PARAMETERS:
    B       -   rational interpolant in barycentric form
    CA, CB  -   transformation coefficients: x = CA*t + CB

OUTPUT PARAMETERS:
    B       -   transformed interpolant with X replaced by T

  -- ALGLIB PROJECT --
     Copyright 19.08.2009 by Bochkanov Sergey
*************************************************************************/
void barycentriclintransx(const barycentricinterpolant &b, const double ca, const double cb);


/*************************************************************************
This  subroutine   performs   linear  transformation  of  the  barycentric
interpolant.

INPUT PARAMETERS:
    B       -   rational interpolant in barycentric form
    CA, CB  -   transformation coefficients: B2(x) = CA*B(x) + CB

OUTPUT PARAMETERS:
    B       -   transformed interpolant

  -- ALGLIB PROJECT --
     Copyright 19.08.2009 by Bochkanov Sergey
*************************************************************************/
void barycentriclintransy(const barycentricinterpolant &b, const double ca, const double cb);


/*************************************************************************
Extracts X/Y/W arrays from rational interpolant

INPUT PARAMETERS:
    B   -   barycentric interpolant

OUTPUT PARAMETERS:
    N   -   nodes count, N>0
    X   -   interpolation nodes, array[0..N-1]
    F   -   function values, array[0..N-1]
    W   -   barycentric weights, array[0..N-1]

  -- ALGLIB --
     Copyright 17.08.2009 by Bochkanov Sergey
*************************************************************************/
void barycentricunpack(const barycentricinterpolant &b, ae_int_t &n, real_1d_array &x, real_1d_array &y, real_1d_array &w);


/*************************************************************************
Rational interpolant from X/Y/W arrays

F(t) = SUM(i=0,n-1,w[i]*f[i]/(t-x[i])) / SUM(i=0,n-1,w[i]/(t-x[i]))

INPUT PARAMETERS:
    X   -   interpolation nodes, array[0..N-1]
    F   -   function values, array[0..N-1]
    W   -   barycentric weights, array[0..N-1]
    N   -   nodes count, N>0

OUTPUT PARAMETERS:
    B   -   barycentric interpolant built from (X, Y, W)

  -- ALGLIB --
     Copyright 17.08.2009 by Bochkanov Sergey
*************************************************************************/
void barycentricbuildxyw(const real_1d_array &x, const real_1d_array &y, const real_1d_array &w, const ae_int_t n, barycentricinterpolant &b);


/*************************************************************************
Rational interpolant without poles

The subroutine constructs the rational interpolating function without real
poles  (see  'Barycentric rational interpolation with no  poles  and  high
rates of approximation', Michael S. Floater. and  Kai  Hormann,  for  more
information on this subject).

Input parameters:
    X   -   interpolation nodes, array[0..N-1].
    Y   -   function values, array[0..N-1].
    N   -   number of nodes, N>0.
    D   -   order of the interpolation scheme, 0 <= D <= N-1.
            D<0 will cause an error.
            D>=N it will be replaced with D=N-1.
            if you don't know what D to choose, use small value about 3-5.

Output parameters:
    B   -   barycentric interpolant.

Note:
    this algorithm always succeeds and calculates the weights  with  close
    to machine precision.

  -- ALGLIB PROJECT --
     Copyright 17.06.2007 by Bochkanov Sergey
*************************************************************************/
void barycentricbuildfloaterhormann(const real_1d_array &x, const real_1d_array &y, const ae_int_t n, const ae_int_t d, barycentricinterpolant &b);

/*************************************************************************
Conversion from barycentric representation to Chebyshev basis.
This function has O(N^2) complexity.

INPUT PARAMETERS:
    P   -   polynomial in barycentric form
    A,B -   base interval for Chebyshev polynomials (see below)
            A<>B

OUTPUT PARAMETERS
    T   -   coefficients of Chebyshev representation;
            P(x) = sum { T[i]*Ti(2*(x-A)/(B-A)-1), i=0..N-1 },
            where Ti - I-th Chebyshev polynomial.

NOTES:
    barycentric interpolant passed as P may be either polynomial  obtained
    from  polynomial  interpolation/ fitting or rational function which is
    NOT polynomial. We can't distinguish between these two cases, and this
    algorithm just tries to work assuming that P IS a polynomial.  If not,
    algorithm will return results, but they won't have any meaning.

  -- ALGLIB --
     Copyright 30.09.2010 by Bochkanov Sergey
*************************************************************************/
void polynomialbar2cheb(const barycentricinterpolant &p, const double a, const double b, real_1d_array &t);


/*************************************************************************
Conversion from Chebyshev basis to barycentric representation.
This function has O(N^2) complexity.

INPUT PARAMETERS:
    T   -   coefficients of Chebyshev representation;
            P(x) = sum { T[i]*Ti(2*(x-A)/(B-A)-1), i=0..N },
            where Ti - I-th Chebyshev polynomial.
    N   -   number of coefficients:
            * if given, only leading N elements of T are used
            * if not given, automatically determined from size of T
    A,B -   base interval for Chebyshev polynomials (see above)
            A<B

OUTPUT PARAMETERS
    P   -   polynomial in barycentric form

  -- ALGLIB --
     Copyright 30.09.2010 by Bochkanov Sergey
*************************************************************************/
void polynomialcheb2bar(const real_1d_array &t, const ae_int_t n, const double a, const double b, barycentricinterpolant &p);
void polynomialcheb2bar(const real_1d_array &t, const double a, const double b, barycentricinterpolant &p);


/*************************************************************************
Conversion from barycentric representation to power basis.
This function has O(N^2) complexity.

INPUT PARAMETERS:
    P   -   polynomial in barycentric form
    C   -   offset (see below); 0.0 is used as default value.
    S   -   scale (see below);  1.0 is used as default value. S<>0.

OUTPUT PARAMETERS
    A   -   coefficients, P(x) = sum { A[i]*((X-C)/S)^i, i=0..N-1 }
    N   -   number of coefficients (polynomial degree plus 1)

NOTES:
1.  this function accepts offset and scale, which can be  set  to  improve
    numerical properties of polynomial. For example, if P was obtained  as
    result of interpolation on [-1,+1],  you  can  set  C=0  and  S=1  and
    represent  P  as sum of 1, x, x^2, x^3 and so on. In most cases you it
    is exactly what you need.

    However, if your interpolation model was built on [999,1001], you will
    see significant growth of numerical errors when using {1, x, x^2, x^3}
    as basis. Representing P as sum of 1, (x-1000), (x-1000)^2, (x-1000)^3
    will be better option. Such representation can be  obtained  by  using
    1000.0 as offset C and 1.0 as scale S.

2.  power basis is ill-conditioned and tricks described above can't  solve
    this problem completely. This function  will  return  coefficients  in
    any  case,  but  for  N>8  they  will  become unreliable. However, N's
    less than 5 are pretty safe.

3.  barycentric interpolant passed as P may be either polynomial  obtained
    from  polynomial  interpolation/ fitting or rational function which is
    NOT polynomial. We can't distinguish between these two cases, and this
    algorithm just tries to work assuming that P IS a polynomial.  If not,
    algorithm will return results, but they won't have any meaning.

  -- ALGLIB --
     Copyright 30.09.2010 by Bochkanov Sergey
*************************************************************************/
void polynomialbar2pow(const barycentricinterpolant &p, const double c, const double s, real_1d_array &a);
void polynomialbar2pow(const barycentricinterpolant &p, real_1d_array &a);


/*************************************************************************
Conversion from power basis to barycentric representation.
This function has O(N^2) complexity.

INPUT PARAMETERS:
    A   -   coefficients, P(x) = sum { A[i]*((X-C)/S)^i, i=0..N-1 }
    N   -   number of coefficients (polynomial degree plus 1)
            * if given, only leading N elements of A are used
            * if not given, automatically determined from size of A
    C   -   offset (see below); 0.0 is used as default value.
    S   -   scale (see below);  1.0 is used as default value. S<>0.

OUTPUT PARAMETERS
    P   -   polynomial in barycentric form


NOTES:
1.  this function accepts offset and scale, which can be  set  to  improve
    numerical properties of polynomial. For example, if you interpolate on
    [-1,+1],  you  can  set C=0 and S=1 and convert from sum of 1, x, x^2,
    x^3 and so on. In most cases you it is exactly what you need.

    However, if your interpolation model was built on [999,1001], you will
    see significant growth of numerical errors when using {1, x, x^2, x^3}
    as  input  basis.  Converting  from  sum  of  1, (x-1000), (x-1000)^2,
    (x-1000)^3 will be better option (you have to specify 1000.0 as offset
    C and 1.0 as scale S).

2.  power basis is ill-conditioned and tricks described above can't  solve
    this problem completely. This function  will  return barycentric model
    in any case, but for N>8 accuracy well degrade. However, N's less than
    5 are pretty safe.

  -- ALGLIB --
     Copyright 30.09.2010 by Bochkanov Sergey
*************************************************************************/
void polynomialpow2bar(const real_1d_array &a, const ae_int_t n, const double c, const double s, barycentricinterpolant &p);
void polynomialpow2bar(const real_1d_array &a, barycentricinterpolant &p);


/*************************************************************************
Lagrange intepolant: generation of the model on the general grid.
This function has O(N^2) complexity.

INPUT PARAMETERS:
    X   -   abscissas, array[0..N-1]
    Y   -   function values, array[0..N-1]
    N   -   number of points, N>=1

OUTPUT PARAMETERS
    P   -   barycentric model which represents Lagrange interpolant
            (see ratint unit info and BarycentricCalc() description for
            more information).

  -- ALGLIB --
     Copyright 02.12.2009 by Bochkanov Sergey
*************************************************************************/
void polynomialbuild(const real_1d_array &x, const real_1d_array &y, const ae_int_t n, barycentricinterpolant &p);
void polynomialbuild(const real_1d_array &x, const real_1d_array &y, barycentricinterpolant &p);


/*************************************************************************
Lagrange intepolant: generation of the model on equidistant grid.
This function has O(N) complexity.

INPUT PARAMETERS:
    A   -   left boundary of [A,B]
    B   -   right boundary of [A,B]
    Y   -   function values at the nodes, array[0..N-1]
    N   -   number of points, N>=1
            for N=1 a constant model is constructed.

OUTPUT PARAMETERS
    P   -   barycentric model which represents Lagrange interpolant
            (see ratint unit info and BarycentricCalc() description for
            more information).

  -- ALGLIB --
     Copyright 03.12.2009 by Bochkanov Sergey
*************************************************************************/
void polynomialbuildeqdist(const double a, const double b, const real_1d_array &y, const ae_int_t n, barycentricinterpolant &p);
void polynomialbuildeqdist(const double a, const double b, const real_1d_array &y, barycentricinterpolant &p);


/*************************************************************************
Lagrange intepolant on Chebyshev grid (first kind).
This function has O(N) complexity.

INPUT PARAMETERS:
    A   -   left boundary of [A,B]
    B   -   right boundary of [A,B]
    Y   -   function values at the nodes, array[0..N-1],
            Y[I] = Y(0.5*(B+A) + 0.5*(B-A)*Cos(PI*(2*i+1)/(2*n)))
    N   -   number of points, N>=1
            for N=1 a constant model is constructed.

OUTPUT PARAMETERS
    P   -   barycentric model which represents Lagrange interpolant
            (see ratint unit info and BarycentricCalc() description for
            more information).

  -- ALGLIB --
     Copyright 03.12.2009 by Bochkanov Sergey
*************************************************************************/
void polynomialbuildcheb1(const double a, const double b, const real_1d_array &y, const ae_int_t n, barycentricinterpolant &p);
void polynomialbuildcheb1(const double a, const double b, const real_1d_array &y, barycentricinterpolant &p);


/*************************************************************************
Lagrange intepolant on Chebyshev grid (second kind).
This function has O(N) complexity.

INPUT PARAMETERS:
    A   -   left boundary of [A,B]
    B   -   right boundary of [A,B]
    Y   -   function values at the nodes, array[0..N-1],
            Y[I] = Y(0.5*(B+A) + 0.5*(B-A)*Cos(PI*i/(n-1)))
    N   -   number of points, N>=1
            for N=1 a constant model is constructed.

OUTPUT PARAMETERS
    P   -   barycentric model which represents Lagrange interpolant
            (see ratint unit info and BarycentricCalc() description for
            more information).

  -- ALGLIB --
     Copyright 03.12.2009 by Bochkanov Sergey
*************************************************************************/
void polynomialbuildcheb2(const double a, const double b, const real_1d_array &y, const ae_int_t n, barycentricinterpolant &p);
void polynomialbuildcheb2(const double a, const double b, const real_1d_array &y, barycentricinterpolant &p);


/*************************************************************************
Fast equidistant polynomial interpolation function with O(N) complexity

INPUT PARAMETERS:
    A   -   left boundary of [A,B]
    B   -   right boundary of [A,B]
    F   -   function values, array[0..N-1]
    N   -   number of points on equidistant grid, N>=1
            for N=1 a constant model is constructed.
    T   -   position where P(x) is calculated

RESULT
    value of the Lagrange interpolant at T

IMPORTANT
    this function provides fast interface which is not overflow-safe
    nor it is very precise.
    the best option is to use  PolynomialBuildEqDist()/BarycentricCalc()
    subroutines unless you are pretty sure that your data will not result
    in overflow.

  -- ALGLIB --
     Copyright 02.12.2009 by Bochkanov Sergey
*************************************************************************/
double polynomialcalceqdist(const double a, const double b, const real_1d_array &f, const ae_int_t n, const double t);
double polynomialcalceqdist(const double a, const double b, const real_1d_array &f, const double t);


/*************************************************************************
Fast polynomial interpolation function on Chebyshev points (first kind)
with O(N) complexity.

INPUT PARAMETERS:
    A   -   left boundary of [A,B]
    B   -   right boundary of [A,B]
    F   -   function values, array[0..N-1]
    N   -   number of points on Chebyshev grid (first kind),
            X[i] = 0.5*(B+A) + 0.5*(B-A)*Cos(PI*(2*i+1)/(2*n))
            for N=1 a constant model is constructed.
    T   -   position where P(x) is calculated

RESULT
    value of the Lagrange interpolant at T

IMPORTANT
    this function provides fast interface which is not overflow-safe
    nor it is very precise.
    the best option is to use  PolIntBuildCheb1()/BarycentricCalc()
    subroutines unless you are pretty sure that your data will not result
    in overflow.

  -- ALGLIB --
     Copyright 02.12.2009 by Bochkanov Sergey
*************************************************************************/
double polynomialcalccheb1(const double a, const double b, const real_1d_array &f, const ae_int_t n, const double t);
double polynomialcalccheb1(const double a, const double b, const real_1d_array &f, const double t);


/*************************************************************************
Fast polynomial interpolation function on Chebyshev points (second kind)
with O(N) complexity.

INPUT PARAMETERS:
    A   -   left boundary of [A,B]
    B   -   right boundary of [A,B]
    F   -   function values, array[0..N-1]
    N   -   number of points on Chebyshev grid (second kind),
            X[i] = 0.5*(B+A) + 0.5*(B-A)*Cos(PI*i/(n-1))
            for N=1 a constant model is constructed.
    T   -   position where P(x) is calculated

RESULT
    value of the Lagrange interpolant at T

IMPORTANT
    this function provides fast interface which is not overflow-safe
    nor it is very precise.
    the best option is to use PolIntBuildCheb2()/BarycentricCalc()
    subroutines unless you are pretty sure that your data will not result
    in overflow.

  -- ALGLIB --
     Copyright 02.12.2009 by Bochkanov Sergey
*************************************************************************/
double polynomialcalccheb2(const double a, const double b, const real_1d_array &f, const ae_int_t n, const double t);
double polynomialcalccheb2(const double a, const double b, const real_1d_array &f, const double t);

/*************************************************************************
This subroutine builds linear spline interpolant

INPUT PARAMETERS:
    X   -   spline nodes, array[0..N-1]
    Y   -   function values, array[0..N-1]
    N   -   points count (optional):
            * N>=2
            * if given, only first N points are used to build spline
            * if not given, automatically detected from X/Y sizes
              (len(X) must be equal to len(Y))

OUTPUT PARAMETERS:
    C   -   spline interpolant


ORDER OF POINTS

Subroutine automatically sorts points, so caller may pass unsorted array.

  -- ALGLIB PROJECT --
     Copyright 24.06.2007 by Bochkanov Sergey
*************************************************************************/
void spline1dbuildlinear(const real_1d_array &x, const real_1d_array &y, const ae_int_t n, spline1dinterpolant &c);
void spline1dbuildlinear(const real_1d_array &x, const real_1d_array &y, spline1dinterpolant &c);


/*************************************************************************
This subroutine builds cubic spline interpolant.

INPUT PARAMETERS:
    X           -   spline nodes, array[0..N-1].
    Y           -   function values, array[0..N-1].

OPTIONAL PARAMETERS:
    N           -   points count:
                    * N>=2
                    * if given, only first N points are used to build spline
                    * if not given, automatically detected from X/Y sizes
                      (len(X) must be equal to len(Y))
    BoundLType  -   boundary condition type for the left boundary
    BoundL      -   left boundary condition (first or second derivative,
                    depending on the BoundLType)
    BoundRType  -   boundary condition type for the right boundary
    BoundR      -   right boundary condition (first or second derivative,
                    depending on the BoundRType)

OUTPUT PARAMETERS:
    C           -   spline interpolant

ORDER OF POINTS

Subroutine automatically sorts points, so caller may pass unsorted array.

SETTING BOUNDARY VALUES:

The BoundLType/BoundRType parameters can have the following values:
    * -1, which corresonds to the periodic (cyclic) boundary conditions.
          In this case:
          * both BoundLType and BoundRType must be equal to -1.
          * BoundL/BoundR are ignored
          * Y[last] is ignored (it is assumed to be equal to Y[first]).
    *  0, which  corresponds  to  the  parabolically   terminated  spline
          (BoundL and/or BoundR are ignored).
    *  1, which corresponds to the first derivative boundary condition
    *  2, which corresponds to the second derivative boundary condition
    *  by default, BoundType=0 is used

PROBLEMS WITH PERIODIC BOUNDARY CONDITIONS:

Problems with periodic boundary conditions have Y[first_point]=Y[last_point].
However, this subroutine doesn't require you to specify equal  values  for
the first and last points - it automatically forces them  to  be  equal by
copying  Y[first_point]  (corresponds  to the leftmost,  minimal  X[])  to
Y[last_point]. However it is recommended to pass consistent values of Y[],
i.e. to make Y[first_point]=Y[last_point].

  -- ALGLIB PROJECT --
     Copyright 23.06.2007 by Bochkanov Sergey
*************************************************************************/
void spline1dbuildcubic(const real_1d_array &x, const real_1d_array &y, const ae_int_t n, const ae_int_t boundltype, const double boundl, const ae_int_t boundrtype, const double boundr, spline1dinterpolant &c);
void spline1dbuildcubic(const real_1d_array &x, const real_1d_array &y, spline1dinterpolant &c);


/*************************************************************************
This function solves following problem: given table y[] of function values
at nodes x[], it calculates and returns table of function derivatives  d[]
(calculated at the same nodes x[]).

This function yields same result as Spline1DBuildCubic() call followed  by
sequence of Spline1DDiff() calls, but it can be several times faster  when
called for ordered X[] and X2[].

INPUT PARAMETERS:
    X           -   spline nodes
    Y           -   function values

OPTIONAL PARAMETERS:
    N           -   points count:
                    * N>=2
                    * if given, only first N points are used
                    * if not given, automatically detected from X/Y sizes
                      (len(X) must be equal to len(Y))
    BoundLType  -   boundary condition type for the left boundary
    BoundL      -   left boundary condition (first or second derivative,
                    depending on the BoundLType)
    BoundRType  -   boundary condition type for the right boundary
    BoundR      -   right boundary condition (first or second derivative,
                    depending on the BoundRType)

OUTPUT PARAMETERS:
    D           -   derivative values at X[]

ORDER OF POINTS

Subroutine automatically sorts points, so caller may pass unsorted array.
Derivative values are correctly reordered on return, so  D[I]  is  always
equal to S'(X[I]) independently of points order.

SETTING BOUNDARY VALUES:

The BoundLType/BoundRType parameters can have the following values:
    * -1, which corresonds to the periodic (cyclic) boundary conditions.
          In this case:
          * both BoundLType and BoundRType must be equal to -1.
          * BoundL/BoundR are ignored
          * Y[last] is ignored (it is assumed to be equal to Y[first]).
    *  0, which  corresponds  to  the  parabolically   terminated  spline
          (BoundL and/or BoundR are ignored).
    *  1, which corresponds to the first derivative boundary condition
    *  2, which corresponds to the second derivative boundary condition
    *  by default, BoundType=0 is used

PROBLEMS WITH PERIODIC BOUNDARY CONDITIONS:

Problems with periodic boundary conditions have Y[first_point]=Y[last_point].
However, this subroutine doesn't require you to specify equal  values  for
the first and last points - it automatically forces them  to  be  equal by
copying  Y[first_point]  (corresponds  to the leftmost,  minimal  X[])  to
Y[last_point]. However it is recommended to pass consistent values of Y[],
i.e. to make Y[first_point]=Y[last_point].

  -- ALGLIB PROJECT --
     Copyright 03.09.2010 by Bochkanov Sergey
*************************************************************************/
void spline1dgriddiffcubic(const real_1d_array &x, const real_1d_array &y, const ae_int_t n, const ae_int_t boundltype, const double boundl, const ae_int_t boundrtype, const double boundr, real_1d_array &d);
void spline1dgriddiffcubic(const real_1d_array &x, const real_1d_array &y, real_1d_array &d);


/*************************************************************************
This function solves following problem: given table y[] of function values
at  nodes  x[],  it  calculates  and  returns  tables  of first and second
function derivatives d1[] and d2[] (calculated at the same nodes x[]).

This function yields same result as Spline1DBuildCubic() call followed  by
sequence of Spline1DDiff() calls, but it can be several times faster  when
called for ordered X[] and X2[].

INPUT PARAMETERS:
    X           -   spline nodes
    Y           -   function values

OPTIONAL PARAMETERS:
    N           -   points count:
                    * N>=2
                    * if given, only first N points are used
                    * if not given, automatically detected from X/Y sizes
                      (len(X) must be equal to len(Y))
    BoundLType  -   boundary condition type for the left boundary
    BoundL      -   left boundary condition (first or second derivative,
                    depending on the BoundLType)
    BoundRType  -   boundary condition type for the right boundary
    BoundR      -   right boundary condition (first or second derivative,
                    depending on the BoundRType)

OUTPUT PARAMETERS:
    D1          -   S' values at X[]
    D2          -   S'' values at X[]

ORDER OF POINTS

Subroutine automatically sorts points, so caller may pass unsorted array.
Derivative values are correctly reordered on return, so  D[I]  is  always
equal to S'(X[I]) independently of points order.

SETTING BOUNDARY VALUES:

The BoundLType/BoundRType parameters can have the following values:
    * -1, which corresonds to the periodic (cyclic) boundary conditions.
          In this case:
          * both BoundLType and BoundRType must be equal to -1.
          * BoundL/BoundR are ignored
          * Y[last] is ignored (it is assumed to be equal to Y[first]).
    *  0, which  corresponds  to  the  parabolically   terminated  spline
          (BoundL and/or BoundR are ignored).
    *  1, which corresponds to the first derivative boundary condition
    *  2, which corresponds to the second derivative boundary condition
    *  by default, BoundType=0 is used

PROBLEMS WITH PERIODIC BOUNDARY CONDITIONS:

Problems with periodic boundary conditions have Y[first_point]=Y[last_point].
However, this subroutine doesn't require you to specify equal  values  for
the first and last points - it automatically forces them  to  be  equal by
copying  Y[first_point]  (corresponds  to the leftmost,  minimal  X[])  to
Y[last_point]. However it is recommended to pass consistent values of Y[],
i.e. to make Y[first_point]=Y[last_point].

  -- ALGLIB PROJECT --
     Copyright 03.09.2010 by Bochkanov Sergey
*************************************************************************/
void spline1dgriddiff2cubic(const real_1d_array &x, const real_1d_array &y, const ae_int_t n, const ae_int_t boundltype, const double boundl, const ae_int_t boundrtype, const double boundr, real_1d_array &d1, real_1d_array &d2);
void spline1dgriddiff2cubic(const real_1d_array &x, const real_1d_array &y, real_1d_array &d1, real_1d_array &d2);


/*************************************************************************
This function solves following problem: given table y[] of function values
at old nodes x[]  and new nodes  x2[],  it calculates and returns table of
function values y2[] (calculated at x2[]).

This function yields same result as Spline1DBuildCubic() call followed  by
sequence of Spline1DDiff() calls, but it can be several times faster  when
called for ordered X[] and X2[].

INPUT PARAMETERS:
    X           -   old spline nodes
    Y           -   function values
    X2           -  new spline nodes

OPTIONAL PARAMETERS:
    N           -   points count:
                    * N>=2
                    * if given, only first N points from X/Y are used
                    * if not given, automatically detected from X/Y sizes
                      (len(X) must be equal to len(Y))
    BoundLType  -   boundary condition type for the left boundary
    BoundL      -   left boundary condition (first or second derivative,
                    depending on the BoundLType)
    BoundRType  -   boundary condition type for the right boundary
    BoundR      -   right boundary condition (first or second derivative,
                    depending on the BoundRType)
    N2          -   new points count:
                    * N2>=2
                    * if given, only first N2 points from X2 are used
                    * if not given, automatically detected from X2 size

OUTPUT PARAMETERS:
    F2          -   function values at X2[]

ORDER OF POINTS

Subroutine automatically sorts points, so caller  may pass unsorted array.
Function  values  are correctly reordered on  return, so F2[I]  is  always
equal to S(X2[I]) independently of points order.

SETTING BOUNDARY VALUES:

The BoundLType/BoundRType parameters can have the following values:
    * -1, which corresonds to the periodic (cyclic) boundary conditions.
          In this case:
          * both BoundLType and BoundRType must be equal to -1.
          * BoundL/BoundR are ignored
          * Y[last] is ignored (it is assumed to be equal to Y[first]).
    *  0, which  corresponds  to  the  parabolically   terminated  spline
          (BoundL and/or BoundR are ignored).
    *  1, which corresponds to the first derivative boundary condition
    *  2, which corresponds to the second derivative boundary condition
    *  by default, BoundType=0 is used

PROBLEMS WITH PERIODIC BOUNDARY CONDITIONS:

Problems with periodic boundary conditions have Y[first_point]=Y[last_point].
However, this subroutine doesn't require you to specify equal  values  for
the first and last points - it automatically forces them  to  be  equal by
copying  Y[first_point]  (corresponds  to the leftmost,  minimal  X[])  to
Y[last_point]. However it is recommended to pass consistent values of Y[],
i.e. to make Y[first_point]=Y[last_point].

  -- ALGLIB PROJECT --
     Copyright 03.09.2010 by Bochkanov Sergey
*************************************************************************/
void spline1dconvcubic(const real_1d_array &x, const real_1d_array &y, const ae_int_t n, const ae_int_t boundltype, const double boundl, const ae_int_t boundrtype, const double boundr, const real_1d_array &x2, const ae_int_t n2, real_1d_array &y2);
void spline1dconvcubic(const real_1d_array &x, const real_1d_array &y, const real_1d_array &x2, real_1d_array &y2);


/*************************************************************************
This function solves following problem: given table y[] of function values
at old nodes x[]  and new nodes  x2[],  it calculates and returns table of
function values y2[] and derivatives d2[] (calculated at x2[]).

This function yields same result as Spline1DBuildCubic() call followed  by
sequence of Spline1DDiff() calls, but it can be several times faster  when
called for ordered X[] and X2[].

INPUT PARAMETERS:
    X           -   old spline nodes
    Y           -   function values
    X2           -  new spline nodes

OPTIONAL PARAMETERS:
    N           -   points count:
                    * N>=2
                    * if given, only first N points from X/Y are used
                    * if not given, automatically detected from X/Y sizes
                      (len(X) must be equal to len(Y))
    BoundLType  -   boundary condition type for the left boundary
    BoundL      -   left boundary condition (first or second derivative,
                    depending on the BoundLType)
    BoundRType  -   boundary condition type for the right boundary
    BoundR      -   right boundary condition (first or second derivative,
                    depending on the BoundRType)
    N2          -   new points count:
                    * N2>=2
                    * if given, only first N2 points from X2 are used
                    * if not given, automatically detected from X2 size

OUTPUT PARAMETERS:
    F2          -   function values at X2[]
    D2          -   first derivatives at X2[]

ORDER OF POINTS

Subroutine automatically sorts points, so caller  may pass unsorted array.
Function  values  are correctly reordered on  return, so F2[I]  is  always
equal to S(X2[I]) independently of points order.

SETTING BOUNDARY VALUES:

The BoundLType/BoundRType parameters can have the following values:
    * -1, which corresonds to the periodic (cyclic) boundary conditions.
          In this case:
          * both BoundLType and BoundRType must be equal to -1.
          * BoundL/BoundR are ignored
          * Y[last] is ignored (it is assumed to be equal to Y[first]).
    *  0, which  corresponds  to  the  parabolically   terminated  spline
          (BoundL and/or BoundR are ignored).
    *  1, which corresponds to the first derivative boundary condition
    *  2, which corresponds to the second derivative boundary condition
    *  by default, BoundType=0 is used

PROBLEMS WITH PERIODIC BOUNDARY CONDITIONS:

Problems with periodic boundary conditions have Y[first_point]=Y[last_point].
However, this subroutine doesn't require you to specify equal  values  for
the first and last points - it automatically forces them  to  be  equal by
copying  Y[first_point]  (corresponds  to the leftmost,  minimal  X[])  to
Y[last_point]. However it is recommended to pass consistent values of Y[],
i.e. to make Y[first_point]=Y[last_point].

  -- ALGLIB PROJECT --
     Copyright 03.09.2010 by Bochkanov Sergey
*************************************************************************/
void spline1dconvdiffcubic(const real_1d_array &x, const real_1d_array &y, const ae_int_t n, const ae_int_t boundltype, const double boundl, const ae_int_t boundrtype, const double boundr, const real_1d_array &x2, const ae_int_t n2, real_1d_array &y2, real_1d_array &d2);
void spline1dconvdiffcubic(const real_1d_array &x, const real_1d_array &y, const real_1d_array &x2, real_1d_array &y2, real_1d_array &d2);


/*************************************************************************
This function solves following problem: given table y[] of function values
at old nodes x[]  and new nodes  x2[],  it calculates and returns table of
function  values  y2[],  first  and  second  derivatives  d2[]  and  dd2[]
(calculated at x2[]).

This function yields same result as Spline1DBuildCubic() call followed  by
sequence of Spline1DDiff() calls, but it can be several times faster  when
called for ordered X[] and X2[].

INPUT PARAMETERS:
    X           -   old spline nodes
    Y           -   function values
    X2           -  new spline nodes

OPTIONAL PARAMETERS:
    N           -   points count:
                    * N>=2
                    * if given, only first N points from X/Y are used
                    * if not given, automatically detected from X/Y sizes
                      (len(X) must be equal to len(Y))
    BoundLType  -   boundary condition type for the left boundary
    BoundL      -   left boundary condition (first or second derivative,
                    depending on the BoundLType)
    BoundRType  -   boundary condition type for the right boundary
    BoundR      -   right boundary condition (first or second derivative,
                    depending on the BoundRType)
    N2          -   new points count:
                    * N2>=2
                    * if given, only first N2 points from X2 are used
                    * if not given, automatically detected from X2 size

OUTPUT PARAMETERS:
    F2          -   function values at X2[]
    D2          -   first derivatives at X2[]
    DD2         -   second derivatives at X2[]

ORDER OF POINTS

Subroutine automatically sorts points, so caller  may pass unsorted array.
Function  values  are correctly reordered on  return, so F2[I]  is  always
equal to S(X2[I]) independently of points order.

SETTING BOUNDARY VALUES:

The BoundLType/BoundRType parameters can have the following values:
    * -1, which corresonds to the periodic (cyclic) boundary conditions.
          In this case:
          * both BoundLType and BoundRType must be equal to -1.
          * BoundL/BoundR are ignored
          * Y[last] is ignored (it is assumed to be equal to Y[first]).
    *  0, which  corresponds  to  the  parabolically   terminated  spline
          (BoundL and/or BoundR are ignored).
    *  1, which corresponds to the first derivative boundary condition
    *  2, which corresponds to the second derivative boundary condition
    *  by default, BoundType=0 is used

PROBLEMS WITH PERIODIC BOUNDARY CONDITIONS:

Problems with periodic boundary conditions have Y[first_point]=Y[last_point].
However, this subroutine doesn't require you to specify equal  values  for
the first and last points - it automatically forces them  to  be  equal by
copying  Y[first_point]  (corresponds  to the leftmost,  minimal  X[])  to
Y[last_point]. However it is recommended to pass consistent values of Y[],
i.e. to make Y[first_point]=Y[last_point].

  -- ALGLIB PROJECT --
     Copyright 03.09.2010 by Bochkanov Sergey
*************************************************************************/
void spline1dconvdiff2cubic(const real_1d_array &x, const real_1d_array &y, const ae_int_t n, const ae_int_t boundltype, const double boundl, const ae_int_t boundrtype, const double boundr, const real_1d_array &x2, const ae_int_t n2, real_1d_array &y2, real_1d_array &d2, real_1d_array &dd2);
void spline1dconvdiff2cubic(const real_1d_array &x, const real_1d_array &y, const real_1d_array &x2, real_1d_array &y2, real_1d_array &d2, real_1d_array &dd2);


/*************************************************************************
This subroutine builds Catmull-Rom spline interpolant.

INPUT PARAMETERS:
    X           -   spline nodes, array[0..N-1].
    Y           -   function values, array[0..N-1].

OPTIONAL PARAMETERS:
    N           -   points count:
                    * N>=2
                    * if given, only first N points are used to build spline
                    * if not given, automatically detected from X/Y sizes
                      (len(X) must be equal to len(Y))
    BoundType   -   boundary condition type:
                    * -1 for periodic boundary condition
                    *  0 for parabolically terminated spline (default)
    Tension     -   tension parameter:
                    * tension=0   corresponds to classic Catmull-Rom spline (default)
                    * 0<tension<1 corresponds to more general form - cardinal spline

OUTPUT PARAMETERS:
    C           -   spline interpolant


ORDER OF POINTS

Subroutine automatically sorts points, so caller may pass unsorted array.

PROBLEMS WITH PERIODIC BOUNDARY CONDITIONS:

Problems with periodic boundary conditions have Y[first_point]=Y[last_point].
However, this subroutine doesn't require you to specify equal  values  for
the first and last points - it automatically forces them  to  be  equal by
copying  Y[first_point]  (corresponds  to the leftmost,  minimal  X[])  to
Y[last_point]. However it is recommended to pass consistent values of Y[],
i.e. to make Y[first_point]=Y[last_point].

  -- ALGLIB PROJECT --
     Copyright 23.06.2007 by Bochkanov Sergey
*************************************************************************/
void spline1dbuildcatmullrom(const real_1d_array &x, const real_1d_array &y, const ae_int_t n, const ae_int_t boundtype, const double tension, spline1dinterpolant &c);
void spline1dbuildcatmullrom(const real_1d_array &x, const real_1d_array &y, spline1dinterpolant &c);


/*************************************************************************
This subroutine builds Hermite spline interpolant.

INPUT PARAMETERS:
    X           -   spline nodes, array[0..N-1]
    Y           -   function values, array[0..N-1]
    D           -   derivatives, array[0..N-1]
    N           -   points count (optional):
                    * N>=2
                    * if given, only first N points are used to build spline
                    * if not given, automatically detected from X/Y sizes
                      (len(X) must be equal to len(Y))

OUTPUT PARAMETERS:
    C           -   spline interpolant.


ORDER OF POINTS

Subroutine automatically sorts points, so caller may pass unsorted array.

  -- ALGLIB PROJECT --
     Copyright 23.06.2007 by Bochkanov Sergey
*************************************************************************/
void spline1dbuildhermite(const real_1d_array &x, const real_1d_array &y, const real_1d_array &d, const ae_int_t n, spline1dinterpolant &c);
void spline1dbuildhermite(const real_1d_array &x, const real_1d_array &y, const real_1d_array &d, spline1dinterpolant &c);


/*************************************************************************
This subroutine builds Akima spline interpolant

INPUT PARAMETERS:
    X           -   spline nodes, array[0..N-1]
    Y           -   function values, array[0..N-1]
    N           -   points count (optional):
                    * N>=2
                    * if given, only first N points are used to build spline
                    * if not given, automatically detected from X/Y sizes
                      (len(X) must be equal to len(Y))

OUTPUT PARAMETERS:
    C           -   spline interpolant


ORDER OF POINTS

Subroutine automatically sorts points, so caller may pass unsorted array.

  -- ALGLIB PROJECT --
     Copyright 24.06.2007 by Bochkanov Sergey
*************************************************************************/
void spline1dbuildakima(const real_1d_array &x, const real_1d_array &y, const ae_int_t n, spline1dinterpolant &c);
void spline1dbuildakima(const real_1d_array &x, const real_1d_array &y, spline1dinterpolant &c);


/*************************************************************************
This subroutine calculates the value of the spline at the given point X.

INPUT PARAMETERS:
    C   -   spline interpolant
    X   -   point

Result:
    S(x)

  -- ALGLIB PROJECT --
     Copyright 23.06.2007 by Bochkanov Sergey
*************************************************************************/
double spline1dcalc(const spline1dinterpolant &c, const double x);


/*************************************************************************
This subroutine differentiates the spline.

INPUT PARAMETERS:
    C   -   spline interpolant.
    X   -   point

Result:
    S   -   S(x)
    DS  -   S'(x)
    D2S -   S''(x)

  -- ALGLIB PROJECT --
     Copyright 24.06.2007 by Bochkanov Sergey
*************************************************************************/
void spline1ddiff(const spline1dinterpolant &c, const double x, double &s, double &ds, double &d2s);


/*************************************************************************
This subroutine unpacks the spline into the coefficients table.

INPUT PARAMETERS:
    C   -   spline interpolant.
    X   -   point

OUTPUT PARAMETERS:
    Tbl -   coefficients table, unpacked format, array[0..N-2, 0..5].
            For I = 0...N-2:
                Tbl[I,0] = X[i]
                Tbl[I,1] = X[i+1]
                Tbl[I,2] = C0
                Tbl[I,3] = C1
                Tbl[I,4] = C2
                Tbl[I,5] = C3
            On [x[i], x[i+1]] spline is equals to:
                S(x) = C0 + C1*t + C2*t^2 + C3*t^3
                t = x-x[i]

NOTE:
    You  can rebuild spline with  Spline1DBuildHermite()  function,  which
    accepts as inputs function values and derivatives at nodes, which  are
    easy to calculate when you have coefficients.

  -- ALGLIB PROJECT --
     Copyright 29.06.2007 by Bochkanov Sergey
*************************************************************************/
void spline1dunpack(const spline1dinterpolant &c, ae_int_t &n, real_2d_array &tbl);


/*************************************************************************
This subroutine performs linear transformation of the spline argument.

INPUT PARAMETERS:
    C   -   spline interpolant.
    A, B-   transformation coefficients: x = A*t + B
Result:
    C   -   transformed spline

  -- ALGLIB PROJECT --
     Copyright 30.06.2007 by Bochkanov Sergey
*************************************************************************/
void spline1dlintransx(const spline1dinterpolant &c, const double a, const double b);


/*************************************************************************
This subroutine performs linear transformation of the spline.

INPUT PARAMETERS:
    C   -   spline interpolant.
    A, B-   transformation coefficients: S2(x) = A*S(x) + B
Result:
    C   -   transformed spline

  -- ALGLIB PROJECT --
     Copyright 30.06.2007 by Bochkanov Sergey
*************************************************************************/
void spline1dlintransy(const spline1dinterpolant &c, const double a, const double b);


/*************************************************************************
This subroutine integrates the spline.

INPUT PARAMETERS:
    C   -   spline interpolant.
    X   -   right bound of the integration interval [a, x],
            here 'a' denotes min(x[])
Result:
    integral(S(t)dt,a,x)

  -- ALGLIB PROJECT --
     Copyright 23.06.2007 by Bochkanov Sergey
*************************************************************************/
double spline1dintegrate(const spline1dinterpolant &c, const double x);


/*************************************************************************
This function builds monotone cubic Hermite interpolant. This interpolant
is monotonic in [x(0),x(n-1)] and is constant outside of this interval.

In  case  y[]  form  non-monotonic  sequence,  interpolant  is  piecewise
monotonic.  Say, for x=(0,1,2,3,4)  and  y=(0,1,2,1,0)  interpolant  will
monotonically grow at [0..2] and monotonically decrease at [2..4].

INPUT PARAMETERS:
    X           -   spline nodes, array[0..N-1]. Subroutine automatically
                    sorts points, so caller may pass unsorted array.
    Y           -   function values, array[0..N-1]
    N           -   the number of points(N>=2).

OUTPUT PARAMETERS:
    C           -   spline interpolant.

 -- ALGLIB PROJECT --
     Copyright 21.06.2012 by Bochkanov Sergey
*************************************************************************/
void spline1dbuildmonotone(const real_1d_array &x, const real_1d_array &y, const ae_int_t n, spline1dinterpolant &c);
void spline1dbuildmonotone(const real_1d_array &x, const real_1d_array &y, spline1dinterpolant &c);

/*************************************************************************
This  subroutine fits piecewise linear curve to points with Ramer-Douglas-
Peucker algorithm, which stops after generating specified number of linear
sections.

IMPORTANT:
* it does NOT perform least-squares fitting; it  builds  curve,  but  this
  curve does not minimize some least squares metric.  See  description  of
  RDP algorithm (say, in Wikipedia) for more details on WHAT is performed.
* this function does NOT work with parametric curves  (i.e.  curves  which
  can be represented as {X(t),Y(t)}. It works with curves   which  can  be
  represented as Y(X). Thus,  it  is  impossible  to  model  figures  like
  circles  with  this  functions.
  If  you  want  to  work  with  parametric   curves,   you   should   use
  ParametricRDPFixed() function provided  by  "Parametric"  subpackage  of
  "Interpolation" package.

INPUT PARAMETERS:
    X       -   array of X-coordinates:
                * at least N elements
                * can be unordered (points are automatically sorted)
                * this function may accept non-distinct X (see below for
                  more information on handling of such inputs)
    Y       -   array of Y-coordinates:
                * at least N elements
    N       -   number of elements in X/Y
    M       -   desired number of sections:
                * at most M sections are generated by this function
                * less than M sections can be generated if we have N<M
                  (or some X are non-distinct).

OUTPUT PARAMETERS:
    X2      -   X-values of corner points for piecewise approximation,
                has length NSections+1 or zero (for NSections=0).
    Y2      -   Y-values of corner points,
                has length NSections+1 or zero (for NSections=0).
    NSections-  number of sections found by algorithm, NSections<=M,
                NSections can be zero for degenerate datasets
                (N<=1 or all X[] are non-distinct).

NOTE: X2/Y2 are ordered arrays, i.e. (X2[0],Y2[0]) is  a  first  point  of
      curve, (X2[NSection-1],Y2[NSection-1]) is the last point.

  -- ALGLIB --
     Copyright 02.10.2014 by Bochkanov Sergey
*************************************************************************/
void lstfitpiecewiselinearrdpfixed(const real_1d_array &x, const real_1d_array &y, const ae_int_t n, const ae_int_t m, real_1d_array &x2, real_1d_array &y2, ae_int_t &nsections);


/*************************************************************************
This  subroutine fits piecewise linear curve to points with Ramer-Douglas-
Peucker algorithm, which stops after achieving desired precision.

IMPORTANT:
* it performs non-least-squares fitting; it builds curve, but  this  curve
  does not minimize some least squares  metric.  See  description  of  RDP
  algorithm (say, in Wikipedia) for more details on WHAT is performed.
* this function does NOT work with parametric curves  (i.e.  curves  which
  can be represented as {X(t),Y(t)}. It works with curves   which  can  be
  represented as Y(X). Thus, it is impossible to model figures like circles
  with this functions.
  If  you  want  to  work  with  parametric   curves,   you   should   use
  ParametricRDPFixed() function provided  by  "Parametric"  subpackage  of
  "Interpolation" package.

INPUT PARAMETERS:
    X       -   array of X-coordinates:
                * at least N elements
                * can be unordered (points are automatically sorted)
                * this function may accept non-distinct X (see below for
                  more information on handling of such inputs)
    Y       -   array of Y-coordinates:
                * at least N elements
    N       -   number of elements in X/Y
    Eps     -   positive number, desired precision.


OUTPUT PARAMETERS:
    X2      -   X-values of corner points for piecewise approximation,
                has length NSections+1 or zero (for NSections=0).
    Y2      -   Y-values of corner points,
                has length NSections+1 or zero (for NSections=0).
    NSections-  number of sections found by algorithm,
                NSections can be zero for degenerate datasets
                (N<=1 or all X[] are non-distinct).

NOTE: X2/Y2 are ordered arrays, i.e. (X2[0],Y2[0]) is  a  first  point  of
      curve, (X2[NSection-1],Y2[NSection-1]) is the last point.

  -- ALGLIB --
     Copyright 02.10.2014 by Bochkanov Sergey
*************************************************************************/
void lstfitpiecewiselinearrdp(const real_1d_array &x, const real_1d_array &y, const ae_int_t n, const double eps, real_1d_array &x2, real_1d_array &y2, ae_int_t &nsections);


/*************************************************************************
Fitting by polynomials in barycentric form. This function provides  simple
unterface for unconstrained unweighted fitting. See  PolynomialFitWC()  if
you need constrained fitting.

Task is linear, so linear least squares solver is used. Complexity of this
computational scheme is O(N*M^2), mostly dominated by least squares solver

SEE ALSO:
    PolynomialFitWC()

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes two  important  improvements  of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  ! * multithreading support
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Speed-up provided by multithreading greatly depends  on  problem  size
  ! - only large problems (number of coefficients is more than 500) can be
  ! efficiently multithreaded.
  !
  ! Generally, commercial ALGLIB is several times faster than  open-source
  ! generic C edition, and many times faster than open-source C# edition.
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

INPUT PARAMETERS:
    X   -   points, array[0..N-1].
    Y   -   function values, array[0..N-1].
    N   -   number of points, N>0
            * if given, only leading N elements of X/Y are used
            * if not given, automatically determined from sizes of X/Y
    M   -   number of basis functions (= polynomial_degree + 1), M>=1

OUTPUT PARAMETERS:
    Info-   same format as in LSFitLinearW() subroutine:
            * Info>0    task is solved
            * Info<=0   an error occured:
                        -4 means inconvergence of internal SVD
    P   -   interpolant in barycentric form.
    Rep -   report, same format as in LSFitLinearW() subroutine.
            Following fields are set:
            * RMSError      rms error on the (X,Y).
            * AvgError      average error on the (X,Y).
            * AvgRelError   average relative error on the non-zero Y
            * MaxError      maximum error
                            NON-WEIGHTED ERRORS ARE CALCULATED

NOTES:
    you can convert P from barycentric form  to  the  power  or  Chebyshev
    basis with PolynomialBar2Pow() or PolynomialBar2Cheb() functions  from
    POLINT subpackage.

  -- ALGLIB PROJECT --
     Copyright 10.12.2009 by Bochkanov Sergey
*************************************************************************/
void polynomialfit(const real_1d_array &x, const real_1d_array &y, const ae_int_t n, const ae_int_t m, ae_int_t &info, barycentricinterpolant &p, polynomialfitreport &rep);
void smp_polynomialfit(const real_1d_array &x, const real_1d_array &y, const ae_int_t n, const ae_int_t m, ae_int_t &info, barycentricinterpolant &p, polynomialfitreport &rep);
void polynomialfit(const real_1d_array &x, const real_1d_array &y, const ae_int_t m, ae_int_t &info, barycentricinterpolant &p, polynomialfitreport &rep);
void smp_polynomialfit(const real_1d_array &x, const real_1d_array &y, const ae_int_t m, ae_int_t &info, barycentricinterpolant &p, polynomialfitreport &rep);


/*************************************************************************
Weighted  fitting by polynomials in barycentric form, with constraints  on
function values or first derivatives.

Small regularizing term is used when solving constrained tasks (to improve
stability).

Task is linear, so linear least squares solver is used. Complexity of this
computational scheme is O(N*M^2), mostly dominated by least squares solver

SEE ALSO:
    PolynomialFit()

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes two  important  improvements  of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  ! * multithreading support
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Speed-up provided by multithreading greatly depends  on  problem  size
  ! - only large problems (number of coefficients is more than 500) can be
  ! efficiently multithreaded.
  !
  ! Generally, commercial ALGLIB is several times faster than  open-source
  ! generic C edition, and many times faster than open-source C# edition.
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

INPUT PARAMETERS:
    X   -   points, array[0..N-1].
    Y   -   function values, array[0..N-1].
    W   -   weights, array[0..N-1]
            Each summand in square  sum  of  approximation deviations from
            given  values  is  multiplied  by  the square of corresponding
            weight. Fill it by 1's if you don't  want  to  solve  weighted
            task.
    N   -   number of points, N>0.
            * if given, only leading N elements of X/Y/W are used
            * if not given, automatically determined from sizes of X/Y/W
    XC  -   points where polynomial values/derivatives are constrained,
            array[0..K-1].
    YC  -   values of constraints, array[0..K-1]
    DC  -   array[0..K-1], types of constraints:
            * DC[i]=0   means that P(XC[i])=YC[i]
            * DC[i]=1   means that P'(XC[i])=YC[i]
            SEE BELOW FOR IMPORTANT INFORMATION ON CONSTRAINTS
    K   -   number of constraints, 0<=K<M.
            K=0 means no constraints (XC/YC/DC are not used in such cases)
    M   -   number of basis functions (= polynomial_degree + 1), M>=1

OUTPUT PARAMETERS:
    Info-   same format as in LSFitLinearW() subroutine:
            * Info>0    task is solved
            * Info<=0   an error occured:
                        -4 means inconvergence of internal SVD
                        -3 means inconsistent constraints
    P   -   interpolant in barycentric form.
    Rep -   report, same format as in LSFitLinearW() subroutine.
            Following fields are set:
            * RMSError      rms error on the (X,Y).
            * AvgError      average error on the (X,Y).
            * AvgRelError   average relative error on the non-zero Y
            * MaxError      maximum error
                            NON-WEIGHTED ERRORS ARE CALCULATED

IMPORTANT:
    this subroitine doesn't calculate task's condition number for K<>0.

NOTES:
    you can convert P from barycentric form  to  the  power  or  Chebyshev
    basis with PolynomialBar2Pow() or PolynomialBar2Cheb() functions  from
    POLINT subpackage.

SETTING CONSTRAINTS - DANGERS AND OPPORTUNITIES:

Setting constraints can lead  to undesired  results,  like ill-conditioned
behavior, or inconsistency being detected. From the other side,  it allows
us to improve quality of the fit. Here we summarize  our  experience  with
constrained regression splines:
* even simple constraints can be inconsistent, see  Wikipedia  article  on
  this subject: http://en.wikipedia.org/wiki/Birkhoff_interpolation
* the  greater  is  M (given  fixed  constraints),  the  more chances that
  constraints will be consistent
* in the general case, consistency of constraints is NOT GUARANTEED.
* in the one special cases, however, we can  guarantee  consistency.  This
  case  is:  M>1  and constraints on the function values (NOT DERIVATIVES)

Our final recommendation is to use constraints  WHEN  AND  ONLY  when  you
can't solve your task without them. Anything beyond  special  cases  given
above is not guaranteed and may result in inconsistency.

  -- ALGLIB PROJECT --
     Copyright 10.12.2009 by Bochkanov Sergey
*************************************************************************/
void polynomialfitwc(const real_1d_array &x, const real_1d_array &y, const real_1d_array &w, const ae_int_t n, const real_1d_array &xc, const real_1d_array &yc, const integer_1d_array &dc, const ae_int_t k, const ae_int_t m, ae_int_t &info, barycentricinterpolant &p, polynomialfitreport &rep);
void smp_polynomialfitwc(const real_1d_array &x, const real_1d_array &y, const real_1d_array &w, const ae_int_t n, const real_1d_array &xc, const real_1d_array &yc, const integer_1d_array &dc, const ae_int_t k, const ae_int_t m, ae_int_t &info, barycentricinterpolant &p, polynomialfitreport &rep);
void polynomialfitwc(const real_1d_array &x, const real_1d_array &y, const real_1d_array &w, const real_1d_array &xc, const real_1d_array &yc, const integer_1d_array &dc, const ae_int_t m, ae_int_t &info, barycentricinterpolant &p, polynomialfitreport &rep);
void smp_polynomialfitwc(const real_1d_array &x, const real_1d_array &y, const real_1d_array &w, const real_1d_array &xc, const real_1d_array &yc, const integer_1d_array &dc, const ae_int_t m, ae_int_t &info, barycentricinterpolant &p, polynomialfitreport &rep);


/*************************************************************************
This function calculates value of four-parameter logistic (4PL)  model  at
specified point X. 4PL model has following form:

    F(x|A,B,C,D) = D+(A-D)/(1+Power(x/C,B))

INPUT PARAMETERS:
    X       -   current point, X>=0:
                * zero X is correctly handled even for B<=0
                * negative X results in exception.
    A, B, C, D- parameters of 4PL model:
                * A is unconstrained
                * B is unconstrained; zero or negative values are handled
                  correctly.
                * C>0, non-positive value results in exception
                * D is unconstrained

RESULT:
    model value at X

NOTE: if B=0, denominator is assumed to be equal to 2.0 even  for  zero  X
      (strictly speaking, 0^0 is undefined).

NOTE: this function also throws exception  if  all  input  parameters  are
      correct, but overflow was detected during calculations.

NOTE: this function performs a lot of checks;  if  you  need  really  high
      performance, consider evaluating model  yourself,  without  checking
      for degenerate cases.


  -- ALGLIB PROJECT --
     Copyright 14.05.2014 by Bochkanov Sergey
*************************************************************************/
double logisticcalc4(const double x, const double a, const double b, const double c, const double d);


/*************************************************************************
This function calculates value of five-parameter logistic (5PL)  model  at
specified point X. 5PL model has following form:

    F(x|A,B,C,D,G) = D+(A-D)/Power(1+Power(x/C,B),G)

INPUT PARAMETERS:
    X       -   current point, X>=0:
                * zero X is correctly handled even for B<=0
                * negative X results in exception.
    A, B, C, D, G- parameters of 5PL model:
                * A is unconstrained
                * B is unconstrained; zero or negative values are handled
                  correctly.
                * C>0, non-positive value results in exception
                * D is unconstrained
                * G>0, non-positive value results in exception

RESULT:
    model value at X

NOTE: if B=0, denominator is assumed to be equal to Power(2.0,G) even  for
      zero X (strictly speaking, 0^0 is undefined).

NOTE: this function also throws exception  if  all  input  parameters  are
      correct, but overflow was detected during calculations.

NOTE: this function performs a lot of checks;  if  you  need  really  high
      performance, consider evaluating model  yourself,  without  checking
      for degenerate cases.


  -- ALGLIB PROJECT --
     Copyright 14.05.2014 by Bochkanov Sergey
*************************************************************************/
double logisticcalc5(const double x, const double a, const double b, const double c, const double d, const double g);


/*************************************************************************
This function fits four-parameter logistic (4PL) model  to  data  provided
by user. 4PL model has following form:

    F(x|A,B,C,D) = D+(A-D)/(1+Power(x/C,B))

Here:
    * A, D - unconstrained (see LogisticFit4EC() for constrained 4PL)
    * B>=0
    * C>0

IMPORTANT: output of this function is constrained in  such  way that  B>0.
           Because 4PL model is symmetric with respect to B, there  is  no
           need to explore  B<0.  Constraining  B  makes  algorithm easier
           to stabilize and debug.
           Users  who  for  some  reason  prefer to work with negative B's
           should transform output themselves (swap A and D, replace B  by
           -B).

4PL fitting is implemented as follows:
* we perform small number of restarts from random locations which helps to
  solve problem of bad local extrema. Locations are only partially  random
  - we use input data to determine good  initial  guess,  but  we  include
  controlled amount of randomness.
* we perform Levenberg-Marquardt fitting with very  tight  constraints  on
  parameters B and C - it allows us to find good  initial  guess  for  the
  second stage without risk of running into "flat spot".
* second  Levenberg-Marquardt  round  is   performed   without   excessive
  constraints. Results from the previous round are used as initial guess.
* after fitting is done, we compare results with best values found so far,
  rewrite "best solution" if needed, and move to next random location.

Overall algorithm is very stable and is not prone to  bad  local  extrema.
Furthermore, it automatically scales when input data have  very  large  or
very small range.

INPUT PARAMETERS:
    X       -   array[N], stores X-values.
                MUST include only non-negative numbers  (but  may  include
                zero values). Can be unsorted.
    Y       -   array[N], values to fit.
    N       -   number of points. If N is less than  length  of  X/Y, only
                leading N elements are used.

OUTPUT PARAMETERS:
    A, B, C, D- parameters of 4PL model
    Rep     -   fitting report. This structure has many fields,  but  ONLY
                ONES LISTED BELOW ARE SET:
                * Rep.IterationsCount - number of iterations performed
                * Rep.RMSError - root-mean-square error
                * Rep.AvgError - average absolute error
                * Rep.AvgRelError - average relative error (calculated for
                  non-zero Y-values)
                * Rep.MaxError - maximum absolute error
                * Rep.R2 - coefficient of determination,  R-squared.  This
                  coefficient   is  calculated  as  R2=1-RSS/TSS  (in case
                  of nonlinear  regression  there  are  multiple  ways  to
                  define R2, each of them giving different results).

NOTE: after  you  obtained  coefficients,  you  can  evaluate  model  with
      LogisticCalc4() function.

NOTE: if you need better control over fitting process than provided by this
      function, you may use LogisticFit45X().

NOTE: step is automatically scaled according to scale of parameters  being
      fitted before we compare its length with EpsX. Thus,  this  function
      can be used to fit data with very small or very large values without
      changing EpsX.


  -- ALGLIB PROJECT --
     Copyright 14.02.2014 by Bochkanov Sergey
*************************************************************************/
void logisticfit4(const real_1d_array &x, const real_1d_array &y, const ae_int_t n, double &a, double &b, double &c, double &d, lsfitreport &rep);


/*************************************************************************
This function fits four-parameter logistic (4PL) model  to  data  provided
by user, with optional constraints on parameters A and D.  4PL  model  has
following form:

    F(x|A,B,C,D) = D+(A-D)/(1+Power(x/C,B))

Here:
    * A, D - with optional equality constraints
    * B>=0
    * C>0

IMPORTANT: output of this function is constrained in  such  way that  B>0.
           Because 4PL model is symmetric with respect to B, there  is  no
           need to explore  B<0.  Constraining  B  makes  algorithm easier
           to stabilize and debug.
           Users  who  for  some  reason  prefer to work with negative B's
           should transform output themselves (swap A and D, replace B  by
           -B).

4PL fitting is implemented as follows:
* we perform small number of restarts from random locations which helps to
  solve problem of bad local extrema. Locations are only partially  random
  - we use input data to determine good  initial  guess,  but  we  include
  controlled amount of randomness.
* we perform Levenberg-Marquardt fitting with very  tight  constraints  on
  parameters B and C - it allows us to find good  initial  guess  for  the
  second stage without risk of running into "flat spot".
* second  Levenberg-Marquardt  round  is   performed   without   excessive
  constraints. Results from the previous round are used as initial guess.
* after fitting is done, we compare results with best values found so far,
  rewrite "best solution" if needed, and move to next random location.

Overall algorithm is very stable and is not prone to  bad  local  extrema.
Furthermore, it automatically scales when input data have  very  large  or
very small range.

INPUT PARAMETERS:
    X       -   array[N], stores X-values.
                MUST include only non-negative numbers  (but  may  include
                zero values). Can be unsorted.
    Y       -   array[N], values to fit.
    N       -   number of points. If N is less than  length  of  X/Y, only
                leading N elements are used.
    CnstrLeft-  optional equality constraint for model value at the   left
                boundary (at X=0). Specify NAN (Not-a-Number)  if  you  do
                not need constraint on the model value at X=0 (in C++  you
                can pass alglib::fp_nan as parameter, in  C#  it  will  be
                Double.NaN).
                See  below,  section  "EQUALITY  CONSTRAINTS"   for   more
                information about constraints.
    CnstrRight- optional equality constraint for model value at X=infinity.
                Specify NAN (Not-a-Number) if you do not  need  constraint
                on the model value (in C++  you can pass alglib::fp_nan as
                parameter, in  C# it will  be Double.NaN).
                See  below,  section  "EQUALITY  CONSTRAINTS"   for   more
                information about constraints.

OUTPUT PARAMETERS:
    A, B, C, D- parameters of 4PL model
    Rep     -   fitting report. This structure has many fields,  but  ONLY
                ONES LISTED BELOW ARE SET:
                * Rep.IterationsCount - number of iterations performed
                * Rep.RMSError - root-mean-square error
                * Rep.AvgError - average absolute error
                * Rep.AvgRelError - average relative error (calculated for
                  non-zero Y-values)
                * Rep.MaxError - maximum absolute error
                * Rep.R2 - coefficient of determination,  R-squared.  This
                  coefficient   is  calculated  as  R2=1-RSS/TSS  (in case
                  of nonlinear  regression  there  are  multiple  ways  to
                  define R2, each of them giving different results).

NOTE: after  you  obtained  coefficients,  you  can  evaluate  model  with
      LogisticCalc4() function.

NOTE: if you need better control over fitting process than provided by this
      function, you may use LogisticFit45X().

NOTE: step is automatically scaled according to scale of parameters  being
      fitted before we compare its length with EpsX. Thus,  this  function
      can be used to fit data with very small or very large values without
      changing EpsX.

EQUALITY CONSTRAINTS ON PARAMETERS

4PL/5PL solver supports equality constraints on model values at  the  left
boundary (X=0) and right  boundary  (X=infinity).  These  constraints  are
completely optional and you can specify both of them, only  one  -  or  no
constraints at all.

Parameter  CnstrLeft  contains  left  constraint (or NAN for unconstrained
fitting), and CnstrRight contains right  one.  For  4PL,  left  constraint
ALWAYS corresponds to parameter A, and right one is ALWAYS  constraint  on
D. That's because 4PL model is normalized in such way that B>=0.


  -- ALGLIB PROJECT --
     Copyright 14.02.2014 by Bochkanov Sergey
*************************************************************************/
void logisticfit4ec(const real_1d_array &x, const real_1d_array &y, const ae_int_t n, const double cnstrleft, const double cnstrright, double &a, double &b, double &c, double &d, lsfitreport &rep);


/*************************************************************************
This function fits five-parameter logistic (5PL) model  to  data  provided
by user. 5PL model has following form:

    F(x|A,B,C,D,G) = D+(A-D)/Power(1+Power(x/C,B),G)

Here:
    * A, D - unconstrained
    * B - unconstrained
    * C>0
    * G>0

IMPORTANT: unlike in  4PL  fitting,  output  of  this  function   is   NOT
           constrained in  such  way that B is guaranteed to be  positive.
           Furthermore,  unlike  4PL,  5PL  model  is  NOT  symmetric with
           respect to B, so you can NOT transform model to equivalent one,
           with B having desired sign (>0 or <0).

5PL fitting is implemented as follows:
* we perform small number of restarts from random locations which helps to
  solve problem of bad local extrema. Locations are only partially  random
  - we use input data to determine good  initial  guess,  but  we  include
  controlled amount of randomness.
* we perform Levenberg-Marquardt fitting with very  tight  constraints  on
  parameters B and C - it allows us to find good  initial  guess  for  the
  second stage without risk of running into "flat spot".  Parameter  G  is
  fixed at G=1.
* second  Levenberg-Marquardt  round  is   performed   without   excessive
  constraints on B and C, but with G still equal to 1.  Results  from  the
  previous round are used as initial guess.
* third Levenberg-Marquardt round relaxes constraints on G  and  tries  two
  different models - one with B>0 and one with B<0.
* after fitting is done, we compare results with best values found so far,
  rewrite "best solution" if needed, and move to next random location.

Overall algorithm is very stable and is not prone to  bad  local  extrema.
Furthermore, it automatically scales when input data have  very  large  or
very small range.

INPUT PARAMETERS:
    X       -   array[N], stores X-values.
                MUST include only non-negative numbers  (but  may  include
                zero values). Can be unsorted.
    Y       -   array[N], values to fit.
    N       -   number of points. If N is less than  length  of  X/Y, only
                leading N elements are used.

OUTPUT PARAMETERS:
    A,B,C,D,G-  parameters of 5PL model
    Rep     -   fitting report. This structure has many fields,  but  ONLY
                ONES LISTED BELOW ARE SET:
                * Rep.IterationsCount - number of iterations performed
                * Rep.RMSError - root-mean-square error
                * Rep.AvgError - average absolute error
                * Rep.AvgRelError - average relative error (calculated for
                  non-zero Y-values)
                * Rep.MaxError - maximum absolute error
                * Rep.R2 - coefficient of determination,  R-squared.  This
                  coefficient   is  calculated  as  R2=1-RSS/TSS  (in case
                  of nonlinear  regression  there  are  multiple  ways  to
                  define R2, each of them giving different results).

NOTE: after  you  obtained  coefficients,  you  can  evaluate  model  with
      LogisticCalc5() function.

NOTE: if you need better control over fitting process than provided by this
      function, you may use LogisticFit45X().

NOTE: step is automatically scaled according to scale of parameters  being
      fitted before we compare its length with EpsX. Thus,  this  function
      can be used to fit data with very small or very large values without
      changing EpsX.


  -- ALGLIB PROJECT --
     Copyright 14.02.2014 by Bochkanov Sergey
*************************************************************************/
void logisticfit5(const real_1d_array &x, const real_1d_array &y, const ae_int_t n, double &a, double &b, double &c, double &d, double &g, lsfitreport &rep);


/*************************************************************************
This function fits five-parameter logistic (5PL) model  to  data  provided
by user, subject to optional equality constraints on parameters A  and  D.
5PL model has following form:

    F(x|A,B,C,D,G) = D+(A-D)/Power(1+Power(x/C,B),G)

Here:
    * A, D - with optional equality constraints
    * B - unconstrained
    * C>0
    * G>0

IMPORTANT: unlike in  4PL  fitting,  output  of  this  function   is   NOT
           constrained in  such  way that B is guaranteed to be  positive.
           Furthermore,  unlike  4PL,  5PL  model  is  NOT  symmetric with
           respect to B, so you can NOT transform model to equivalent one,
           with B having desired sign (>0 or <0).

5PL fitting is implemented as follows:
* we perform small number of restarts from random locations which helps to
  solve problem of bad local extrema. Locations are only partially  random
  - we use input data to determine good  initial  guess,  but  we  include
  controlled amount of randomness.
* we perform Levenberg-Marquardt fitting with very  tight  constraints  on
  parameters B and C - it allows us to find good  initial  guess  for  the
  second stage without risk of running into "flat spot".  Parameter  G  is
  fixed at G=1.
* second  Levenberg-Marquardt  round  is   performed   without   excessive
  constraints on B and C, but with G still equal to 1.  Results  from  the
  previous round are used as initial guess.
* third Levenberg-Marquardt round relaxes constraints on G  and  tries  two
  different models - one with B>0 and one with B<0.
* after fitting is done, we compare results with best values found so far,
  rewrite "best solution" if needed, and move to next random location.

Overall algorithm is very stable and is not prone to  bad  local  extrema.
Furthermore, it automatically scales when input data have  very  large  or
very small range.

INPUT PARAMETERS:
    X       -   array[N], stores X-values.
                MUST include only non-negative numbers  (but  may  include
                zero values). Can be unsorted.
    Y       -   array[N], values to fit.
    N       -   number of points. If N is less than  length  of  X/Y, only
                leading N elements are used.
    CnstrLeft-  optional equality constraint for model value at the   left
                boundary (at X=0). Specify NAN (Not-a-Number)  if  you  do
                not need constraint on the model value at X=0 (in C++  you
                can pass alglib::fp_nan as parameter, in  C#  it  will  be
                Double.NaN).
                See  below,  section  "EQUALITY  CONSTRAINTS"   for   more
                information about constraints.
    CnstrRight- optional equality constraint for model value at X=infinity.
                Specify NAN (Not-a-Number) if you do not  need  constraint
                on the model value (in C++  you can pass alglib::fp_nan as
                parameter, in  C# it will  be Double.NaN).
                See  below,  section  "EQUALITY  CONSTRAINTS"   for   more
                information about constraints.

OUTPUT PARAMETERS:
    A,B,C,D,G-  parameters of 5PL model
    Rep     -   fitting report. This structure has many fields,  but  ONLY
                ONES LISTED BELOW ARE SET:
                * Rep.IterationsCount - number of iterations performed
                * Rep.RMSError - root-mean-square error
                * Rep.AvgError - average absolute error
                * Rep.AvgRelError - average relative error (calculated for
                  non-zero Y-values)
                * Rep.MaxError - maximum absolute error
                * Rep.R2 - coefficient of determination,  R-squared.  This
                  coefficient   is  calculated  as  R2=1-RSS/TSS  (in case
                  of nonlinear  regression  there  are  multiple  ways  to
                  define R2, each of them giving different results).

NOTE: after  you  obtained  coefficients,  you  can  evaluate  model  with
      LogisticCalc5() function.

NOTE: if you need better control over fitting process than provided by this
      function, you may use LogisticFit45X().

NOTE: step is automatically scaled according to scale of parameters  being
      fitted before we compare its length with EpsX. Thus,  this  function
      can be used to fit data with very small or very large values without
      changing EpsX.

EQUALITY CONSTRAINTS ON PARAMETERS

5PL solver supports equality constraints on model  values  at   the   left
boundary (X=0) and right  boundary  (X=infinity).  These  constraints  are
completely optional and you can specify both of them, only  one  -  or  no
constraints at all.

Parameter  CnstrLeft  contains  left  constraint (or NAN for unconstrained
fitting), and CnstrRight contains right  one.

Unlike 4PL one, 5PL model is NOT symmetric with respect to  change in sign
of B. Thus, negative B's are possible, and left constraint  may  constrain
parameter A (for positive B's)  -  or  parameter  D  (for  negative  B's).
Similarly changes meaning of right constraint.

You do not have to decide what parameter to  constrain  -  algorithm  will
automatically determine correct parameters as fitting progresses. However,
question highlighted above is important when you interpret fitting results.


  -- ALGLIB PROJECT --
     Copyright 14.02.2014 by Bochkanov Sergey
*************************************************************************/
void logisticfit5ec(const real_1d_array &x, const real_1d_array &y, const ae_int_t n, const double cnstrleft, const double cnstrright, double &a, double &b, double &c, double &d, double &g, lsfitreport &rep);


/*************************************************************************
This is "expert" 4PL/5PL fitting function, which can be used if  you  need
better control over fitting process than provided  by  LogisticFit4()  or
LogisticFit5().

This function fits model of the form

    F(x|A,B,C,D)   = D+(A-D)/(1+Power(x/C,B))           (4PL model)

or

    F(x|A,B,C,D,G) = D+(A-D)/Power(1+Power(x/C,B),G)    (5PL model)

Here:
    * A, D - unconstrained
    * B>=0 for 4PL, unconstrained for 5PL
    * C>0
    * G>0 (if present)

INPUT PARAMETERS:
    X       -   array[N], stores X-values.
                MUST include only non-negative numbers  (but  may  include
                zero values). Can be unsorted.
    Y       -   array[N], values to fit.
    N       -   number of points. If N is less than  length  of  X/Y, only
                leading N elements are used.
    CnstrLeft-  optional equality constraint for model value at the   left
                boundary (at X=0). Specify NAN (Not-a-Number)  if  you  do
                not need constraint on the model value at X=0 (in C++  you
                can pass alglib::fp_nan as parameter, in  C#  it  will  be
                Double.NaN).
                See  below,  section  "EQUALITY  CONSTRAINTS"   for   more
                information about constraints.
    CnstrRight- optional equality constraint for model value at X=infinity.
                Specify NAN (Not-a-Number) if you do not  need  constraint
                on the model value (in C++  you can pass alglib::fp_nan as
                parameter, in  C# it will  be Double.NaN).
                See  below,  section  "EQUALITY  CONSTRAINTS"   for   more
                information about constraints.
    Is4PL   -   whether 4PL or 5PL models are fitted
    LambdaV -   regularization coefficient, LambdaV>=0.
                Set it to zero unless you know what you are doing.
    EpsX    -   stopping condition (step size), EpsX>=0.
                Zero value means that small step is automatically chosen.
                See notes below for more information.
    RsCnt   -   number of repeated restarts from  random  points.  4PL/5PL
                models are prone to problem of bad local extrema. Utilizing
                multiple random restarts allows  us  to  improve algorithm
                convergence.
                RsCnt>=0.
                Zero value means that function automatically choose  small
                amount of restarts (recommended).

OUTPUT PARAMETERS:
    A, B, C, D- parameters of 4PL model
    G       -   parameter of 5PL model; for Is4PL=True, G=1 is returned.
    Rep     -   fitting report. This structure has many fields,  but  ONLY
                ONES LISTED BELOW ARE SET:
                * Rep.IterationsCount - number of iterations performed
                * Rep.RMSError - root-mean-square error
                * Rep.AvgError - average absolute error
                * Rep.AvgRelError - average relative error (calculated for
                  non-zero Y-values)
                * Rep.MaxError - maximum absolute error
                * Rep.R2 - coefficient of determination,  R-squared.  This
                  coefficient   is  calculated  as  R2=1-RSS/TSS  (in case
                  of nonlinear  regression  there  are  multiple  ways  to
                  define R2, each of them giving different results).

NOTE: after  you  obtained  coefficients,  you  can  evaluate  model  with
      LogisticCalc5() function.

NOTE: step is automatically scaled according to scale of parameters  being
      fitted before we compare its length with EpsX. Thus,  this  function
      can be used to fit data with very small or very large values without
      changing EpsX.

EQUALITY CONSTRAINTS ON PARAMETERS

4PL/5PL solver supports equality constraints on model values at  the  left
boundary (X=0) and right  boundary  (X=infinity).  These  constraints  are
completely optional and you can specify both of them, only  one  -  or  no
constraints at all.

Parameter  CnstrLeft  contains  left  constraint (or NAN for unconstrained
fitting), and CnstrRight contains right  one.  For  4PL,  left  constraint
ALWAYS corresponds to parameter A, and right one is ALWAYS  constraint  on
D. That's because 4PL model is normalized in such way that B>=0.

For 5PL model things are different. Unlike  4PL  one,  5PL  model  is  NOT
symmetric with respect to  change  in  sign  of  B. Thus, negative B's are
possible, and left constraint may constrain parameter A (for positive B's)
- or parameter D (for negative B's). Similarly changes  meaning  of  right
constraint.

You do not have to decide what parameter to  constrain  -  algorithm  will
automatically determine correct parameters as fitting progresses. However,
question highlighted above is important when you interpret fitting results.


  -- ALGLIB PROJECT --
     Copyright 14.02.2014 by Bochkanov Sergey
*************************************************************************/
void logisticfit45x(const real_1d_array &x, const real_1d_array &y, const ae_int_t n, const double cnstrleft, const double cnstrright, const bool is4pl, const double lambdav, const double epsx, const ae_int_t rscnt, double &a, double &b, double &c, double &d, double &g, lsfitreport &rep);


/*************************************************************************
Weghted rational least  squares  fitting  using  Floater-Hormann  rational
functions  with  optimal  D  chosen  from  [0,9],  with  constraints   and
individual weights.

Equidistant  grid  with M node on [min(x),max(x)]  is  used to build basis
functions. Different values of D are tried, optimal D (least WEIGHTED root
mean square error) is chosen.  Task  is  linear,  so  linear least squares
solver  is  used.  Complexity  of  this  computational  scheme is O(N*M^2)
(mostly dominated by the least squares solver).

SEE ALSO
* BarycentricFitFloaterHormann(), "lightweight" fitting without invididual
  weights and constraints.

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes two  important  improvements  of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  ! * multithreading support
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Speed-up provided by multithreading greatly depends  on  problem  size
  ! - only large problems (number of coefficients is more than 500) can be
  ! efficiently multithreaded.
  !
  ! Generally, commercial ALGLIB is several times faster than  open-source
  ! generic C edition, and many times faster than open-source C# edition.
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

INPUT PARAMETERS:
    X   -   points, array[0..N-1].
    Y   -   function values, array[0..N-1].
    W   -   weights, array[0..N-1]
            Each summand in square  sum  of  approximation deviations from
            given  values  is  multiplied  by  the square of corresponding
            weight. Fill it by 1's if you don't  want  to  solve  weighted
            task.
    N   -   number of points, N>0.
    XC  -   points where function values/derivatives are constrained,
            array[0..K-1].
    YC  -   values of constraints, array[0..K-1]
    DC  -   array[0..K-1], types of constraints:
            * DC[i]=0   means that S(XC[i])=YC[i]
            * DC[i]=1   means that S'(XC[i])=YC[i]
            SEE BELOW FOR IMPORTANT INFORMATION ON CONSTRAINTS
    K   -   number of constraints, 0<=K<M.
            K=0 means no constraints (XC/YC/DC are not used in such cases)
    M   -   number of basis functions ( = number_of_nodes), M>=2.

OUTPUT PARAMETERS:
    Info-   same format as in LSFitLinearWC() subroutine.
            * Info>0    task is solved
            * Info<=0   an error occured:
                        -4 means inconvergence of internal SVD
                        -3 means inconsistent constraints
                        -1 means another errors in parameters passed
                           (N<=0, for example)
    B   -   barycentric interpolant.
    Rep -   report, same format as in LSFitLinearWC() subroutine.
            Following fields are set:
            * DBest         best value of the D parameter
            * RMSError      rms error on the (X,Y).
            * AvgError      average error on the (X,Y).
            * AvgRelError   average relative error on the non-zero Y
            * MaxError      maximum error
                            NON-WEIGHTED ERRORS ARE CALCULATED

IMPORTANT:
    this subroutine doesn't calculate task's condition number for K<>0.

SETTING CONSTRAINTS - DANGERS AND OPPORTUNITIES:

Setting constraints can lead  to undesired  results,  like ill-conditioned
behavior, or inconsistency being detected. From the other side,  it allows
us to improve quality of the fit. Here we summarize  our  experience  with
constrained barycentric interpolants:
* excessive  constraints  can  be  inconsistent.   Floater-Hormann   basis
  functions aren't as flexible as splines (although they are very smooth).
* the more evenly constraints are spread across [min(x),max(x)],  the more
  chances that they will be consistent
* the  greater  is  M (given  fixed  constraints),  the  more chances that
  constraints will be consistent
* in the general case, consistency of constraints IS NOT GUARANTEED.
* in the several special cases, however, we CAN guarantee consistency.
* one of this cases is constraints on the function  VALUES at the interval
  boundaries. Note that consustency of the  constraints  on  the  function
  DERIVATIVES is NOT guaranteed (you can use in such cases  cubic  splines
  which are more flexible).
* another  special  case  is ONE constraint on the function value (OR, but
  not AND, derivative) anywhere in the interval

Our final recommendation is to use constraints  WHEN  AND  ONLY  WHEN  you
can't solve your task without them. Anything beyond  special  cases  given
above is not guaranteed and may result in inconsistency.

  -- ALGLIB PROJECT --
     Copyright 18.08.2009 by Bochkanov Sergey
*************************************************************************/
void barycentricfitfloaterhormannwc(const real_1d_array &x, const real_1d_array &y, const real_1d_array &w, const ae_int_t n, const real_1d_array &xc, const real_1d_array &yc, const integer_1d_array &dc, const ae_int_t k, const ae_int_t m, ae_int_t &info, barycentricinterpolant &b, barycentricfitreport &rep);
void smp_barycentricfitfloaterhormannwc(const real_1d_array &x, const real_1d_array &y, const real_1d_array &w, const ae_int_t n, const real_1d_array &xc, const real_1d_array &yc, const integer_1d_array &dc, const ae_int_t k, const ae_int_t m, ae_int_t &info, barycentricinterpolant &b, barycentricfitreport &rep);


/*************************************************************************
Rational least squares fitting using  Floater-Hormann  rational  functions
with optimal D chosen from [0,9].

Equidistant  grid  with M node on [min(x),max(x)]  is  used to build basis
functions. Different values of D are tried, optimal  D  (least  root  mean
square error) is chosen.  Task  is  linear, so linear least squares solver
is used. Complexity  of  this  computational  scheme is  O(N*M^2)  (mostly
dominated by the least squares solver).

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes two  important  improvements  of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  ! * multithreading support
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Speed-up provided by multithreading greatly depends  on  problem  size
  ! - only large problems (number of coefficients is more than 500) can be
  ! efficiently multithreaded.
  !
  ! Generally, commercial ALGLIB is several times faster than  open-source
  ! generic C edition, and many times faster than open-source C# edition.
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

INPUT PARAMETERS:
    X   -   points, array[0..N-1].
    Y   -   function values, array[0..N-1].
    N   -   number of points, N>0.
    M   -   number of basis functions ( = number_of_nodes), M>=2.

OUTPUT PARAMETERS:
    Info-   same format as in LSFitLinearWC() subroutine.
            * Info>0    task is solved
            * Info<=0   an error occured:
                        -4 means inconvergence of internal SVD
                        -3 means inconsistent constraints
    B   -   barycentric interpolant.
    Rep -   report, same format as in LSFitLinearWC() subroutine.
            Following fields are set:
            * DBest         best value of the D parameter
            * RMSError      rms error on the (X,Y).
            * AvgError      average error on the (X,Y).
            * AvgRelError   average relative error on the non-zero Y
            * MaxError      maximum error
                            NON-WEIGHTED ERRORS ARE CALCULATED

  -- ALGLIB PROJECT --
     Copyright 18.08.2009 by Bochkanov Sergey
*************************************************************************/
void barycentricfitfloaterhormann(const real_1d_array &x, const real_1d_array &y, const ae_int_t n, const ae_int_t m, ae_int_t &info, barycentricinterpolant &b, barycentricfitreport &rep);
void smp_barycentricfitfloaterhormann(const real_1d_array &x, const real_1d_array &y, const ae_int_t n, const ae_int_t m, ae_int_t &info, barycentricinterpolant &b, barycentricfitreport &rep);


/*************************************************************************
Fitting by penalized cubic spline.

Equidistant grid with M nodes on [min(x,xc),max(x,xc)] is  used  to  build
basis functions. Basis functions are cubic splines with  natural  boundary
conditions. Problem is regularized by  adding non-linearity penalty to the
usual least squares penalty function:

    S(x) = arg min { LS + P }, where
    LS   = SUM { w[i]^2*(y[i] - S(x[i]))^2 } - least squares penalty
    P    = C*10^rho*integral{ S''(x)^2*dx } - non-linearity penalty
    rho  - tunable constant given by user
    C    - automatically determined scale parameter,
           makes penalty invariant with respect to scaling of X, Y, W.

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes two  important  improvements  of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  ! * multithreading support
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Speed-up provided by multithreading greatly depends  on  problem  size
  ! - only large problems (number of coefficients is more than 500) can be
  ! efficiently multithreaded.
  !
  ! Generally, commercial ALGLIB is several times faster than  open-source
  ! generic C edition, and many times faster than open-source C# edition.
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

INPUT PARAMETERS:
    X   -   points, array[0..N-1].
    Y   -   function values, array[0..N-1].
    N   -   number of points (optional):
            * N>0
            * if given, only first N elements of X/Y are processed
            * if not given, automatically determined from X/Y sizes
    M   -   number of basis functions ( = number_of_nodes), M>=4.
    Rho -   regularization  constant  passed   by   user.   It   penalizes
            nonlinearity in the regression spline. It  is  logarithmically
            scaled,  i.e.  actual  value  of  regularization  constant  is
            calculated as 10^Rho. It is automatically scaled so that:
            * Rho=2.0 corresponds to moderate amount of nonlinearity
            * generally, it should be somewhere in the [-8.0,+8.0]
            If you do not want to penalize nonlineary,
            pass small Rho. Values as low as -15 should work.

OUTPUT PARAMETERS:
    Info-   same format as in LSFitLinearWC() subroutine.
            * Info>0    task is solved
            * Info<=0   an error occured:
                        -4 means inconvergence of internal SVD or
                           Cholesky decomposition; problem may be
                           too ill-conditioned (very rare)
    S   -   spline interpolant.
    Rep -   Following fields are set:
            * RMSError      rms error on the (X,Y).
            * AvgError      average error on the (X,Y).
            * AvgRelError   average relative error on the non-zero Y
            * MaxError      maximum error
                            NON-WEIGHTED ERRORS ARE CALCULATED

IMPORTANT:
    this subroitine doesn't calculate task's condition number for K<>0.

NOTE 1: additional nodes are added to the spline outside  of  the  fitting
interval to force linearity when x<min(x,xc) or x>max(x,xc).  It  is  done
for consistency - we penalize non-linearity  at [min(x,xc),max(x,xc)],  so
it is natural to force linearity outside of this interval.

NOTE 2: function automatically sorts points,  so  caller may pass unsorted
array.

  -- ALGLIB PROJECT --
     Copyright 18.08.2009 by Bochkanov Sergey
*************************************************************************/
void spline1dfitpenalized(const real_1d_array &x, const real_1d_array &y, const ae_int_t n, const ae_int_t m, const double rho, ae_int_t &info, spline1dinterpolant &s, spline1dfitreport &rep);
void smp_spline1dfitpenalized(const real_1d_array &x, const real_1d_array &y, const ae_int_t n, const ae_int_t m, const double rho, ae_int_t &info, spline1dinterpolant &s, spline1dfitreport &rep);
void spline1dfitpenalized(const real_1d_array &x, const real_1d_array &y, const ae_int_t m, const double rho, ae_int_t &info, spline1dinterpolant &s, spline1dfitreport &rep);
void smp_spline1dfitpenalized(const real_1d_array &x, const real_1d_array &y, const ae_int_t m, const double rho, ae_int_t &info, spline1dinterpolant &s, spline1dfitreport &rep);


/*************************************************************************
Weighted fitting by penalized cubic spline.

Equidistant grid with M nodes on [min(x,xc),max(x,xc)] is  used  to  build
basis functions. Basis functions are cubic splines with  natural  boundary
conditions. Problem is regularized by  adding non-linearity penalty to the
usual least squares penalty function:

    S(x) = arg min { LS + P }, where
    LS   = SUM { w[i]^2*(y[i] - S(x[i]))^2 } - least squares penalty
    P    = C*10^rho*integral{ S''(x)^2*dx } - non-linearity penalty
    rho  - tunable constant given by user
    C    - automatically determined scale parameter,
           makes penalty invariant with respect to scaling of X, Y, W.

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes two  important  improvements  of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  ! * multithreading support
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Speed-up provided by multithreading greatly depends  on  problem  size
  ! - only large problems (number of coefficients is more than 500) can be
  ! efficiently multithreaded.
  !
  ! Generally, commercial ALGLIB is several times faster than  open-source
  ! generic C edition, and many times faster than open-source C# edition.
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

INPUT PARAMETERS:
    X   -   points, array[0..N-1].
    Y   -   function values, array[0..N-1].
    W   -   weights, array[0..N-1]
            Each summand in square  sum  of  approximation deviations from
            given  values  is  multiplied  by  the square of corresponding
            weight. Fill it by 1's if you don't  want  to  solve  weighted
            problem.
    N   -   number of points (optional):
            * N>0
            * if given, only first N elements of X/Y/W are processed
            * if not given, automatically determined from X/Y/W sizes
    M   -   number of basis functions ( = number_of_nodes), M>=4.
    Rho -   regularization  constant  passed   by   user.   It   penalizes
            nonlinearity in the regression spline. It  is  logarithmically
            scaled,  i.e.  actual  value  of  regularization  constant  is
            calculated as 10^Rho. It is automatically scaled so that:
            * Rho=2.0 corresponds to moderate amount of nonlinearity
            * generally, it should be somewhere in the [-8.0,+8.0]
            If you do not want to penalize nonlineary,
            pass small Rho. Values as low as -15 should work.

OUTPUT PARAMETERS:
    Info-   same format as in LSFitLinearWC() subroutine.
            * Info>0    task is solved
            * Info<=0   an error occured:
                        -4 means inconvergence of internal SVD or
                           Cholesky decomposition; problem may be
                           too ill-conditioned (very rare)
    S   -   spline interpolant.
    Rep -   Following fields are set:
            * RMSError      rms error on the (X,Y).
            * AvgError      average error on the (X,Y).
            * AvgRelError   average relative error on the non-zero Y
            * MaxError      maximum error
                            NON-WEIGHTED ERRORS ARE CALCULATED

IMPORTANT:
    this subroitine doesn't calculate task's condition number for K<>0.

NOTE 1: additional nodes are added to the spline outside  of  the  fitting
interval to force linearity when x<min(x,xc) or x>max(x,xc).  It  is  done
for consistency - we penalize non-linearity  at [min(x,xc),max(x,xc)],  so
it is natural to force linearity outside of this interval.

NOTE 2: function automatically sorts points,  so  caller may pass unsorted
array.

  -- ALGLIB PROJECT --
     Copyright 19.10.2010 by Bochkanov Sergey
*************************************************************************/
void spline1dfitpenalizedw(const real_1d_array &x, const real_1d_array &y, const real_1d_array &w, const ae_int_t n, const ae_int_t m, const double rho, ae_int_t &info, spline1dinterpolant &s, spline1dfitreport &rep);
void smp_spline1dfitpenalizedw(const real_1d_array &x, const real_1d_array &y, const real_1d_array &w, const ae_int_t n, const ae_int_t m, const double rho, ae_int_t &info, spline1dinterpolant &s, spline1dfitreport &rep);
void spline1dfitpenalizedw(const real_1d_array &x, const real_1d_array &y, const real_1d_array &w, const ae_int_t m, const double rho, ae_int_t &info, spline1dinterpolant &s, spline1dfitreport &rep);
void smp_spline1dfitpenalizedw(const real_1d_array &x, const real_1d_array &y, const real_1d_array &w, const ae_int_t m, const double rho, ae_int_t &info, spline1dinterpolant &s, spline1dfitreport &rep);


/*************************************************************************
Weighted fitting by cubic  spline,  with constraints on function values or
derivatives.

Equidistant grid with M-2 nodes on [min(x,xc),max(x,xc)] is  used to build
basis functions. Basis functions are cubic splines with continuous  second
derivatives  and  non-fixed first  derivatives  at  interval  ends.  Small
regularizing term is used  when  solving  constrained  tasks  (to  improve
stability).

Task is linear, so linear least squares solver is used. Complexity of this
computational scheme is O(N*M^2), mostly dominated by least squares solver

SEE ALSO
    Spline1DFitHermiteWC()  -   fitting by Hermite splines (more flexible,
                                less smooth)
    Spline1DFitCubic()      -   "lightweight" fitting  by  cubic  splines,
                                without invididual weights and constraints

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes two  important  improvements  of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  ! * multithreading support
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Speed-up provided by multithreading greatly depends  on  problem  size
  ! - only large problems (number of coefficients is more than 500) can be
  ! efficiently multithreaded.
  !
  ! Generally, commercial ALGLIB is several times faster than  open-source
  ! generic C edition, and many times faster than open-source C# edition.
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

INPUT PARAMETERS:
    X   -   points, array[0..N-1].
    Y   -   function values, array[0..N-1].
    W   -   weights, array[0..N-1]
            Each summand in square  sum  of  approximation deviations from
            given  values  is  multiplied  by  the square of corresponding
            weight. Fill it by 1's if you don't  want  to  solve  weighted
            task.
    N   -   number of points (optional):
            * N>0
            * if given, only first N elements of X/Y/W are processed
            * if not given, automatically determined from X/Y/W sizes
    XC  -   points where spline values/derivatives are constrained,
            array[0..K-1].
    YC  -   values of constraints, array[0..K-1]
    DC  -   array[0..K-1], types of constraints:
            * DC[i]=0   means that S(XC[i])=YC[i]
            * DC[i]=1   means that S'(XC[i])=YC[i]
            SEE BELOW FOR IMPORTANT INFORMATION ON CONSTRAINTS
    K   -   number of constraints (optional):
            * 0<=K<M.
            * K=0 means no constraints (XC/YC/DC are not used)
            * if given, only first K elements of XC/YC/DC are used
            * if not given, automatically determined from XC/YC/DC
    M   -   number of basis functions ( = number_of_nodes+2), M>=4.

OUTPUT PARAMETERS:
    Info-   same format as in LSFitLinearWC() subroutine.
            * Info>0    task is solved
            * Info<=0   an error occured:
                        -4 means inconvergence of internal SVD
                        -3 means inconsistent constraints
    S   -   spline interpolant.
    Rep -   report, same format as in LSFitLinearWC() subroutine.
            Following fields are set:
            * RMSError      rms error on the (X,Y).
            * AvgError      average error on the (X,Y).
            * AvgRelError   average relative error on the non-zero Y
            * MaxError      maximum error
                            NON-WEIGHTED ERRORS ARE CALCULATED

IMPORTANT:
    this subroitine doesn't calculate task's condition number for K<>0.


ORDER OF POINTS

Subroutine automatically sorts points, so caller may pass unsorted array.

SETTING CONSTRAINTS - DANGERS AND OPPORTUNITIES:

Setting constraints can lead  to undesired  results,  like ill-conditioned
behavior, or inconsistency being detected. From the other side,  it allows
us to improve quality of the fit. Here we summarize  our  experience  with
constrained regression splines:
* excessive constraints can be inconsistent. Splines are  piecewise  cubic
  functions, and it is easy to create an example, where  large  number  of
  constraints  concentrated  in  small  area will result in inconsistency.
  Just because spline is not flexible enough to satisfy all of  them.  And
  same constraints spread across the  [min(x),max(x)]  will  be  perfectly
  consistent.
* the more evenly constraints are spread across [min(x),max(x)],  the more
  chances that they will be consistent
* the  greater  is  M (given  fixed  constraints),  the  more chances that
  constraints will be consistent
* in the general case, consistency of constraints IS NOT GUARANTEED.
* in the several special cases, however, we CAN guarantee consistency.
* one of this cases is constraints  on  the  function  values  AND/OR  its
  derivatives at the interval boundaries.
* another  special  case  is ONE constraint on the function value (OR, but
  not AND, derivative) anywhere in the interval

Our final recommendation is to use constraints  WHEN  AND  ONLY  WHEN  you
can't solve your task without them. Anything beyond  special  cases  given
above is not guaranteed and may result in inconsistency.


  -- ALGLIB PROJECT --
     Copyright 18.08.2009 by Bochkanov Sergey
*************************************************************************/
void spline1dfitcubicwc(const real_1d_array &x, const real_1d_array &y, const real_1d_array &w, const ae_int_t n, const real_1d_array &xc, const real_1d_array &yc, const integer_1d_array &dc, const ae_int_t k, const ae_int_t m, ae_int_t &info, spline1dinterpolant &s, spline1dfitreport &rep);
void smp_spline1dfitcubicwc(const real_1d_array &x, const real_1d_array &y, const real_1d_array &w, const ae_int_t n, const real_1d_array &xc, const real_1d_array &yc, const integer_1d_array &dc, const ae_int_t k, const ae_int_t m, ae_int_t &info, spline1dinterpolant &s, spline1dfitreport &rep);
void spline1dfitcubicwc(const real_1d_array &x, const real_1d_array &y, const real_1d_array &w, const real_1d_array &xc, const real_1d_array &yc, const integer_1d_array &dc, const ae_int_t m, ae_int_t &info, spline1dinterpolant &s, spline1dfitreport &rep);
void smp_spline1dfitcubicwc(const real_1d_array &x, const real_1d_array &y, const real_1d_array &w, const real_1d_array &xc, const real_1d_array &yc, const integer_1d_array &dc, const ae_int_t m, ae_int_t &info, spline1dinterpolant &s, spline1dfitreport &rep);


/*************************************************************************
Weighted  fitting  by Hermite spline,  with constraints on function values
or first derivatives.

Equidistant grid with M nodes on [min(x,xc),max(x,xc)] is  used  to  build
basis functions. Basis functions are Hermite splines.  Small  regularizing
term is used when solving constrained tasks (to improve stability).

Task is linear, so linear least squares solver is used. Complexity of this
computational scheme is O(N*M^2), mostly dominated by least squares solver

SEE ALSO
    Spline1DFitCubicWC()    -   fitting by Cubic splines (less flexible,
                                more smooth)
    Spline1DFitHermite()    -   "lightweight" Hermite fitting, without
                                invididual weights and constraints

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes two  important  improvements  of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  ! * multithreading support
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Speed-up provided by multithreading greatly depends  on  problem  size
  ! - only large problems (number of coefficients is more than 500) can be
  ! efficiently multithreaded.
  !
  ! Generally, commercial ALGLIB is several times faster than  open-source
  ! generic C edition, and many times faster than open-source C# edition.
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

INPUT PARAMETERS:
    X   -   points, array[0..N-1].
    Y   -   function values, array[0..N-1].
    W   -   weights, array[0..N-1]
            Each summand in square  sum  of  approximation deviations from
            given  values  is  multiplied  by  the square of corresponding
            weight. Fill it by 1's if you don't  want  to  solve  weighted
            task.
    N   -   number of points (optional):
            * N>0
            * if given, only first N elements of X/Y/W are processed
            * if not given, automatically determined from X/Y/W sizes
    XC  -   points where spline values/derivatives are constrained,
            array[0..K-1].
    YC  -   values of constraints, array[0..K-1]
    DC  -   array[0..K-1], types of constraints:
            * DC[i]=0   means that S(XC[i])=YC[i]
            * DC[i]=1   means that S'(XC[i])=YC[i]
            SEE BELOW FOR IMPORTANT INFORMATION ON CONSTRAINTS
    K   -   number of constraints (optional):
            * 0<=K<M.
            * K=0 means no constraints (XC/YC/DC are not used)
            * if given, only first K elements of XC/YC/DC are used
            * if not given, automatically determined from XC/YC/DC
    M   -   number of basis functions (= 2 * number of nodes),
            M>=4,
            M IS EVEN!

OUTPUT PARAMETERS:
    Info-   same format as in LSFitLinearW() subroutine:
            * Info>0    task is solved
            * Info<=0   an error occured:
                        -4 means inconvergence of internal SVD
                        -3 means inconsistent constraints
                        -2 means odd M was passed (which is not supported)
                        -1 means another errors in parameters passed
                           (N<=0, for example)
    S   -   spline interpolant.
    Rep -   report, same format as in LSFitLinearW() subroutine.
            Following fields are set:
            * RMSError      rms error on the (X,Y).
            * AvgError      average error on the (X,Y).
            * AvgRelError   average relative error on the non-zero Y
            * MaxError      maximum error
                            NON-WEIGHTED ERRORS ARE CALCULATED

IMPORTANT:
    this subroitine doesn't calculate task's condition number for K<>0.

IMPORTANT:
    this subroitine supports only even M's


ORDER OF POINTS

Subroutine automatically sorts points, so caller may pass unsorted array.

SETTING CONSTRAINTS - DANGERS AND OPPORTUNITIES:

Setting constraints can lead  to undesired  results,  like ill-conditioned
behavior, or inconsistency being detected. From the other side,  it allows
us to improve quality of the fit. Here we summarize  our  experience  with
constrained regression splines:
* excessive constraints can be inconsistent. Splines are  piecewise  cubic
  functions, and it is easy to create an example, where  large  number  of
  constraints  concentrated  in  small  area will result in inconsistency.
  Just because spline is not flexible enough to satisfy all of  them.  And
  same constraints spread across the  [min(x),max(x)]  will  be  perfectly
  consistent.
* the more evenly constraints are spread across [min(x),max(x)],  the more
  chances that they will be consistent
* the  greater  is  M (given  fixed  constraints),  the  more chances that
  constraints will be consistent
* in the general case, consistency of constraints is NOT GUARANTEED.
* in the several special cases, however, we can guarantee consistency.
* one of this cases is  M>=4  and   constraints  on   the  function  value
  (AND/OR its derivative) at the interval boundaries.
* another special case is M>=4  and  ONE  constraint on the function value
  (OR, BUT NOT AND, derivative) anywhere in [min(x),max(x)]

Our final recommendation is to use constraints  WHEN  AND  ONLY  when  you
can't solve your task without them. Anything beyond  special  cases  given
above is not guaranteed and may result in inconsistency.

  -- ALGLIB PROJECT --
     Copyright 18.08.2009 by Bochkanov Sergey
*************************************************************************/
void spline1dfithermitewc(const real_1d_array &x, const real_1d_array &y, const real_1d_array &w, const ae_int_t n, const real_1d_array &xc, const real_1d_array &yc, const integer_1d_array &dc, const ae_int_t k, const ae_int_t m, ae_int_t &info, spline1dinterpolant &s, spline1dfitreport &rep);
void smp_spline1dfithermitewc(const real_1d_array &x, const real_1d_array &y, const real_1d_array &w, const ae_int_t n, const real_1d_array &xc, const real_1d_array &yc, const integer_1d_array &dc, const ae_int_t k, const ae_int_t m, ae_int_t &info, spline1dinterpolant &s, spline1dfitreport &rep);
void spline1dfithermitewc(const real_1d_array &x, const real_1d_array &y, const real_1d_array &w, const real_1d_array &xc, const real_1d_array &yc, const integer_1d_array &dc, const ae_int_t m, ae_int_t &info, spline1dinterpolant &s, spline1dfitreport &rep);
void smp_spline1dfithermitewc(const real_1d_array &x, const real_1d_array &y, const real_1d_array &w, const real_1d_array &xc, const real_1d_array &yc, const integer_1d_array &dc, const ae_int_t m, ae_int_t &info, spline1dinterpolant &s, spline1dfitreport &rep);


/*************************************************************************
Least squares fitting by cubic spline.

This subroutine is "lightweight" alternative for more complex and feature-
rich Spline1DFitCubicWC().  See  Spline1DFitCubicWC() for more information
about subroutine parameters (we don't duplicate it here because of length)

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes two  important  improvements  of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  ! * multithreading support
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Speed-up provided by multithreading greatly depends  on  problem  size
  ! - only large problems (number of coefficients is more than 500) can be
  ! efficiently multithreaded.
  !
  ! Generally, commercial ALGLIB is several times faster than  open-source
  ! generic C edition, and many times faster than open-source C# edition.
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

  -- ALGLIB PROJECT --
     Copyright 18.08.2009 by Bochkanov Sergey
*************************************************************************/
void spline1dfitcubic(const real_1d_array &x, const real_1d_array &y, const ae_int_t n, const ae_int_t m, ae_int_t &info, spline1dinterpolant &s, spline1dfitreport &rep);
void smp_spline1dfitcubic(const real_1d_array &x, const real_1d_array &y, const ae_int_t n, const ae_int_t m, ae_int_t &info, spline1dinterpolant &s, spline1dfitreport &rep);
void spline1dfitcubic(const real_1d_array &x, const real_1d_array &y, const ae_int_t m, ae_int_t &info, spline1dinterpolant &s, spline1dfitreport &rep);
void smp_spline1dfitcubic(const real_1d_array &x, const real_1d_array &y, const ae_int_t m, ae_int_t &info, spline1dinterpolant &s, spline1dfitreport &rep);


/*************************************************************************
Least squares fitting by Hermite spline.

This subroutine is "lightweight" alternative for more complex and feature-
rich Spline1DFitHermiteWC().  See Spline1DFitHermiteWC()  description  for
more information about subroutine parameters (we don't duplicate  it  here
because of length).

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes two  important  improvements  of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  ! * multithreading support
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Speed-up provided by multithreading greatly depends  on  problem  size
  ! - only large problems (number of coefficients is more than 500) can be
  ! efficiently multithreaded.
  !
  ! Generally, commercial ALGLIB is several times faster than  open-source
  ! generic C edition, and many times faster than open-source C# edition.
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

  -- ALGLIB PROJECT --
     Copyright 18.08.2009 by Bochkanov Sergey
*************************************************************************/
void spline1dfithermite(const real_1d_array &x, const real_1d_array &y, const ae_int_t n, const ae_int_t m, ae_int_t &info, spline1dinterpolant &s, spline1dfitreport &rep);
void smp_spline1dfithermite(const real_1d_array &x, const real_1d_array &y, const ae_int_t n, const ae_int_t m, ae_int_t &info, spline1dinterpolant &s, spline1dfitreport &rep);
void spline1dfithermite(const real_1d_array &x, const real_1d_array &y, const ae_int_t m, ae_int_t &info, spline1dinterpolant &s, spline1dfitreport &rep);
void smp_spline1dfithermite(const real_1d_array &x, const real_1d_array &y, const ae_int_t m, ae_int_t &info, spline1dinterpolant &s, spline1dfitreport &rep);


/*************************************************************************
Weighted linear least squares fitting.

QR decomposition is used to reduce task to MxM, then triangular solver  or
SVD-based solver is used depending on condition number of the  system.  It
allows to maximize speed and retain decent accuracy.

IMPORTANT: if you want to perform  polynomial  fitting,  it  may  be  more
           convenient to use PolynomialFit() function. This function gives
           best  results  on  polynomial  problems  and  solves  numerical
           stability  issues  which  arise  when   you   fit   high-degree
           polynomials to your data.

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes two  important  improvements  of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  ! * multithreading support
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Speed-up provided by multithreading greatly depends  on  problem  size
  ! - only large problems (number of coefficients is more than 500) can be
  ! efficiently multithreaded.
  !
  ! Generally, commercial ALGLIB is several times faster than  open-source
  ! generic C edition, and many times faster than open-source C# edition.
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

INPUT PARAMETERS:
    Y       -   array[0..N-1] Function values in  N  points.
    W       -   array[0..N-1]  Weights  corresponding to function  values.
                Each summand in square  sum  of  approximation  deviations
                from  given  values  is  multiplied  by  the   square   of
                corresponding weight.
    FMatrix -   a table of basis functions values, array[0..N-1, 0..M-1].
                FMatrix[I, J] - value of J-th basis function in I-th point.
    N       -   number of points used. N>=1.
    M       -   number of basis functions, M>=1.

OUTPUT PARAMETERS:
    Info    -   error code:
                * -4    internal SVD decomposition subroutine failed (very
                        rare and for degenerate systems only)
                * -1    incorrect N/M were specified
                *  1    task is solved
    C       -   decomposition coefficients, array[0..M-1]
    Rep     -   fitting report. Following fields are set:
                * Rep.TaskRCond     reciprocal of condition number
                * R2                non-adjusted coefficient of determination
                                    (non-weighted)
                * RMSError          rms error on the (X,Y).
                * AvgError          average error on the (X,Y).
                * AvgRelError       average relative error on the non-zero Y
                * MaxError          maximum error
                                    NON-WEIGHTED ERRORS ARE CALCULATED

ERRORS IN PARAMETERS

This  solver  also  calculates different kinds of errors in parameters and
fills corresponding fields of report:
* Rep.CovPar        covariance matrix for parameters, array[K,K].
* Rep.ErrPar        errors in parameters, array[K],
                    errpar = sqrt(diag(CovPar))
* Rep.ErrCurve      vector of fit errors - standard deviations of empirical
                    best-fit curve from "ideal" best-fit curve built  with
                    infinite number of samples, array[N].
                    errcurve = sqrt(diag(F*CovPar*F')),
                    where F is functions matrix.
* Rep.Noise         vector of per-point estimates of noise, array[N]

NOTE:       noise in the data is estimated as follows:
            * for fitting without user-supplied  weights  all  points  are
              assumed to have same level of noise, which is estimated from
              the data
            * for fitting with user-supplied weights we assume that  noise
              level in I-th point is inversely proportional to Ith weight.
              Coefficient of proportionality is estimated from the data.

NOTE:       we apply small amount of regularization when we invert squared
            Jacobian and calculate covariance matrix. It  guarantees  that
            algorithm won't divide by zero  during  inversion,  but  skews
            error estimates a bit (fractional error is about 10^-9).

            However, we believe that this difference is insignificant  for
            all practical purposes except for the situation when you  want
            to compare ALGLIB results with "reference"  implementation  up
            to the last significant digit.

NOTE:       covariance matrix is estimated using  correction  for  degrees
            of freedom (covariances are divided by N-M instead of dividing
            by N).

  -- ALGLIB --
     Copyright 17.08.2009 by Bochkanov Sergey
*************************************************************************/
void lsfitlinearw(const real_1d_array &y, const real_1d_array &w, const real_2d_array &fmatrix, const ae_int_t n, const ae_int_t m, ae_int_t &info, real_1d_array &c, lsfitreport &rep);
void smp_lsfitlinearw(const real_1d_array &y, const real_1d_array &w, const real_2d_array &fmatrix, const ae_int_t n, const ae_int_t m, ae_int_t &info, real_1d_array &c, lsfitreport &rep);
void lsfitlinearw(const real_1d_array &y, const real_1d_array &w, const real_2d_array &fmatrix, ae_int_t &info, real_1d_array &c, lsfitreport &rep);
void smp_lsfitlinearw(const real_1d_array &y, const real_1d_array &w, const real_2d_array &fmatrix, ae_int_t &info, real_1d_array &c, lsfitreport &rep);


/*************************************************************************
Weighted constained linear least squares fitting.

This  is  variation  of LSFitLinearW(), which searchs for min|A*x=b| given
that  K  additional  constaints  C*x=bc are satisfied. It reduces original
task to modified one: min|B*y-d| WITHOUT constraints,  then LSFitLinearW()
is called.

IMPORTANT: if you want to perform  polynomial  fitting,  it  may  be  more
           convenient to use PolynomialFit() function. This function gives
           best  results  on  polynomial  problems  and  solves  numerical
           stability  issues  which  arise  when   you   fit   high-degree
           polynomials to your data.

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes two  important  improvements  of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  ! * multithreading support
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Speed-up provided by multithreading greatly depends  on  problem  size
  ! - only large problems (number of coefficients is more than 500) can be
  ! efficiently multithreaded.
  !
  ! Generally, commercial ALGLIB is several times faster than  open-source
  ! generic C edition, and many times faster than open-source C# edition.
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

INPUT PARAMETERS:
    Y       -   array[0..N-1] Function values in  N  points.
    W       -   array[0..N-1]  Weights  corresponding to function  values.
                Each summand in square  sum  of  approximation  deviations
                from  given  values  is  multiplied  by  the   square   of
                corresponding weight.
    FMatrix -   a table of basis functions values, array[0..N-1, 0..M-1].
                FMatrix[I,J] - value of J-th basis function in I-th point.
    CMatrix -   a table of constaints, array[0..K-1,0..M].
                I-th row of CMatrix corresponds to I-th linear constraint:
                CMatrix[I,0]*C[0] + ... + CMatrix[I,M-1]*C[M-1] = CMatrix[I,M]
    N       -   number of points used. N>=1.
    M       -   number of basis functions, M>=1.
    K       -   number of constraints, 0 <= K < M
                K=0 corresponds to absence of constraints.

OUTPUT PARAMETERS:
    Info    -   error code:
                * -4    internal SVD decomposition subroutine failed (very
                        rare and for degenerate systems only)
                * -3    either   too   many  constraints  (M   or   more),
                        degenerate  constraints   (some   constraints  are
                        repetead twice) or inconsistent  constraints  were
                        specified.
                *  1    task is solved
    C       -   decomposition coefficients, array[0..M-1]
    Rep     -   fitting report. Following fields are set:
                * R2                non-adjusted coefficient of determination
                                    (non-weighted)
                * RMSError          rms error on the (X,Y).
                * AvgError          average error on the (X,Y).
                * AvgRelError       average relative error on the non-zero Y
                * MaxError          maximum error
                                    NON-WEIGHTED ERRORS ARE CALCULATED

IMPORTANT:
    this subroitine doesn't calculate task's condition number for K<>0.

ERRORS IN PARAMETERS

This  solver  also  calculates different kinds of errors in parameters and
fills corresponding fields of report:
* Rep.CovPar        covariance matrix for parameters, array[K,K].
* Rep.ErrPar        errors in parameters, array[K],
                    errpar = sqrt(diag(CovPar))
* Rep.ErrCurve      vector of fit errors - standard deviations of empirical
                    best-fit curve from "ideal" best-fit curve built  with
                    infinite number of samples, array[N].
                    errcurve = sqrt(diag(F*CovPar*F')),
                    where F is functions matrix.
* Rep.Noise         vector of per-point estimates of noise, array[N]

IMPORTANT:  errors  in  parameters  are  calculated  without  taking  into
            account boundary/linear constraints! Presence  of  constraints
            changes distribution of errors, but there is no  easy  way  to
            account for constraints when you calculate covariance matrix.

NOTE:       noise in the data is estimated as follows:
            * for fitting without user-supplied  weights  all  points  are
              assumed to have same level of noise, which is estimated from
              the data
            * for fitting with user-supplied weights we assume that  noise
              level in I-th point is inversely proportional to Ith weight.
              Coefficient of proportionality is estimated from the data.

NOTE:       we apply small amount of regularization when we invert squared
            Jacobian and calculate covariance matrix. It  guarantees  that
            algorithm won't divide by zero  during  inversion,  but  skews
            error estimates a bit (fractional error is about 10^-9).

            However, we believe that this difference is insignificant  for
            all practical purposes except for the situation when you  want
            to compare ALGLIB results with "reference"  implementation  up
            to the last significant digit.

NOTE:       covariance matrix is estimated using  correction  for  degrees
            of freedom (covariances are divided by N-M instead of dividing
            by N).

  -- ALGLIB --
     Copyright 07.09.2009 by Bochkanov Sergey
*************************************************************************/
void lsfitlinearwc(const real_1d_array &y, const real_1d_array &w, const real_2d_array &fmatrix, const real_2d_array &cmatrix, const ae_int_t n, const ae_int_t m, const ae_int_t k, ae_int_t &info, real_1d_array &c, lsfitreport &rep);
void smp_lsfitlinearwc(const real_1d_array &y, const real_1d_array &w, const real_2d_array &fmatrix, const real_2d_array &cmatrix, const ae_int_t n, const ae_int_t m, const ae_int_t k, ae_int_t &info, real_1d_array &c, lsfitreport &rep);
void lsfitlinearwc(const real_1d_array &y, const real_1d_array &w, const real_2d_array &fmatrix, const real_2d_array &cmatrix, ae_int_t &info, real_1d_array &c, lsfitreport &rep);
void smp_lsfitlinearwc(const real_1d_array &y, const real_1d_array &w, const real_2d_array &fmatrix, const real_2d_array &cmatrix, ae_int_t &info, real_1d_array &c, lsfitreport &rep);


/*************************************************************************
Linear least squares fitting.

QR decomposition is used to reduce task to MxM, then triangular solver  or
SVD-based solver is used depending on condition number of the  system.  It
allows to maximize speed and retain decent accuracy.

IMPORTANT: if you want to perform  polynomial  fitting,  it  may  be  more
           convenient to use PolynomialFit() function. This function gives
           best  results  on  polynomial  problems  and  solves  numerical
           stability  issues  which  arise  when   you   fit   high-degree
           polynomials to your data.

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes two  important  improvements  of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  ! * multithreading support
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Speed-up provided by multithreading greatly depends  on  problem  size
  ! - only large problems (number of coefficients is more than 500) can be
  ! efficiently multithreaded.
  !
  ! Generally, commercial ALGLIB is several times faster than  open-source
  ! generic C edition, and many times faster than open-source C# edition.
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

INPUT PARAMETERS:
    Y       -   array[0..N-1] Function values in  N  points.
    FMatrix -   a table of basis functions values, array[0..N-1, 0..M-1].
                FMatrix[I, J] - value of J-th basis function in I-th point.
    N       -   number of points used. N>=1.
    M       -   number of basis functions, M>=1.

OUTPUT PARAMETERS:
    Info    -   error code:
                * -4    internal SVD decomposition subroutine failed (very
                        rare and for degenerate systems only)
                *  1    task is solved
    C       -   decomposition coefficients, array[0..M-1]
    Rep     -   fitting report. Following fields are set:
                * Rep.TaskRCond     reciprocal of condition number
                * R2                non-adjusted coefficient of determination
                                    (non-weighted)
                * RMSError          rms error on the (X,Y).
                * AvgError          average error on the (X,Y).
                * AvgRelError       average relative error on the non-zero Y
                * MaxError          maximum error
                                    NON-WEIGHTED ERRORS ARE CALCULATED

ERRORS IN PARAMETERS

This  solver  also  calculates different kinds of errors in parameters and
fills corresponding fields of report:
* Rep.CovPar        covariance matrix for parameters, array[K,K].
* Rep.ErrPar        errors in parameters, array[K],
                    errpar = sqrt(diag(CovPar))
* Rep.ErrCurve      vector of fit errors - standard deviations of empirical
                    best-fit curve from "ideal" best-fit curve built  with
                    infinite number of samples, array[N].
                    errcurve = sqrt(diag(F*CovPar*F')),
                    where F is functions matrix.
* Rep.Noise         vector of per-point estimates of noise, array[N]

NOTE:       noise in the data is estimated as follows:
            * for fitting without user-supplied  weights  all  points  are
              assumed to have same level of noise, which is estimated from
              the data
            * for fitting with user-supplied weights we assume that  noise
              level in I-th point is inversely proportional to Ith weight.
              Coefficient of proportionality is estimated from the data.

NOTE:       we apply small amount of regularization when we invert squared
            Jacobian and calculate covariance matrix. It  guarantees  that
            algorithm won't divide by zero  during  inversion,  but  skews
            error estimates a bit (fractional error is about 10^-9).

            However, we believe that this difference is insignificant  for
            all practical purposes except for the situation when you  want
            to compare ALGLIB results with "reference"  implementation  up
            to the last significant digit.

NOTE:       covariance matrix is estimated using  correction  for  degrees
            of freedom (covariances are divided by N-M instead of dividing
            by N).

  -- ALGLIB --
     Copyright 17.08.2009 by Bochkanov Sergey
*************************************************************************/
void lsfitlinear(const real_1d_array &y, const real_2d_array &fmatrix, const ae_int_t n, const ae_int_t m, ae_int_t &info, real_1d_array &c, lsfitreport &rep);
void smp_lsfitlinear(const real_1d_array &y, const real_2d_array &fmatrix, const ae_int_t n, const ae_int_t m, ae_int_t &info, real_1d_array &c, lsfitreport &rep);
void lsfitlinear(const real_1d_array &y, const real_2d_array &fmatrix, ae_int_t &info, real_1d_array &c, lsfitreport &rep);
void smp_lsfitlinear(const real_1d_array &y, const real_2d_array &fmatrix, ae_int_t &info, real_1d_array &c, lsfitreport &rep);


/*************************************************************************
Constained linear least squares fitting.

This  is  variation  of LSFitLinear(),  which searchs for min|A*x=b| given
that  K  additional  constaints  C*x=bc are satisfied. It reduces original
task to modified one: min|B*y-d| WITHOUT constraints,  then  LSFitLinear()
is called.

IMPORTANT: if you want to perform  polynomial  fitting,  it  may  be  more
           convenient to use PolynomialFit() function. This function gives
           best  results  on  polynomial  problems  and  solves  numerical
           stability  issues  which  arise  when   you   fit   high-degree
           polynomials to your data.

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes two  important  improvements  of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  ! * multithreading support
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Speed-up provided by multithreading greatly depends  on  problem  size
  ! - only large problems (number of coefficients is more than 500) can be
  ! efficiently multithreaded.
  !
  ! Generally, commercial ALGLIB is several times faster than  open-source
  ! generic C edition, and many times faster than open-source C# edition.
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

INPUT PARAMETERS:
    Y       -   array[0..N-1] Function values in  N  points.
    FMatrix -   a table of basis functions values, array[0..N-1, 0..M-1].
                FMatrix[I,J] - value of J-th basis function in I-th point.
    CMatrix -   a table of constaints, array[0..K-1,0..M].
                I-th row of CMatrix corresponds to I-th linear constraint:
                CMatrix[I,0]*C[0] + ... + CMatrix[I,M-1]*C[M-1] = CMatrix[I,M]
    N       -   number of points used. N>=1.
    M       -   number of basis functions, M>=1.
    K       -   number of constraints, 0 <= K < M
                K=0 corresponds to absence of constraints.

OUTPUT PARAMETERS:
    Info    -   error code:
                * -4    internal SVD decomposition subroutine failed (very
                        rare and for degenerate systems only)
                * -3    either   too   many  constraints  (M   or   more),
                        degenerate  constraints   (some   constraints  are
                        repetead twice) or inconsistent  constraints  were
                        specified.
                *  1    task is solved
    C       -   decomposition coefficients, array[0..M-1]
    Rep     -   fitting report. Following fields are set:
                * R2                non-adjusted coefficient of determination
                                    (non-weighted)
                * RMSError          rms error on the (X,Y).
                * AvgError          average error on the (X,Y).
                * AvgRelError       average relative error on the non-zero Y
                * MaxError          maximum error
                                    NON-WEIGHTED ERRORS ARE CALCULATED

IMPORTANT:
    this subroitine doesn't calculate task's condition number for K<>0.

ERRORS IN PARAMETERS

This  solver  also  calculates different kinds of errors in parameters and
fills corresponding fields of report:
* Rep.CovPar        covariance matrix for parameters, array[K,K].
* Rep.ErrPar        errors in parameters, array[K],
                    errpar = sqrt(diag(CovPar))
* Rep.ErrCurve      vector of fit errors - standard deviations of empirical
                    best-fit curve from "ideal" best-fit curve built  with
                    infinite number of samples, array[N].
                    errcurve = sqrt(diag(F*CovPar*F')),
                    where F is functions matrix.
* Rep.Noise         vector of per-point estimates of noise, array[N]

IMPORTANT:  errors  in  parameters  are  calculated  without  taking  into
            account boundary/linear constraints! Presence  of  constraints
            changes distribution of errors, but there is no  easy  way  to
            account for constraints when you calculate covariance matrix.

NOTE:       noise in the data is estimated as follows:
            * for fitting without user-supplied  weights  all  points  are
              assumed to have same level of noise, which is estimated from
              the data
            * for fitting with user-supplied weights we assume that  noise
              level in I-th point is inversely proportional to Ith weight.
              Coefficient of proportionality is estimated from the data.

NOTE:       we apply small amount of regularization when we invert squared
            Jacobian and calculate covariance matrix. It  guarantees  that
            algorithm won't divide by zero  during  inversion,  but  skews
            error estimates a bit (fractional error is about 10^-9).

            However, we believe that this difference is insignificant  for
            all practical purposes except for the situation when you  want
            to compare ALGLIB results with "reference"  implementation  up
            to the last significant digit.

NOTE:       covariance matrix is estimated using  correction  for  degrees
            of freedom (covariances are divided by N-M instead of dividing
            by N).

  -- ALGLIB --
     Copyright 07.09.2009 by Bochkanov Sergey
*************************************************************************/
void lsfitlinearc(const real_1d_array &y, const real_2d_array &fmatrix, const real_2d_array &cmatrix, const ae_int_t n, const ae_int_t m, const ae_int_t k, ae_int_t &info, real_1d_array &c, lsfitreport &rep);
void smp_lsfitlinearc(const real_1d_array &y, const real_2d_array &fmatrix, const real_2d_array &cmatrix, const ae_int_t n, const ae_int_t m, const ae_int_t k, ae_int_t &info, real_1d_array &c, lsfitreport &rep);
void lsfitlinearc(const real_1d_array &y, const real_2d_array &fmatrix, const real_2d_array &cmatrix, ae_int_t &info, real_1d_array &c, lsfitreport &rep);
void smp_lsfitlinearc(const real_1d_array &y, const real_2d_array &fmatrix, const real_2d_array &cmatrix, ae_int_t &info, real_1d_array &c, lsfitreport &rep);


/*************************************************************************
Weighted nonlinear least squares fitting using function values only.

Combination of numerical differentiation and secant updates is used to
obtain function Jacobian.

Nonlinear task min(F(c)) is solved, where

    F(c) = (w[0]*(f(c,x[0])-y[0]))^2 + ... + (w[n-1]*(f(c,x[n-1])-y[n-1]))^2,

    * N is a number of points,
    * M is a dimension of a space points belong to,
    * K is a dimension of a space of parameters being fitted,
    * w is an N-dimensional vector of weight coefficients,
    * x is a set of N points, each of them is an M-dimensional vector,
    * c is a K-dimensional vector of parameters being fitted

This subroutine uses only f(c,x[i]).

INPUT PARAMETERS:
    X       -   array[0..N-1,0..M-1], points (one row = one point)
    Y       -   array[0..N-1], function values.
    W       -   weights, array[0..N-1]
    C       -   array[0..K-1], initial approximation to the solution,
    N       -   number of points, N>1
    M       -   dimension of space
    K       -   number of parameters being fitted
    DiffStep-   numerical differentiation step;
                should not be very small or large;
                large = loss of accuracy
                small = growth of round-off errors

OUTPUT PARAMETERS:
    State   -   structure which stores algorithm state

  -- ALGLIB --
     Copyright 18.10.2008 by Bochkanov Sergey
*************************************************************************/
void lsfitcreatewf(const real_2d_array &x, const real_1d_array &y, const real_1d_array &w, const real_1d_array &c, const ae_int_t n, const ae_int_t m, const ae_int_t k, const double diffstep, lsfitstate &state);
void lsfitcreatewf(const real_2d_array &x, const real_1d_array &y, const real_1d_array &w, const real_1d_array &c, const double diffstep, lsfitstate &state);


/*************************************************************************
Nonlinear least squares fitting using function values only.

Combination of numerical differentiation and secant updates is used to
obtain function Jacobian.

Nonlinear task min(F(c)) is solved, where

    F(c) = (f(c,x[0])-y[0])^2 + ... + (f(c,x[n-1])-y[n-1])^2,

    * N is a number of points,
    * M is a dimension of a space points belong to,
    * K is a dimension of a space of parameters being fitted,
    * w is an N-dimensional vector of weight coefficients,
    * x is a set of N points, each of them is an M-dimensional vector,
    * c is a K-dimensional vector of parameters being fitted

This subroutine uses only f(c,x[i]).

INPUT PARAMETERS:
    X       -   array[0..N-1,0..M-1], points (one row = one point)
    Y       -   array[0..N-1], function values.
    C       -   array[0..K-1], initial approximation to the solution,
    N       -   number of points, N>1
    M       -   dimension of space
    K       -   number of parameters being fitted
    DiffStep-   numerical differentiation step;
                should not be very small or large;
                large = loss of accuracy
                small = growth of round-off errors

OUTPUT PARAMETERS:
    State   -   structure which stores algorithm state

  -- ALGLIB --
     Copyright 18.10.2008 by Bochkanov Sergey
*************************************************************************/
void lsfitcreatef(const real_2d_array &x, const real_1d_array &y, const real_1d_array &c, const ae_int_t n, const ae_int_t m, const ae_int_t k, const double diffstep, lsfitstate &state);
void lsfitcreatef(const real_2d_array &x, const real_1d_array &y, const real_1d_array &c, const double diffstep, lsfitstate &state);


/*************************************************************************
Weighted nonlinear least squares fitting using gradient only.

Nonlinear task min(F(c)) is solved, where

    F(c) = (w[0]*(f(c,x[0])-y[0]))^2 + ... + (w[n-1]*(f(c,x[n-1])-y[n-1]))^2,

    * N is a number of points,
    * M is a dimension of a space points belong to,
    * K is a dimension of a space of parameters being fitted,
    * w is an N-dimensional vector of weight coefficients,
    * x is a set of N points, each of them is an M-dimensional vector,
    * c is a K-dimensional vector of parameters being fitted

This subroutine uses only f(c,x[i]) and its gradient.

INPUT PARAMETERS:
    X       -   array[0..N-1,0..M-1], points (one row = one point)
    Y       -   array[0..N-1], function values.
    W       -   weights, array[0..N-1]
    C       -   array[0..K-1], initial approximation to the solution,
    N       -   number of points, N>1
    M       -   dimension of space
    K       -   number of parameters being fitted
    CheapFG -   boolean flag, which is:
                * True  if both function and gradient calculation complexity
                        are less than O(M^2).  An improved  algorithm  can
                        be  used  which corresponds  to  FGJ  scheme  from
                        MINLM unit.
                * False otherwise.
                        Standard Jacibian-bases  Levenberg-Marquardt  algo
                        will be used (FJ scheme).

OUTPUT PARAMETERS:
    State   -   structure which stores algorithm state

See also:
    LSFitResults
    LSFitCreateFG (fitting without weights)
    LSFitCreateWFGH (fitting using Hessian)
    LSFitCreateFGH (fitting using Hessian, without weights)

  -- ALGLIB --
     Copyright 17.08.2009 by Bochkanov Sergey
*************************************************************************/
void lsfitcreatewfg(const real_2d_array &x, const real_1d_array &y, const real_1d_array &w, const real_1d_array &c, const ae_int_t n, const ae_int_t m, const ae_int_t k, const bool cheapfg, lsfitstate &state);
void lsfitcreatewfg(const real_2d_array &x, const real_1d_array &y, const real_1d_array &w, const real_1d_array &c, const bool cheapfg, lsfitstate &state);


/*************************************************************************
Nonlinear least squares fitting using gradient only, without individual
weights.

Nonlinear task min(F(c)) is solved, where

    F(c) = ((f(c,x[0])-y[0]))^2 + ... + ((f(c,x[n-1])-y[n-1]))^2,

    * N is a number of points,
    * M is a dimension of a space points belong to,
    * K is a dimension of a space of parameters being fitted,
    * x is a set of N points, each of them is an M-dimensional vector,
    * c is a K-dimensional vector of parameters being fitted

This subroutine uses only f(c,x[i]) and its gradient.

INPUT PARAMETERS:
    X       -   array[0..N-1,0..M-1], points (one row = one point)
    Y       -   array[0..N-1], function values.
    C       -   array[0..K-1], initial approximation to the solution,
    N       -   number of points, N>1
    M       -   dimension of space
    K       -   number of parameters being fitted
    CheapFG -   boolean flag, which is:
                * True  if both function and gradient calculation complexity
                        are less than O(M^2).  An improved  algorithm  can
                        be  used  which corresponds  to  FGJ  scheme  from
                        MINLM unit.
                * False otherwise.
                        Standard Jacibian-bases  Levenberg-Marquardt  algo
                        will be used (FJ scheme).

OUTPUT PARAMETERS:
    State   -   structure which stores algorithm state

  -- ALGLIB --
     Copyright 17.08.2009 by Bochkanov Sergey
*************************************************************************/
void lsfitcreatefg(const real_2d_array &x, const real_1d_array &y, const real_1d_array &c, const ae_int_t n, const ae_int_t m, const ae_int_t k, const bool cheapfg, lsfitstate &state);
void lsfitcreatefg(const real_2d_array &x, const real_1d_array &y, const real_1d_array &c, const bool cheapfg, lsfitstate &state);


/*************************************************************************
Weighted nonlinear least squares fitting using gradient/Hessian.

Nonlinear task min(F(c)) is solved, where

    F(c) = (w[0]*(f(c,x[0])-y[0]))^2 + ... + (w[n-1]*(f(c,x[n-1])-y[n-1]))^2,

    * N is a number of points,
    * M is a dimension of a space points belong to,
    * K is a dimension of a space of parameters being fitted,
    * w is an N-dimensional vector of weight coefficients,
    * x is a set of N points, each of them is an M-dimensional vector,
    * c is a K-dimensional vector of parameters being fitted

This subroutine uses f(c,x[i]), its gradient and its Hessian.

INPUT PARAMETERS:
    X       -   array[0..N-1,0..M-1], points (one row = one point)
    Y       -   array[0..N-1], function values.
    W       -   weights, array[0..N-1]
    C       -   array[0..K-1], initial approximation to the solution,
    N       -   number of points, N>1
    M       -   dimension of space
    K       -   number of parameters being fitted

OUTPUT PARAMETERS:
    State   -   structure which stores algorithm state

  -- ALGLIB --
     Copyright 17.08.2009 by Bochkanov Sergey
*************************************************************************/
void lsfitcreatewfgh(const real_2d_array &x, const real_1d_array &y, const real_1d_array &w, const real_1d_array &c, const ae_int_t n, const ae_int_t m, const ae_int_t k, lsfitstate &state);
void lsfitcreatewfgh(const real_2d_array &x, const real_1d_array &y, const real_1d_array &w, const real_1d_array &c, lsfitstate &state);


/*************************************************************************
Nonlinear least squares fitting using gradient/Hessian, without individial
weights.

Nonlinear task min(F(c)) is solved, where

    F(c) = ((f(c,x[0])-y[0]))^2 + ... + ((f(c,x[n-1])-y[n-1]))^2,

    * N is a number of points,
    * M is a dimension of a space points belong to,
    * K is a dimension of a space of parameters being fitted,
    * x is a set of N points, each of them is an M-dimensional vector,
    * c is a K-dimensional vector of parameters being fitted

This subroutine uses f(c,x[i]), its gradient and its Hessian.

INPUT PARAMETERS:
    X       -   array[0..N-1,0..M-1], points (one row = one point)
    Y       -   array[0..N-1], function values.
    C       -   array[0..K-1], initial approximation to the solution,
    N       -   number of points, N>1
    M       -   dimension of space
    K       -   number of parameters being fitted

OUTPUT PARAMETERS:
    State   -   structure which stores algorithm state


  -- ALGLIB --
     Copyright 17.08.2009 by Bochkanov Sergey
*************************************************************************/
void lsfitcreatefgh(const real_2d_array &x, const real_1d_array &y, const real_1d_array &c, const ae_int_t n, const ae_int_t m, const ae_int_t k, lsfitstate &state);
void lsfitcreatefgh(const real_2d_array &x, const real_1d_array &y, const real_1d_array &c, lsfitstate &state);


/*************************************************************************
Stopping conditions for nonlinear least squares fitting.

INPUT PARAMETERS:
    State   -   structure which stores algorithm state
    EpsF    -   stopping criterion. Algorithm stops if
                |F(k+1)-F(k)| <= EpsF*max{|F(k)|, |F(k+1)|, 1}
    EpsX    -   >=0
                The subroutine finishes its work if  on  k+1-th  iteration
                the condition |v|<=EpsX is fulfilled, where:
                * |.| means Euclidian norm
                * v - scaled step vector, v[i]=dx[i]/s[i]
                * dx - ste pvector, dx=X(k+1)-X(k)
                * s - scaling coefficients set by LSFitSetScale()
    MaxIts  -   maximum number of iterations. If MaxIts=0, the  number  of
                iterations   is    unlimited.   Only   Levenberg-Marquardt
                iterations  are  counted  (L-BFGS/CG  iterations  are  NOT
                counted because their cost is very low compared to that of
                LM).

NOTE

Passing EpsF=0, EpsX=0 and MaxIts=0 (simultaneously) will lead to automatic
stopping criterion selection (according to the scheme used by MINLM unit).


  -- ALGLIB --
     Copyright 17.08.2009 by Bochkanov Sergey
*************************************************************************/
void lsfitsetcond(const lsfitstate &state, const double epsf, const double epsx, const ae_int_t maxits);


/*************************************************************************
This function sets maximum step length

INPUT PARAMETERS:
    State   -   structure which stores algorithm state
    StpMax  -   maximum step length, >=0. Set StpMax to 0.0,  if you don't
                want to limit step length.

Use this subroutine when you optimize target function which contains exp()
or  other  fast  growing  functions,  and optimization algorithm makes too
large  steps  which  leads  to overflow. This function allows us to reject
steps  that  are  too  large  (and  therefore  expose  us  to the possible
overflow) without actually calculating function value at the x+stp*d.

NOTE: non-zero StpMax leads to moderate  performance  degradation  because
intermediate  step  of  preconditioned L-BFGS optimization is incompatible
with limits on step size.

  -- ALGLIB --
     Copyright 02.04.2010 by Bochkanov Sergey
*************************************************************************/
void lsfitsetstpmax(const lsfitstate &state, const double stpmax);


/*************************************************************************
This function turns on/off reporting.

INPUT PARAMETERS:
    State   -   structure which stores algorithm state
    NeedXRep-   whether iteration reports are needed or not

When reports are needed, State.C (current parameters) and State.F (current
value of fitting function) are reported.


  -- ALGLIB --
     Copyright 15.08.2010 by Bochkanov Sergey
*************************************************************************/
void lsfitsetxrep(const lsfitstate &state, const bool needxrep);


/*************************************************************************
This function sets scaling coefficients for underlying optimizer.

ALGLIB optimizers use scaling matrices to test stopping  conditions  (step
size and gradient are scaled before comparison with tolerances).  Scale of
the I-th variable is a translation invariant measure of:
a) "how large" the variable is
b) how large the step should be to make significant changes in the function

Generally, scale is NOT considered to be a form of preconditioner.  But LM
optimizer is unique in that it uses scaling matrix both  in  the  stopping
condition tests and as Marquardt damping factor.

Proper scaling is very important for the algorithm performance. It is less
important for the quality of results, but still has some influence (it  is
easier  to  converge  when  variables  are  properly  scaled, so premature
stopping is possible when very badly scalled variables are  combined  with
relaxed stopping conditions).

INPUT PARAMETERS:
    State   -   structure stores algorithm state
    S       -   array[N], non-zero scaling coefficients
                S[i] may be negative, sign doesn't matter.

  -- ALGLIB --
     Copyright 14.01.2011 by Bochkanov Sergey
*************************************************************************/
void lsfitsetscale(const lsfitstate &state, const real_1d_array &s);


/*************************************************************************
This function sets boundary constraints for underlying optimizer

Boundary constraints are inactive by default (after initial creation).
They are preserved until explicitly turned off with another SetBC() call.

INPUT PARAMETERS:
    State   -   structure stores algorithm state
    BndL    -   lower bounds, array[K].
                If some (all) variables are unbounded, you may specify
                very small number or -INF (latter is recommended because
                it will allow solver to use better algorithm).
    BndU    -   upper bounds, array[K].
                If some (all) variables are unbounded, you may specify
                very large number or +INF (latter is recommended because
                it will allow solver to use better algorithm).

NOTE 1: it is possible to specify BndL[i]=BndU[i]. In this case I-th
variable will be "frozen" at X[i]=BndL[i]=BndU[i].

NOTE 2: unlike other constrained optimization algorithms, this solver  has
following useful properties:
* bound constraints are always satisfied exactly
* function is evaluated only INSIDE area specified by bound constraints

  -- ALGLIB --
     Copyright 14.01.2011 by Bochkanov Sergey
*************************************************************************/
void lsfitsetbc(const lsfitstate &state, const real_1d_array &bndl, const real_1d_array &bndu);


/*************************************************************************
This function provides reverse communication interface
Reverse communication interface is not documented or recommended to use.
See below for functions which provide better documented API
*************************************************************************/
bool lsfititeration(const lsfitstate &state);


/*************************************************************************
This family of functions is used to launcn iterations of nonlinear fitter

These functions accept following parameters:
    state   -   algorithm state
    func    -   callback which calculates function (or merit function)
                value func at given point x
    grad    -   callback which calculates function (or merit function)
                value func and gradient grad at given point x
    hess    -   callback which calculates function (or merit function)
                value func, gradient grad and Hessian hess at given point x
    rep     -   optional callback which is called after each iteration
                can be NULL
    ptr     -   optional pointer which is passed to func/grad/hess/jac/rep
                can be NULL

NOTES:

1. this algorithm is somewhat unusual because it works with  parameterized
   function f(C,X), where X is a function argument (we  have  many  points
   which are characterized by different  argument  values),  and  C  is  a
   parameter to fit.

   For example, if we want to do linear fit by f(c0,c1,x) = c0*x+c1,  then
   x will be argument, and {c0,c1} will be parameters.

   It is important to understand that this algorithm finds minimum in  the
   space of function PARAMETERS (not arguments), so it  needs  derivatives
   of f() with respect to C, not X.

   In the example above it will need f=c0*x+c1 and {df/dc0,df/dc1} = {x,1}
   instead of {df/dx} = {c0}.

2. Callback functions accept C as the first parameter, and X as the second

3. If  state  was  created  with  LSFitCreateFG(),  algorithm  needs  just
   function   and   its   gradient,   but   if   state   was  created with
   LSFitCreateFGH(), algorithm will need function, gradient and Hessian.

   According  to  the  said  above,  there  ase  several  versions of this
   function, which accept different sets of callbacks.

   This flexibility opens way to subtle errors - you may create state with
   LSFitCreateFGH() (optimization using Hessian), but call function  which
   does not accept Hessian. So when algorithm will request Hessian,  there
   will be no callback to call. In this case exception will be thrown.

   Be careful to avoid such errors because there is no way to find them at
   compile time - you can see them at runtime only.

  -- ALGLIB --
     Copyright 17.08.2009 by Bochkanov Sergey

*************************************************************************/
void lsfitfit(lsfitstate &state,
    void (*func)(const real_1d_array &c, const real_1d_array &x, double &func, void *ptr),
    void  (*rep)(const real_1d_array &c, double func, void *ptr) = NULL,
    void *ptr = NULL);
void lsfitfit(lsfitstate &state,
    void (*func)(const real_1d_array &c, const real_1d_array &x, double &func, void *ptr),
    void (*grad)(const real_1d_array &c, const real_1d_array &x, double &func, real_1d_array &grad, void *ptr),
    void  (*rep)(const real_1d_array &c, double func, void *ptr) = NULL,
    void *ptr = NULL);
void lsfitfit(lsfitstate &state,
    void (*func)(const real_1d_array &c, const real_1d_array &x, double &func, void *ptr),
    void (*grad)(const real_1d_array &c, const real_1d_array &x, double &func, real_1d_array &grad, void *ptr),
    void (*hess)(const real_1d_array &c, const real_1d_array &x, double &func, real_1d_array &grad, real_2d_array &hess, void *ptr),
    void  (*rep)(const real_1d_array &c, double func, void *ptr) = NULL,
    void *ptr = NULL);


/*************************************************************************
Nonlinear least squares fitting results.

Called after return from LSFitFit().

INPUT PARAMETERS:
    State   -   algorithm state

OUTPUT PARAMETERS:
    Info    -   completion code:
                    * -7    gradient verification failed.
                            See LSFitSetGradientCheck() for more information.
                    *  1    relative function improvement is no more than
                            EpsF.
                    *  2    relative step is no more than EpsX.
                    *  4    gradient norm is no more than EpsG
                    *  5    MaxIts steps was taken
                    *  7    stopping conditions are too stringent,
                            further improvement is impossible
    C       -   array[0..K-1], solution
    Rep     -   optimization report. On success following fields are set:
                * R2                non-adjusted coefficient of determination
                                    (non-weighted)
                * RMSError          rms error on the (X,Y).
                * AvgError          average error on the (X,Y).
                * AvgRelError       average relative error on the non-zero Y
                * MaxError          maximum error
                                    NON-WEIGHTED ERRORS ARE CALCULATED
                * WRMSError         weighted rms error on the (X,Y).

ERRORS IN PARAMETERS

This  solver  also  calculates different kinds of errors in parameters and
fills corresponding fields of report:
* Rep.CovPar        covariance matrix for parameters, array[K,K].
* Rep.ErrPar        errors in parameters, array[K],
                    errpar = sqrt(diag(CovPar))
* Rep.ErrCurve      vector of fit errors - standard deviations of empirical
                    best-fit curve from "ideal" best-fit curve built  with
                    infinite number of samples, array[N].
                    errcurve = sqrt(diag(J*CovPar*J')),
                    where J is Jacobian matrix.
* Rep.Noise         vector of per-point estimates of noise, array[N]

IMPORTANT:  errors  in  parameters  are  calculated  without  taking  into
            account boundary/linear constraints! Presence  of  constraints
            changes distribution of errors, but there is no  easy  way  to
            account for constraints when you calculate covariance matrix.

NOTE:       noise in the data is estimated as follows:
            * for fitting without user-supplied  weights  all  points  are
              assumed to have same level of noise, which is estimated from
              the data
            * for fitting with user-supplied weights we assume that  noise
              level in I-th point is inversely proportional to Ith weight.
              Coefficient of proportionality is estimated from the data.

NOTE:       we apply small amount of regularization when we invert squared
            Jacobian and calculate covariance matrix. It  guarantees  that
            algorithm won't divide by zero  during  inversion,  but  skews
            error estimates a bit (fractional error is about 10^-9).

            However, we believe that this difference is insignificant  for
            all practical purposes except for the situation when you  want
            to compare ALGLIB results with "reference"  implementation  up
            to the last significant digit.

NOTE:       covariance matrix is estimated using  correction  for  degrees
            of freedom (covariances are divided by N-M instead of dividing
            by N).

  -- ALGLIB --
     Copyright 17.08.2009 by Bochkanov Sergey
*************************************************************************/
void lsfitresults(const lsfitstate &state, ae_int_t &info, real_1d_array &c, lsfitreport &rep);


/*************************************************************************
This  subroutine  turns  on  verification  of  the  user-supplied analytic
gradient:
* user calls this subroutine before fitting begins
* LSFitFit() is called
* prior to actual fitting, for  each  point  in  data  set  X_i  and  each
  component  of  parameters  being  fited C_j algorithm performs following
  steps:
  * two trial steps are made to C_j-TestStep*S[j] and C_j+TestStep*S[j],
    where C_j is j-th parameter and S[j] is a scale of j-th parameter
  * if needed, steps are bounded with respect to constraints on C[]
  * F(X_i|C) is evaluated at these trial points
  * we perform one more evaluation in the middle point of the interval
  * we  build  cubic  model using function values and derivatives at trial
    points and we compare its prediction with actual value in  the  middle
    point
  * in case difference between prediction and actual value is higher  than
    some predetermined threshold, algorithm stops with completion code -7;
    Rep.VarIdx is set to index of the parameter with incorrect derivative.
* after verification is over, algorithm proceeds to the actual optimization.

NOTE 1: verification needs N*K (points count * parameters count)  gradient
        evaluations. It is very costly and you should use it only for  low
        dimensional  problems,  when  you  want  to  be  sure  that you've
        correctly calculated analytic derivatives. You should not  use  it
        in the production code  (unless  you  want  to  check  derivatives
        provided by some third party).

NOTE 2: you  should  carefully  choose  TestStep. Value which is too large
        (so large that function behaviour is significantly non-cubic) will
        lead to false alarms. You may use  different  step  for  different
        parameters by means of setting scale with LSFitSetScale().

NOTE 3: this function may lead to false positives. In case it reports that
        I-th  derivative was calculated incorrectly, you may decrease test
        step  and  try  one  more  time  - maybe your function changes too
        sharply  and  your  step  is  too  large for such rapidly chanding
        function.

NOTE 4: this function works only for optimizers created with LSFitCreateWFG()
        or LSFitCreateFG() constructors.

INPUT PARAMETERS:
    State       -   structure used to store algorithm state
    TestStep    -   verification step:
                    * TestStep=0 turns verification off
                    * TestStep>0 activates verification

  -- ALGLIB --
     Copyright 15.06.2012 by Bochkanov Sergey
*************************************************************************/
void lsfitsetgradientcheck(const lsfitstate &state, const double teststep);

/*************************************************************************
This function  builds  non-periodic 2-dimensional parametric spline  which
starts at (X[0],Y[0]) and ends at (X[N-1],Y[N-1]).

INPUT PARAMETERS:
    XY  -   points, array[0..N-1,0..1].
            XY[I,0:1] corresponds to the Ith point.
            Order of points is important!
    N   -   points count, N>=5 for Akima splines, N>=2 for other types  of
            splines.
    ST  -   spline type:
            * 0     Akima spline
            * 1     parabolically terminated Catmull-Rom spline (Tension=0)
            * 2     parabolically terminated cubic spline
    PT  -   parameterization type:
            * 0     uniform
            * 1     chord length
            * 2     centripetal

OUTPUT PARAMETERS:
    P   -   parametric spline interpolant


NOTES:
* this function  assumes  that  there all consequent points  are distinct.
  I.e. (x0,y0)<>(x1,y1),  (x1,y1)<>(x2,y2),  (x2,y2)<>(x3,y3)  and  so on.
  However, non-consequent points may coincide, i.e. we can  have  (x0,y0)=
  =(x2,y2).

  -- ALGLIB PROJECT --
     Copyright 28.05.2010 by Bochkanov Sergey
*************************************************************************/
void pspline2build(const real_2d_array &xy, const ae_int_t n, const ae_int_t st, const ae_int_t pt, pspline2interpolant &p);


/*************************************************************************
This function  builds  non-periodic 3-dimensional parametric spline  which
starts at (X[0],Y[0],Z[0]) and ends at (X[N-1],Y[N-1],Z[N-1]).

Same as PSpline2Build() function, but for 3D, so we  won't  duplicate  its
description here.

  -- ALGLIB PROJECT --
     Copyright 28.05.2010 by Bochkanov Sergey
*************************************************************************/
void pspline3build(const real_2d_array &xy, const ae_int_t n, const ae_int_t st, const ae_int_t pt, pspline3interpolant &p);


/*************************************************************************
This  function  builds  periodic  2-dimensional  parametric  spline  which
starts at (X[0],Y[0]), goes through all points to (X[N-1],Y[N-1]) and then
back to (X[0],Y[0]).

INPUT PARAMETERS:
    XY  -   points, array[0..N-1,0..1].
            XY[I,0:1] corresponds to the Ith point.
            XY[N-1,0:1] must be different from XY[0,0:1].
            Order of points is important!
    N   -   points count, N>=3 for other types of splines.
    ST  -   spline type:
            * 1     Catmull-Rom spline (Tension=0) with cyclic boundary conditions
            * 2     cubic spline with cyclic boundary conditions
    PT  -   parameterization type:
            * 0     uniform
            * 1     chord length
            * 2     centripetal

OUTPUT PARAMETERS:
    P   -   parametric spline interpolant


NOTES:
* this function  assumes  that there all consequent points  are  distinct.
  I.e. (x0,y0)<>(x1,y1), (x1,y1)<>(x2,y2),  (x2,y2)<>(x3,y3)  and  so  on.
  However, non-consequent points may coincide, i.e. we can  have  (x0,y0)=
  =(x2,y2).
* last point of sequence is NOT equal to the first  point.  You  shouldn't
  make curve "explicitly periodic" by making them equal.

  -- ALGLIB PROJECT --
     Copyright 28.05.2010 by Bochkanov Sergey
*************************************************************************/
void pspline2buildperiodic(const real_2d_array &xy, const ae_int_t n, const ae_int_t st, const ae_int_t pt, pspline2interpolant &p);


/*************************************************************************
This  function  builds  periodic  3-dimensional  parametric  spline  which
starts at (X[0],Y[0],Z[0]), goes through all points to (X[N-1],Y[N-1],Z[N-1])
and then back to (X[0],Y[0],Z[0]).

Same as PSpline2Build() function, but for 3D, so we  won't  duplicate  its
description here.

  -- ALGLIB PROJECT --
     Copyright 28.05.2010 by Bochkanov Sergey
*************************************************************************/
void pspline3buildperiodic(const real_2d_array &xy, const ae_int_t n, const ae_int_t st, const ae_int_t pt, pspline3interpolant &p);


/*************************************************************************
This function returns vector of parameter values correspoding to points.

I.e. for P created from (X[0],Y[0])...(X[N-1],Y[N-1]) and U=TValues(P)  we
have
    (X[0],Y[0]) = PSpline2Calc(P,U[0]),
    (X[1],Y[1]) = PSpline2Calc(P,U[1]),
    (X[2],Y[2]) = PSpline2Calc(P,U[2]),
    ...

INPUT PARAMETERS:
    P   -   parametric spline interpolant

OUTPUT PARAMETERS:
    N   -   array size
    T   -   array[0..N-1]


NOTES:
* for non-periodic splines U[0]=0, U[0]<U[1]<...<U[N-1], U[N-1]=1
* for periodic splines     U[0]=0, U[0]<U[1]<...<U[N-1], U[N-1]<1

  -- ALGLIB PROJECT --
     Copyright 28.05.2010 by Bochkanov Sergey
*************************************************************************/
void pspline2parametervalues(const pspline2interpolant &p, ae_int_t &n, real_1d_array &t);


/*************************************************************************
This function returns vector of parameter values correspoding to points.

Same as PSpline2ParameterValues(), but for 3D.

  -- ALGLIB PROJECT --
     Copyright 28.05.2010 by Bochkanov Sergey
*************************************************************************/
void pspline3parametervalues(const pspline3interpolant &p, ae_int_t &n, real_1d_array &t);


/*************************************************************************
This function  calculates  the value of the parametric spline for a  given
value of parameter T

INPUT PARAMETERS:
    P   -   parametric spline interpolant
    T   -   point:
            * T in [0,1] corresponds to interval spanned by points
            * for non-periodic splines T<0 (or T>1) correspond to parts of
              the curve before the first (after the last) point
            * for periodic splines T<0 (or T>1) are projected  into  [0,1]
              by making T=T-floor(T).

OUTPUT PARAMETERS:
    X   -   X-position
    Y   -   Y-position


  -- ALGLIB PROJECT --
     Copyright 28.05.2010 by Bochkanov Sergey
*************************************************************************/
void pspline2calc(const pspline2interpolant &p, const double t, double &x, double &y);


/*************************************************************************
This function  calculates  the value of the parametric spline for a  given
value of parameter T.

INPUT PARAMETERS:
    P   -   parametric spline interpolant
    T   -   point:
            * T in [0,1] corresponds to interval spanned by points
            * for non-periodic splines T<0 (or T>1) correspond to parts of
              the curve before the first (after the last) point
            * for periodic splines T<0 (or T>1) are projected  into  [0,1]
              by making T=T-floor(T).

OUTPUT PARAMETERS:
    X   -   X-position
    Y   -   Y-position
    Z   -   Z-position


  -- ALGLIB PROJECT --
     Copyright 28.05.2010 by Bochkanov Sergey
*************************************************************************/
void pspline3calc(const pspline3interpolant &p, const double t, double &x, double &y, double &z);


/*************************************************************************
This function  calculates  tangent vector for a given value of parameter T

INPUT PARAMETERS:
    P   -   parametric spline interpolant
    T   -   point:
            * T in [0,1] corresponds to interval spanned by points
            * for non-periodic splines T<0 (or T>1) correspond to parts of
              the curve before the first (after the last) point
            * for periodic splines T<0 (or T>1) are projected  into  [0,1]
              by making T=T-floor(T).

OUTPUT PARAMETERS:
    X    -   X-component of tangent vector (normalized)
    Y    -   Y-component of tangent vector (normalized)

NOTE:
    X^2+Y^2 is either 1 (for non-zero tangent vector) or 0.


  -- ALGLIB PROJECT --
     Copyright 28.05.2010 by Bochkanov Sergey
*************************************************************************/
void pspline2tangent(const pspline2interpolant &p, const double t, double &x, double &y);


/*************************************************************************
This function  calculates  tangent vector for a given value of parameter T

INPUT PARAMETERS:
    P   -   parametric spline interpolant
    T   -   point:
            * T in [0,1] corresponds to interval spanned by points
            * for non-periodic splines T<0 (or T>1) correspond to parts of
              the curve before the first (after the last) point
            * for periodic splines T<0 (or T>1) are projected  into  [0,1]
              by making T=T-floor(T).

OUTPUT PARAMETERS:
    X    -   X-component of tangent vector (normalized)
    Y    -   Y-component of tangent vector (normalized)
    Z    -   Z-component of tangent vector (normalized)

NOTE:
    X^2+Y^2+Z^2 is either 1 (for non-zero tangent vector) or 0.


  -- ALGLIB PROJECT --
     Copyright 28.05.2010 by Bochkanov Sergey
*************************************************************************/
void pspline3tangent(const pspline3interpolant &p, const double t, double &x, double &y, double &z);


/*************************************************************************
This function calculates derivative, i.e. it returns (dX/dT,dY/dT).

INPUT PARAMETERS:
    P   -   parametric spline interpolant
    T   -   point:
            * T in [0,1] corresponds to interval spanned by points
            * for non-periodic splines T<0 (or T>1) correspond to parts of
              the curve before the first (after the last) point
            * for periodic splines T<0 (or T>1) are projected  into  [0,1]
              by making T=T-floor(T).

OUTPUT PARAMETERS:
    X   -   X-value
    DX  -   X-derivative
    Y   -   Y-value
    DY  -   Y-derivative


  -- ALGLIB PROJECT --
     Copyright 28.05.2010 by Bochkanov Sergey
*************************************************************************/
void pspline2diff(const pspline2interpolant &p, const double t, double &x, double &dx, double &y, double &dy);


/*************************************************************************
This function calculates derivative, i.e. it returns (dX/dT,dY/dT,dZ/dT).

INPUT PARAMETERS:
    P   -   parametric spline interpolant
    T   -   point:
            * T in [0,1] corresponds to interval spanned by points
            * for non-periodic splines T<0 (or T>1) correspond to parts of
              the curve before the first (after the last) point
            * for periodic splines T<0 (or T>1) are projected  into  [0,1]
              by making T=T-floor(T).

OUTPUT PARAMETERS:
    X   -   X-value
    DX  -   X-derivative
    Y   -   Y-value
    DY  -   Y-derivative
    Z   -   Z-value
    DZ  -   Z-derivative


  -- ALGLIB PROJECT --
     Copyright 28.05.2010 by Bochkanov Sergey
*************************************************************************/
void pspline3diff(const pspline3interpolant &p, const double t, double &x, double &dx, double &y, double &dy, double &z, double &dz);


/*************************************************************************
This function calculates first and second derivative with respect to T.

INPUT PARAMETERS:
    P   -   parametric spline interpolant
    T   -   point:
            * T in [0,1] corresponds to interval spanned by points
            * for non-periodic splines T<0 (or T>1) correspond to parts of
              the curve before the first (after the last) point
            * for periodic splines T<0 (or T>1) are projected  into  [0,1]
              by making T=T-floor(T).

OUTPUT PARAMETERS:
    X   -   X-value
    DX  -   derivative
    D2X -   second derivative
    Y   -   Y-value
    DY  -   derivative
    D2Y -   second derivative


  -- ALGLIB PROJECT --
     Copyright 28.05.2010 by Bochkanov Sergey
*************************************************************************/
void pspline2diff2(const pspline2interpolant &p, const double t, double &x, double &dx, double &d2x, double &y, double &dy, double &d2y);


/*************************************************************************
This function calculates first and second derivative with respect to T.

INPUT PARAMETERS:
    P   -   parametric spline interpolant
    T   -   point:
            * T in [0,1] corresponds to interval spanned by points
            * for non-periodic splines T<0 (or T>1) correspond to parts of
              the curve before the first (after the last) point
            * for periodic splines T<0 (or T>1) are projected  into  [0,1]
              by making T=T-floor(T).

OUTPUT PARAMETERS:
    X   -   X-value
    DX  -   derivative
    D2X -   second derivative
    Y   -   Y-value
    DY  -   derivative
    D2Y -   second derivative
    Z   -   Z-value
    DZ  -   derivative
    D2Z -   second derivative


  -- ALGLIB PROJECT --
     Copyright 28.05.2010 by Bochkanov Sergey
*************************************************************************/
void pspline3diff2(const pspline3interpolant &p, const double t, double &x, double &dx, double &d2x, double &y, double &dy, double &d2y, double &z, double &dz, double &d2z);


/*************************************************************************
This function  calculates  arc length, i.e. length of  curve  between  t=a
and t=b.

INPUT PARAMETERS:
    P   -   parametric spline interpolant
    A,B -   parameter values corresponding to arc ends:
            * B>A will result in positive length returned
            * B<A will result in negative length returned

RESULT:
    length of arc starting at T=A and ending at T=B.


  -- ALGLIB PROJECT --
     Copyright 30.05.2010 by Bochkanov Sergey
*************************************************************************/
double pspline2arclength(const pspline2interpolant &p, const double a, const double b);


/*************************************************************************
This function  calculates  arc length, i.e. length of  curve  between  t=a
and t=b.

INPUT PARAMETERS:
    P   -   parametric spline interpolant
    A,B -   parameter values corresponding to arc ends:
            * B>A will result in positive length returned
            * B<A will result in negative length returned

RESULT:
    length of arc starting at T=A and ending at T=B.


  -- ALGLIB PROJECT --
     Copyright 30.05.2010 by Bochkanov Sergey
*************************************************************************/
double pspline3arclength(const pspline3interpolant &p, const double a, const double b);


/*************************************************************************
This  subroutine fits piecewise linear curve to points with Ramer-Douglas-
Peucker algorithm. This  function  performs PARAMETRIC fit, i.e. it can be
used to fit curves like circles.

On  input  it  accepts dataset which describes parametric multidimensional
curve X(t), with X being vector, and t taking values in [0,N), where N  is
a number of points in dataset. As result, it returns reduced  dataset  X2,
which can be used to build  parametric  curve  X2(t),  which  approximates
X(t) with desired precision (or has specified number of sections).


INPUT PARAMETERS:
    X       -   array of multidimensional points:
                * at least N elements, leading N elements are used if more
                  than N elements were specified
                * order of points is IMPORTANT because  it  is  parametric
                  fit
                * each row of array is one point which has D coordinates
    N       -   number of elements in X
    D       -   number of dimensions (elements per row of X)
    StopM   -   stopping condition - desired number of sections:
                * at most M sections are generated by this function
                * less than M sections can be generated if we have N<M
                  (or some X are non-distinct).
                * zero StopM means that algorithm does not stop after
                  achieving some pre-specified section count
    StopEps -   stopping condition - desired precision:
                * algorithm stops after error in each section is at most Eps
                * zero Eps means that algorithm does not stop after
                  achieving some pre-specified precision

OUTPUT PARAMETERS:
    X2      -   array of corner points for piecewise approximation,
                has length NSections+1 or zero (for NSections=0).
    Idx2    -   array of indexes (parameter values):
                * has length NSections+1 or zero (for NSections=0).
                * each element of Idx2 corresponds to same-numbered
                  element of X2
                * each element of Idx2 is index of  corresponding  element
                  of X2 at original array X, i.e. I-th  row  of  X2  is
                  Idx2[I]-th row of X.
                * elements of Idx2 can be treated as parameter values
                  which should be used when building new parametric curve
                * Idx2[0]=0, Idx2[NSections]=N-1
    NSections-  number of sections found by algorithm, NSections<=M,
                NSections can be zero for degenerate datasets
                (N<=1 or all X[] are non-distinct).

NOTE: algorithm stops after:
      a) dividing curve into StopM sections
      b) achieving required precision StopEps
      c) dividing curve into N-1 sections
      If both StopM and StopEps are non-zero, algorithm is stopped by  the
      FIRST criterion which is satisfied. In case both StopM  and  StopEps
      are zero, algorithm stops because of (c).

  -- ALGLIB --
     Copyright 02.10.2014 by Bochkanov Sergey
*************************************************************************/
void parametricrdpfixed(const real_2d_array &x, const ae_int_t n, const ae_int_t d, const ae_int_t stopm, const double stopeps, real_2d_array &x2, integer_1d_array &idx2, ae_int_t &nsections);

/*************************************************************************
This function serializes data structure to string.

Important properties of s_out:
* it contains alphanumeric characters, dots, underscores, minus signs
* these symbols are grouped into words, which are separated by spaces
  and Windows-style (CR+LF) newlines
* although  serializer  uses  spaces and CR+LF as separators, you can 
  replace any separator character by arbitrary combination of spaces,
  tabs, Windows or Unix newlines. It allows flexible reformatting  of
  the  string  in  case you want to include it into text or XML file. 
  But you should not insert separators into the middle of the "words"
  nor you should change case of letters.
* s_out can be freely moved between 32-bit and 64-bit systems, little
  and big endian machines, and so on. You can serialize structure  on
  32-bit machine and unserialize it on 64-bit one (or vice versa), or
  serialize  it  on  SPARC  and  unserialize  on  x86.  You  can also 
  serialize  it  in  C++ version of ALGLIB and unserialize in C# one, 
  and vice versa.
*************************************************************************/
void rbfserialize(rbfmodel &obj, std::string &s_out);


/*************************************************************************
This function unserializes data structure from string.
*************************************************************************/
void rbfunserialize(std::string &s_in, rbfmodel &obj);


/*************************************************************************
This function creates RBF  model  for  a  scalar (NY=1)  or  vector (NY>1)
function in a NX-dimensional space (NX=2 or NX=3).

Newly created model is empty. It can be used for interpolation right after
creation, but it just returns zeros. You have to add points to the  model,
tune interpolation settings, and then  call  model  construction  function
RBFBuildModel() which will update model according to your specification.

USAGE:
1. User creates model with RBFCreate()
2. User adds dataset with RBFSetPoints() (points do NOT have to  be  on  a
   regular grid)
3. (OPTIONAL) User chooses polynomial term by calling:
   * RBFLinTerm() to set linear term
   * RBFConstTerm() to set constant term
   * RBFZeroTerm() to set zero term
   By default, linear term is used.
4. User chooses specific RBF algorithm to use: either QNN (RBFSetAlgoQNN)
   or ML (RBFSetAlgoMultiLayer).
5. User calls RBFBuildModel() function which rebuilds model  according  to
   the specification
6. User may call RBFCalc() to calculate model value at the specified point,
   RBFGridCalc() to  calculate   model  values at the points of the regular
   grid. User may extract model coefficients with RBFUnpack() call.

INPUT PARAMETERS:
    NX      -   dimension of the space, NX=2 or NX=3
    NY      -   function dimension, NY>=1

OUTPUT PARAMETERS:
    S       -   RBF model (initially equals to zero)

NOTE 1: memory requirements. RBF models require amount of memory  which is
        proportional  to  the  number  of data points. Memory is allocated
        during model construction, but most of this memory is freed  after
        model coefficients are calculated.

        Some approximate estimates for N centers with default settings are
        given below:
        * about 250*N*(sizeof(double)+2*sizeof(int)) bytes  of  memory  is
          needed during model construction stage.
        * about 15*N*sizeof(double) bytes is needed after model is built.
        For example, for N=100000 we may need 0.6 GB of memory  to  build
        model, but just about 0.012 GB to store it.

  -- ALGLIB --
     Copyright 13.12.2011 by Bochkanov Sergey
*************************************************************************/
void rbfcreate(const ae_int_t nx, const ae_int_t ny, rbfmodel &s);


/*************************************************************************
This function adds dataset.

This function overrides results of the previous calls, i.e. multiple calls
of this function will result in only the last set being added.

INPUT PARAMETERS:
    S       -   RBF model, initialized by RBFCreate() call.
    XY      -   points, array[N,NX+NY]. One row corresponds to  one  point
                in the dataset. First NX elements  are  coordinates,  next
                NY elements are function values. Array may  be larger than
                specific,  in  this  case  only leading [N,NX+NY] elements
                will be used.
    N       -   number of points in the dataset

After you've added dataset and (optionally) tuned algorithm  settings  you
should call RBFBuildModel() in order to build a model for you.

NOTE: this   function  has   some   serialization-related  subtleties.  We
      recommend you to study serialization examples from ALGLIB  Reference
      Manual if you want to perform serialization of your models.


  -- ALGLIB --
     Copyright 13.12.2011 by Bochkanov Sergey
*************************************************************************/
void rbfsetpoints(const rbfmodel &s, const real_2d_array &xy, const ae_int_t n);
void rbfsetpoints(const rbfmodel &s, const real_2d_array &xy);


/*************************************************************************
This  function  sets  RBF interpolation algorithm. ALGLIB supports several
RBF algorithms with different properties.

This algorithm is called RBF-QNN and  it  is  good  for  point  sets  with
following properties:
a) all points are distinct
b) all points are well separated.
c) points  distribution  is  approximately  uniform.  There is no "contour
   lines", clusters of points, or other small-scale structures.

Algorithm description:
1) interpolation centers are allocated to data points
2) interpolation radii are calculated as distances to the  nearest centers
   times Q coefficient (where Q is a value from [0.75,1.50]).
3) after  performing (2) radii are transformed in order to avoid situation
   when single outlier has very large radius and  influences  many  points
   across all dataset. Transformation has following form:
       new_r[i] = min(r[i],Z*median(r[]))
   where r[i] is I-th radius, median()  is a median  radius across  entire
   dataset, Z is user-specified value which controls amount  of  deviation
   from median radius.

When (a) is violated,  we  will  be unable to build RBF model. When (b) or
(c) are violated, model will be built, but interpolation quality  will  be
low. See http://www.alglib.net/interpolation/ for more information on this
subject.

This algorithm is used by default.

Additional Q parameter controls smoothness properties of the RBF basis:
* Q<0.75 will give perfectly conditioned basis,  but  terrible  smoothness
  properties (RBF interpolant will have sharp peaks around function values)
* Q around 1.0 gives good balance between smoothness and condition number
* Q>1.5 will lead to badly conditioned systems and slow convergence of the
  underlying linear solver (although smoothness will be very good)
* Q>2.0 will effectively make optimizer useless because it won't  converge
  within reasonable amount of iterations. It is possible to set such large
  Q, but it is advised not to do so.

INPUT PARAMETERS:
    S       -   RBF model, initialized by RBFCreate() call
    Q       -   Q parameter, Q>0, recommended value - 1.0
    Z       -   Z parameter, Z>0, recommended value - 5.0

NOTE: this   function  has   some   serialization-related  subtleties.  We
      recommend you to study serialization examples from ALGLIB  Reference
      Manual if you want to perform serialization of your models.


  -- ALGLIB --
     Copyright 13.12.2011 by Bochkanov Sergey
*************************************************************************/
void rbfsetalgoqnn(const rbfmodel &s, const double q, const double z);
void rbfsetalgoqnn(const rbfmodel &s);


/*************************************************************************
This  function  sets  RBF interpolation algorithm. ALGLIB supports several
RBF algorithms with different properties.

This  algorithm is called RBF-ML. It builds  multilayer  RBF  model,  i.e.
model with subsequently decreasing  radii,  which  allows  us  to  combine
smoothness (due to  large radii of  the first layers) with  exactness (due
to small radii of the last layers) and fast convergence.

Internally RBF-ML uses many different  means  of acceleration, from sparse
matrices  to  KD-trees,  which  results in algorithm whose working time is
roughly proportional to N*log(N)*Density*RBase^2*NLayers,  where  N  is  a
number of points, Density is an average density if points per unit of  the
interpolation space, RBase is an initial radius, NLayers is  a  number  of
layers.

RBF-ML is good for following kinds of interpolation problems:
1. "exact" problems (perfect fit) with well separated points
2. least squares problems with arbitrary distribution of points (algorithm
   gives  perfect  fit  where it is possible, and resorts to least squares
   fit in the hard areas).
3. noisy problems where  we  want  to  apply  some  controlled  amount  of
   smoothing.

INPUT PARAMETERS:
    S       -   RBF model, initialized by RBFCreate() call
    RBase   -   RBase parameter, RBase>0
    NLayers -   NLayers parameter, NLayers>0, recommended value  to  start
                with - about 5.
    LambdaV -   regularization value, can be useful when  solving  problem
                in the least squares sense.  Optimal  lambda  is  problem-
                dependent and require trial and error. In our  experience,
                good lambda can be as large as 0.1, and you can use  0.001
                as initial guess.
                Default  value  - 0.01, which is used when LambdaV is  not
                given.  You  can  specify  zero  value,  but  it  is   not
                recommended to do so.

TUNING ALGORITHM

In order to use this algorithm you have to choose three parameters:
* initial radius RBase
* number of layers in the model NLayers
* regularization coefficient LambdaV

Initial radius is easy to choose - you can pick any number  several  times
larger  than  the  average  distance between points. Algorithm won't break
down if you choose radius which is too large (model construction time will
increase, but model will be built correctly).

Choose such number of layers that RLast=RBase/2^(NLayers-1)  (radius  used
by  the  last  layer)  will  be  smaller than the typical distance between
points.  In  case  model  error  is  too large, you can increase number of
layers.  Having  more  layers  will make model construction and evaluation
proportionally slower, but it will allow you to have model which precisely
fits your data. From the other side, if you want to  suppress  noise,  you
can DECREASE number of layers to make your model less flexible.

Regularization coefficient LambdaV controls smoothness of  the  individual
models built for each layer. We recommend you to use default value in case
you don't want to tune this parameter,  because  having  non-zero  LambdaV
accelerates and stabilizes internal iterative algorithm. In case you  want
to suppress noise you can use  LambdaV  as  additional  parameter  (larger
value = more smoothness) to tune.

TYPICAL ERRORS

1. Using  initial  radius  which is too large. Memory requirements  of the
   RBF-ML are roughly proportional to N*Density*RBase^2 (where Density  is
   an average density of points per unit of the interpolation  space).  In
   the extreme case of the very large RBase we will need O(N^2)  units  of
   memory - and many layers in order to decrease radius to some reasonably
   small value.

2. Using too small number of layers - RBF models with large radius are not
   flexible enough to reproduce small variations in the  target  function.
   You  need  many  layers  with  different radii, from large to small, in
   order to have good model.

3. Using  initial  radius  which  is  too  small.  You will get model with
   "holes" in the areas which are too far away from interpolation centers.
   However, algorithm will work correctly (and quickly) in this case.

4. Using too many layers - you will get too large and too slow model. This
   model  will  perfectly  reproduce  your function, but maybe you will be
   able to achieve similar results with less layers (and less memory).

  -- ALGLIB --
     Copyright 02.03.2012 by Bochkanov Sergey
*************************************************************************/
void rbfsetalgomultilayer(const rbfmodel &s, const double rbase, const ae_int_t nlayers, const double lambdav);
void rbfsetalgomultilayer(const rbfmodel &s, const double rbase, const ae_int_t nlayers);


/*************************************************************************
This function sets linear term (model is a sum of radial  basis  functions
plus linear polynomial). This function won't have effect until  next  call
to RBFBuildModel().

INPUT PARAMETERS:
    S       -   RBF model, initialized by RBFCreate() call

NOTE: this   function  has   some   serialization-related  subtleties.  We
      recommend you to study serialization examples from ALGLIB  Reference
      Manual if you want to perform serialization of your models.

  -- ALGLIB --
     Copyright 13.12.2011 by Bochkanov Sergey
*************************************************************************/
void rbfsetlinterm(const rbfmodel &s);


/*************************************************************************
This function sets constant term (model is a sum of radial basis functions
plus constant).  This  function  won't  have  effect  until  next  call to
RBFBuildModel().

INPUT PARAMETERS:
    S       -   RBF model, initialized by RBFCreate() call

NOTE: this   function  has   some   serialization-related  subtleties.  We
      recommend you to study serialization examples from ALGLIB  Reference
      Manual if you want to perform serialization of your models.

  -- ALGLIB --
     Copyright 13.12.2011 by Bochkanov Sergey
*************************************************************************/
void rbfsetconstterm(const rbfmodel &s);


/*************************************************************************
This  function  sets  zero  term (model is a sum of radial basis functions
without polynomial term). This function won't have effect until next  call
to RBFBuildModel().

INPUT PARAMETERS:
    S       -   RBF model, initialized by RBFCreate() call

NOTE: this   function  has   some   serialization-related  subtleties.  We
      recommend you to study serialization examples from ALGLIB  Reference
      Manual if you want to perform serialization of your models.

  -- ALGLIB --
     Copyright 13.12.2011 by Bochkanov Sergey
*************************************************************************/
void rbfsetzeroterm(const rbfmodel &s);


/*************************************************************************
This   function  builds  RBF  model  and  returns  report  (contains  some
information which can be used for evaluation of the algorithm properties).

Call to this function modifies RBF model by calculating its centers/radii/
weights  and  saving  them  into  RBFModel  structure.  Initially RBFModel
contain zero coefficients, but after call to this function  we  will  have
coefficients which were calculated in order to fit our dataset.

After you called this function you can call RBFCalc(),  RBFGridCalc()  and
other model calculation functions.

INPUT PARAMETERS:
    S       -   RBF model, initialized by RBFCreate() call
    Rep     -   report:
                * Rep.TerminationType:
                  * -5 - non-distinct basis function centers were detected,
                         interpolation aborted
                  * -4 - nonconvergence of the internal SVD solver
                  *  1 - successful termination
                Fields are used for debugging purposes:
                * Rep.IterationsCount - iterations count of the LSQR solver
                * Rep.NMV - number of matrix-vector products
                * Rep.ARows - rows count for the system matrix
                * Rep.ACols - columns count for the system matrix
                * Rep.ANNZ - number of significantly non-zero elements
                  (elements above some algorithm-determined threshold)

NOTE:  failure  to  build  model will leave current state of the structure
unchanged.

  -- ALGLIB --
     Copyright 13.12.2011 by Bochkanov Sergey
*************************************************************************/
void rbfbuildmodel(const rbfmodel &s, rbfreport &rep);


/*************************************************************************
This function calculates values of the RBF model in the given point.

This function should be used when we have NY=1 (scalar function) and  NX=2
(2-dimensional space). If you have 3-dimensional space, use RBFCalc3(). If
you have general situation (NX-dimensional space, NY-dimensional function)
you should use general, less efficient implementation RBFCalc().

If  you  want  to  calculate  function  values  many times, consider using
RBFGridCalc2(), which is far more efficient than many subsequent calls  to
RBFCalc2().

This function returns 0.0 when:
* model is not initialized
* NX<>2
 *NY<>1

INPUT PARAMETERS:
    S       -   RBF model
    X0      -   first coordinate, finite number
    X1      -   second coordinate, finite number

RESULT:
    value of the model or 0.0 (as defined above)

  -- ALGLIB --
     Copyright 13.12.2011 by Bochkanov Sergey
*************************************************************************/
double rbfcalc2(const rbfmodel &s, const double x0, const double x1);


/*************************************************************************
This function calculates values of the RBF model in the given point.

This function should be used when we have NY=1 (scalar function) and  NX=3
(3-dimensional space). If you have 2-dimensional space, use RBFCalc2(). If
you have general situation (NX-dimensional space, NY-dimensional function)
you should use general, less efficient implementation RBFCalc().

This function returns 0.0 when:
* model is not initialized
* NX<>3
 *NY<>1

INPUT PARAMETERS:
    S       -   RBF model
    X0      -   first coordinate, finite number
    X1      -   second coordinate, finite number
    X2      -   third coordinate, finite number

RESULT:
    value of the model or 0.0 (as defined above)

  -- ALGLIB --
     Copyright 13.12.2011 by Bochkanov Sergey
*************************************************************************/
double rbfcalc3(const rbfmodel &s, const double x0, const double x1, const double x2);


/*************************************************************************
This function calculates values of the RBF model at the given point.

This is general function which can be used for arbitrary NX (dimension  of
the space of arguments) and NY (dimension of the function itself). However
when  you  have  NY=1  you  may  find more convenient to use RBFCalc2() or
RBFCalc3().

This function returns 0.0 when model is not initialized.

INPUT PARAMETERS:
    S       -   RBF model
    X       -   coordinates, array[NX].
                X may have more than NX elements, in this case only
                leading NX will be used.

OUTPUT PARAMETERS:
    Y       -   function value, array[NY]. Y is out-parameter and
                reallocated after call to this function. In case you  want
                to reuse previously allocated Y, you may use RBFCalcBuf(),
                which reallocates Y only when it is too small.

  -- ALGLIB --
     Copyright 13.12.2011 by Bochkanov Sergey
*************************************************************************/
void rbfcalc(const rbfmodel &s, const real_1d_array &x, real_1d_array &y);


/*************************************************************************
This function calculates values of the RBF model at the given point.

Same as RBFCalc(), but does not reallocate Y when in is large enough to
store function values.

INPUT PARAMETERS:
    S       -   RBF model
    X       -   coordinates, array[NX].
                X may have more than NX elements, in this case only
                leading NX will be used.
    Y       -   possibly preallocated array

OUTPUT PARAMETERS:
    Y       -   function value, array[NY]. Y is not reallocated when it
                is larger than NY.

  -- ALGLIB --
     Copyright 13.12.2011 by Bochkanov Sergey
*************************************************************************/
void rbfcalcbuf(const rbfmodel &s, const real_1d_array &x, real_1d_array &y);


/*************************************************************************
This function calculates values of the RBF model at the regular grid.

Grid have N0*N1 points, with Point[I,J] = (X0[I], X1[J])

This function returns 0.0 when:
* model is not initialized
* NX<>2
 *NY<>1

INPUT PARAMETERS:
    S       -   RBF model
    X0      -   array of grid nodes, first coordinates, array[N0]
    N0      -   grid size (number of nodes) in the first dimension
    X1      -   array of grid nodes, second coordinates, array[N1]
    N1      -   grid size (number of nodes) in the second dimension

OUTPUT PARAMETERS:
    Y       -   function values, array[N0,N1]. Y is out-variable and
                is reallocated by this function.

  -- ALGLIB --
     Copyright 13.12.2011 by Bochkanov Sergey
*************************************************************************/
void rbfgridcalc2(const rbfmodel &s, const real_1d_array &x0, const ae_int_t n0, const real_1d_array &x1, const ae_int_t n1, real_2d_array &y);


/*************************************************************************
This function "unpacks" RBF model by extracting its coefficients.

INPUT PARAMETERS:
    S       -   RBF model

OUTPUT PARAMETERS:
    NX      -   dimensionality of argument
    NY      -   dimensionality of the target function
    XWR     -   model information, array[NC,NX+NY+1].
                One row of the array corresponds to one basis function:
                * first NX columns  - coordinates of the center
                * next NY columns   - weights, one per dimension of the
                                      function being modelled
                * last column       - radius, same for all dimensions of
                                      the function being modelled
    NC      -   number of the centers
    V       -   polynomial  term , array[NY,NX+1]. One row per one
                dimension of the function being modelled. First NX
                elements are linear coefficients, V[NX] is equal to the
                constant part.

  -- ALGLIB --
     Copyright 13.12.2011 by Bochkanov Sergey
*************************************************************************/
void rbfunpack(const rbfmodel &s, ae_int_t &nx, ae_int_t &ny, real_2d_array &xwr, ae_int_t &nc, real_2d_array &v);

/*************************************************************************
This subroutine calculates the value of the bilinear or bicubic spline  at
the given point X.

Input parameters:
    C   -   coefficients table.
            Built by BuildBilinearSpline or BuildBicubicSpline.
    X, Y-   point

Result:
    S(x,y)

  -- ALGLIB PROJECT --
     Copyright 05.07.2007 by Bochkanov Sergey
*************************************************************************/
double spline2dcalc(const spline2dinterpolant &c, const double x, const double y);


/*************************************************************************
This subroutine calculates the value of the bilinear or bicubic spline  at
the given point X and its derivatives.

Input parameters:
    C   -   spline interpolant.
    X, Y-   point

Output parameters:
    F   -   S(x,y)
    FX  -   dS(x,y)/dX
    FY  -   dS(x,y)/dY
    FXY -   d2S(x,y)/dXdY

  -- ALGLIB PROJECT --
     Copyright 05.07.2007 by Bochkanov Sergey
*************************************************************************/
void spline2ddiff(const spline2dinterpolant &c, const double x, const double y, double &f, double &fx, double &fy, double &fxy);


/*************************************************************************
This subroutine performs linear transformation of the spline argument.

Input parameters:
    C       -   spline interpolant
    AX, BX  -   transformation coefficients: x = A*t + B
    AY, BY  -   transformation coefficients: y = A*u + B
Result:
    C   -   transformed spline

  -- ALGLIB PROJECT --
     Copyright 30.06.2007 by Bochkanov Sergey
*************************************************************************/
void spline2dlintransxy(const spline2dinterpolant &c, const double ax, const double bx, const double ay, const double by);


/*************************************************************************
This subroutine performs linear transformation of the spline.

Input parameters:
    C   -   spline interpolant.
    A, B-   transformation coefficients: S2(x,y) = A*S(x,y) + B

Output parameters:
    C   -   transformed spline

  -- ALGLIB PROJECT --
     Copyright 30.06.2007 by Bochkanov Sergey
*************************************************************************/
void spline2dlintransf(const spline2dinterpolant &c, const double a, const double b);


/*************************************************************************
This subroutine makes the copy of the spline model.

Input parameters:
    C   -   spline interpolant

Output parameters:
    CC  -   spline copy

  -- ALGLIB PROJECT --
     Copyright 29.06.2007 by Bochkanov Sergey
*************************************************************************/
void spline2dcopy(const spline2dinterpolant &c, spline2dinterpolant &cc);


/*************************************************************************
Bicubic spline resampling

Input parameters:
    A           -   function values at the old grid,
                    array[0..OldHeight-1, 0..OldWidth-1]
    OldHeight   -   old grid height, OldHeight>1
    OldWidth    -   old grid width, OldWidth>1
    NewHeight   -   new grid height, NewHeight>1
    NewWidth    -   new grid width, NewWidth>1

Output parameters:
    B           -   function values at the new grid,
                    array[0..NewHeight-1, 0..NewWidth-1]

  -- ALGLIB routine --
     15 May, 2007
     Copyright by Bochkanov Sergey
*************************************************************************/
void spline2dresamplebicubic(const real_2d_array &a, const ae_int_t oldheight, const ae_int_t oldwidth, real_2d_array &b, const ae_int_t newheight, const ae_int_t newwidth);


/*************************************************************************
Bilinear spline resampling

Input parameters:
    A           -   function values at the old grid,
                    array[0..OldHeight-1, 0..OldWidth-1]
    OldHeight   -   old grid height, OldHeight>1
    OldWidth    -   old grid width, OldWidth>1
    NewHeight   -   new grid height, NewHeight>1
    NewWidth    -   new grid width, NewWidth>1

Output parameters:
    B           -   function values at the new grid,
                    array[0..NewHeight-1, 0..NewWidth-1]

  -- ALGLIB routine --
     09.07.2007
     Copyright by Bochkanov Sergey
*************************************************************************/
void spline2dresamplebilinear(const real_2d_array &a, const ae_int_t oldheight, const ae_int_t oldwidth, real_2d_array &b, const ae_int_t newheight, const ae_int_t newwidth);


/*************************************************************************
This subroutine builds bilinear vector-valued spline.

Input parameters:
    X   -   spline abscissas, array[0..N-1]
    Y   -   spline ordinates, array[0..M-1]
    F   -   function values, array[0..M*N*D-1]:
            * first D elements store D values at (X[0],Y[0])
            * next D elements store D values at (X[1],Y[0])
            * general form - D function values at (X[i],Y[j]) are stored
              at F[D*(J*N+I)...D*(J*N+I)+D-1].
    M,N -   grid size, M>=2, N>=2
    D   -   vector dimension, D>=1

Output parameters:
    C   -   spline interpolant

  -- ALGLIB PROJECT --
     Copyright 16.04.2012 by Bochkanov Sergey
*************************************************************************/
void spline2dbuildbilinearv(const real_1d_array &x, const ae_int_t n, const real_1d_array &y, const ae_int_t m, const real_1d_array &f, const ae_int_t d, spline2dinterpolant &c);


/*************************************************************************
This subroutine builds bicubic vector-valued spline.

Input parameters:
    X   -   spline abscissas, array[0..N-1]
    Y   -   spline ordinates, array[0..M-1]
    F   -   function values, array[0..M*N*D-1]:
            * first D elements store D values at (X[0],Y[0])
            * next D elements store D values at (X[1],Y[0])
            * general form - D function values at (X[i],Y[j]) are stored
              at F[D*(J*N+I)...D*(J*N+I)+D-1].
    M,N -   grid size, M>=2, N>=2
    D   -   vector dimension, D>=1

Output parameters:
    C   -   spline interpolant

  -- ALGLIB PROJECT --
     Copyright 16.04.2012 by Bochkanov Sergey
*************************************************************************/
void spline2dbuildbicubicv(const real_1d_array &x, const ae_int_t n, const real_1d_array &y, const ae_int_t m, const real_1d_array &f, const ae_int_t d, spline2dinterpolant &c);


/*************************************************************************
This subroutine calculates bilinear or bicubic vector-valued spline at the
given point (X,Y).

INPUT PARAMETERS:
    C   -   spline interpolant.
    X, Y-   point
    F   -   output buffer, possibly preallocated array. In case array size
            is large enough to store result, it is not reallocated.  Array
            which is too short will be reallocated

OUTPUT PARAMETERS:
    F   -   array[D] (or larger) which stores function values

  -- ALGLIB PROJECT --
     Copyright 16.04.2012 by Bochkanov Sergey
*************************************************************************/
void spline2dcalcvbuf(const spline2dinterpolant &c, const double x, const double y, real_1d_array &f);


/*************************************************************************
This subroutine calculates bilinear or bicubic vector-valued spline at the
given point (X,Y).

INPUT PARAMETERS:
    C   -   spline interpolant.
    X, Y-   point

OUTPUT PARAMETERS:
    F   -   array[D] which stores function values.  F is out-parameter and
            it  is  reallocated  after  call to this function. In case you
            want  to    reuse  previously  allocated  F,   you   may   use
            Spline2DCalcVBuf(),  which  reallocates  F only when it is too
            small.

  -- ALGLIB PROJECT --
     Copyright 16.04.2012 by Bochkanov Sergey
*************************************************************************/
void spline2dcalcv(const spline2dinterpolant &c, const double x, const double y, real_1d_array &f);


/*************************************************************************
This subroutine unpacks two-dimensional spline into the coefficients table

Input parameters:
    C   -   spline interpolant.

Result:
    M, N-   grid size (x-axis and y-axis)
    D   -   number of components
    Tbl -   coefficients table, unpacked format,
            D - components: [0..(N-1)*(M-1)*D-1, 0..19].
            For T=0..D-1 (component index), I = 0...N-2 (x index),
            J=0..M-2 (y index):
                K :=  T + I*D + J*D*(N-1)

                K-th row stores decomposition for T-th component of the
                vector-valued function

                Tbl[K,0] = X[i]
                Tbl[K,1] = X[i+1]
                Tbl[K,2] = Y[j]
                Tbl[K,3] = Y[j+1]
                Tbl[K,4] = C00
                Tbl[K,5] = C01
                Tbl[K,6] = C02
                Tbl[K,7] = C03
                Tbl[K,8] = C10
                Tbl[K,9] = C11
                ...
                Tbl[K,19] = C33
            On each grid square spline is equals to:
                S(x) = SUM(c[i,j]*(t^i)*(u^j), i=0..3, j=0..3)
                t = x-x[j]
                u = y-y[i]

  -- ALGLIB PROJECT --
     Copyright 16.04.2012 by Bochkanov Sergey
*************************************************************************/
void spline2dunpackv(const spline2dinterpolant &c, ae_int_t &m, ae_int_t &n, ae_int_t &d, real_2d_array &tbl);


/*************************************************************************
This subroutine was deprecated in ALGLIB 3.6.0

We recommend you to switch  to  Spline2DBuildBilinearV(),  which  is  more
flexible and accepts its arguments in more convenient order.

  -- ALGLIB PROJECT --
     Copyright 05.07.2007 by Bochkanov Sergey
*************************************************************************/
void spline2dbuildbilinear(const real_1d_array &x, const real_1d_array &y, const real_2d_array &f, const ae_int_t m, const ae_int_t n, spline2dinterpolant &c);


/*************************************************************************
This subroutine was deprecated in ALGLIB 3.6.0

We recommend you to switch  to  Spline2DBuildBicubicV(),  which  is  more
flexible and accepts its arguments in more convenient order.

  -- ALGLIB PROJECT --
     Copyright 05.07.2007 by Bochkanov Sergey
*************************************************************************/
void spline2dbuildbicubic(const real_1d_array &x, const real_1d_array &y, const real_2d_array &f, const ae_int_t m, const ae_int_t n, spline2dinterpolant &c);


/*************************************************************************
This subroutine was deprecated in ALGLIB 3.6.0

We recommend you to switch  to  Spline2DUnpackV(),  which is more flexible
and accepts its arguments in more convenient order.

  -- ALGLIB PROJECT --
     Copyright 29.06.2007 by Bochkanov Sergey
*************************************************************************/
void spline2dunpack(const spline2dinterpolant &c, ae_int_t &m, ae_int_t &n, real_2d_array &tbl);

/*************************************************************************
This subroutine calculates the value of the trilinear or tricubic spline at
the given point (X,Y,Z).

INPUT PARAMETERS:
    C   -   coefficients table.
            Built by BuildBilinearSpline or BuildBicubicSpline.
    X, Y,
    Z   -   point

Result:
    S(x,y,z)

  -- ALGLIB PROJECT --
     Copyright 26.04.2012 by Bochkanov Sergey
*************************************************************************/
double spline3dcalc(const spline3dinterpolant &c, const double x, const double y, const double z);


/*************************************************************************
This subroutine performs linear transformation of the spline argument.

INPUT PARAMETERS:
    C       -   spline interpolant
    AX, BX  -   transformation coefficients: x = A*u + B
    AY, BY  -   transformation coefficients: y = A*v + B
    AZ, BZ  -   transformation coefficients: z = A*w + B

OUTPUT PARAMETERS:
    C   -   transformed spline

  -- ALGLIB PROJECT --
     Copyright 26.04.2012 by Bochkanov Sergey
*************************************************************************/
void spline3dlintransxyz(const spline3dinterpolant &c, const double ax, const double bx, const double ay, const double by, const double az, const double bz);


/*************************************************************************
This subroutine performs linear transformation of the spline.

INPUT PARAMETERS:
    C   -   spline interpolant.
    A, B-   transformation coefficients: S2(x,y) = A*S(x,y,z) + B

OUTPUT PARAMETERS:
    C   -   transformed spline

  -- ALGLIB PROJECT --
     Copyright 26.04.2012 by Bochkanov Sergey
*************************************************************************/
void spline3dlintransf(const spline3dinterpolant &c, const double a, const double b);


/*************************************************************************
Trilinear spline resampling

INPUT PARAMETERS:
    A           -   array[0..OldXCount*OldYCount*OldZCount-1], function
                    values at the old grid, :
                        A[0]        x=0,y=0,z=0
                        A[1]        x=1,y=0,z=0
                        A[..]       ...
                        A[..]       x=oldxcount-1,y=0,z=0
                        A[..]       x=0,y=1,z=0
                        A[..]       ...
                        ...
    OldZCount   -   old Z-count, OldZCount>1
    OldYCount   -   old Y-count, OldYCount>1
    OldXCount   -   old X-count, OldXCount>1
    NewZCount   -   new Z-count, NewZCount>1
    NewYCount   -   new Y-count, NewYCount>1
    NewXCount   -   new X-count, NewXCount>1

OUTPUT PARAMETERS:
    B           -   array[0..NewXCount*NewYCount*NewZCount-1], function
                    values at the new grid:
                        B[0]        x=0,y=0,z=0
                        B[1]        x=1,y=0,z=0
                        B[..]       ...
                        B[..]       x=newxcount-1,y=0,z=0
                        B[..]       x=0,y=1,z=0
                        B[..]       ...
                        ...

  -- ALGLIB routine --
     26.04.2012
     Copyright by Bochkanov Sergey
*************************************************************************/
void spline3dresampletrilinear(const real_1d_array &a, const ae_int_t oldzcount, const ae_int_t oldycount, const ae_int_t oldxcount, const ae_int_t newzcount, const ae_int_t newycount, const ae_int_t newxcount, real_1d_array &b);


/*************************************************************************
This subroutine builds trilinear vector-valued spline.

INPUT PARAMETERS:
    X   -   spline abscissas,  array[0..N-1]
    Y   -   spline ordinates,  array[0..M-1]
    Z   -   spline applicates, array[0..L-1]
    F   -   function values, array[0..M*N*L*D-1]:
            * first D elements store D values at (X[0],Y[0],Z[0])
            * next D elements store D values at (X[1],Y[0],Z[0])
            * next D elements store D values at (X[2],Y[0],Z[0])
            * ...
            * next D elements store D values at (X[0],Y[1],Z[0])
            * next D elements store D values at (X[1],Y[1],Z[0])
            * next D elements store D values at (X[2],Y[1],Z[0])
            * ...
            * next D elements store D values at (X[0],Y[0],Z[1])
            * next D elements store D values at (X[1],Y[0],Z[1])
            * next D elements store D values at (X[2],Y[0],Z[1])
            * ...
            * general form - D function values at (X[i],Y[j]) are stored
              at F[D*(N*(M*K+J)+I)...D*(N*(M*K+J)+I)+D-1].
    M,N,
    L   -   grid size, M>=2, N>=2, L>=2
    D   -   vector dimension, D>=1

OUTPUT PARAMETERS:
    C   -   spline interpolant

  -- ALGLIB PROJECT --
     Copyright 26.04.2012 by Bochkanov Sergey
*************************************************************************/
void spline3dbuildtrilinearv(const real_1d_array &x, const ae_int_t n, const real_1d_array &y, const ae_int_t m, const real_1d_array &z, const ae_int_t l, const real_1d_array &f, const ae_int_t d, spline3dinterpolant &c);


/*************************************************************************
This subroutine calculates bilinear or bicubic vector-valued spline at the
given point (X,Y,Z).

INPUT PARAMETERS:
    C   -   spline interpolant.
    X, Y,
    Z   -   point
    F   -   output buffer, possibly preallocated array. In case array size
            is large enough to store result, it is not reallocated.  Array
            which is too short will be reallocated

OUTPUT PARAMETERS:
    F   -   array[D] (or larger) which stores function values

  -- ALGLIB PROJECT --
     Copyright 26.04.2012 by Bochkanov Sergey
*************************************************************************/
void spline3dcalcvbuf(const spline3dinterpolant &c, const double x, const double y, const double z, real_1d_array &f);


/*************************************************************************
This subroutine calculates trilinear or tricubic vector-valued spline at the
given point (X,Y,Z).

INPUT PARAMETERS:
    C   -   spline interpolant.
    X, Y,
    Z   -   point

OUTPUT PARAMETERS:
    F   -   array[D] which stores function values.  F is out-parameter and
            it  is  reallocated  after  call to this function. In case you
            want  to    reuse  previously  allocated  F,   you   may   use
            Spline2DCalcVBuf(),  which  reallocates  F only when it is too
            small.

  -- ALGLIB PROJECT --
     Copyright 26.04.2012 by Bochkanov Sergey
*************************************************************************/
void spline3dcalcv(const spline3dinterpolant &c, const double x, const double y, const double z, real_1d_array &f);


/*************************************************************************
This subroutine unpacks tri-dimensional spline into the coefficients table

INPUT PARAMETERS:
    C   -   spline interpolant.

Result:
    N   -   grid size (X)
    M   -   grid size (Y)
    L   -   grid size (Z)
    D   -   number of components
    SType-  spline type. Currently, only one spline type is supported:
            trilinear spline, as indicated by SType=1.
    Tbl -   spline coefficients: [0..(N-1)*(M-1)*(L-1)*D-1, 0..13].
            For T=0..D-1 (component index), I = 0...N-2 (x index),
            J=0..M-2 (y index), K=0..L-2 (z index):
                Q := T + I*D + J*D*(N-1) + K*D*(N-1)*(M-1),

                Q-th row stores decomposition for T-th component of the
                vector-valued function

                Tbl[Q,0] = X[i]
                Tbl[Q,1] = X[i+1]
                Tbl[Q,2] = Y[j]
                Tbl[Q,3] = Y[j+1]
                Tbl[Q,4] = Z[k]
                Tbl[Q,5] = Z[k+1]

                Tbl[Q,6] = C000
                Tbl[Q,7] = C100
                Tbl[Q,8] = C010
                Tbl[Q,9] = C110
                Tbl[Q,10]= C001
                Tbl[Q,11]= C101
                Tbl[Q,12]= C011
                Tbl[Q,13]= C111
            On each grid square spline is equals to:
                S(x) = SUM(c[i,j,k]*(x^i)*(y^j)*(z^k), i=0..1, j=0..1, k=0..1)
                t = x-x[j]
                u = y-y[i]
                v = z-z[k]

            NOTE: format of Tbl is given for SType=1. Future versions of
                  ALGLIB can use different formats for different values of
                  SType.

  -- ALGLIB PROJECT --
     Copyright 26.04.2012 by Bochkanov Sergey
*************************************************************************/
void spline3dunpackv(const spline3dinterpolant &c, ae_int_t &n, ae_int_t &m, ae_int_t &l, ae_int_t &d, ae_int_t &stype, real_2d_array &tbl);
}

/////////////////////////////////////////////////////////////////////////
//
// THIS SECTION CONTAINS COMPUTATIONAL CORE DECLARATIONS (FUNCTIONS)
//
/////////////////////////////////////////////////////////////////////////
namespace alglib_impl
{
double idwcalc(idwinterpolant* z,
     /* Real    */ ae_vector* x,
     ae_state *_state);
void idwbuildmodifiedshepard(/* Real    */ ae_matrix* xy,
     ae_int_t n,
     ae_int_t nx,
     ae_int_t d,
     ae_int_t nq,
     ae_int_t nw,
     idwinterpolant* z,
     ae_state *_state);
void idwbuildmodifiedshepardr(/* Real    */ ae_matrix* xy,
     ae_int_t n,
     ae_int_t nx,
     double r,
     idwinterpolant* z,
     ae_state *_state);
void idwbuildnoisy(/* Real    */ ae_matrix* xy,
     ae_int_t n,
     ae_int_t nx,
     ae_int_t d,
     ae_int_t nq,
     ae_int_t nw,
     idwinterpolant* z,
     ae_state *_state);
void _idwinterpolant_init(void* _p, ae_state *_state);
void _idwinterpolant_init_copy(void* _dst, void* _src, ae_state *_state);
void _idwinterpolant_clear(void* _p);
void _idwinterpolant_destroy(void* _p);
double barycentriccalc(barycentricinterpolant* b,
     double t,
     ae_state *_state);
void barycentricdiff1(barycentricinterpolant* b,
     double t,
     double* f,
     double* df,
     ae_state *_state);
void barycentricdiff2(barycentricinterpolant* b,
     double t,
     double* f,
     double* df,
     double* d2f,
     ae_state *_state);
void barycentriclintransx(barycentricinterpolant* b,
     double ca,
     double cb,
     ae_state *_state);
void barycentriclintransy(barycentricinterpolant* b,
     double ca,
     double cb,
     ae_state *_state);
void barycentricunpack(barycentricinterpolant* b,
     ae_int_t* n,
     /* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     /* Real    */ ae_vector* w,
     ae_state *_state);
void barycentricbuildxyw(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     /* Real    */ ae_vector* w,
     ae_int_t n,
     barycentricinterpolant* b,
     ae_state *_state);
void barycentricbuildfloaterhormann(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     ae_int_t n,
     ae_int_t d,
     barycentricinterpolant* b,
     ae_state *_state);
void barycentriccopy(barycentricinterpolant* b,
     barycentricinterpolant* b2,
     ae_state *_state);
void _barycentricinterpolant_init(void* _p, ae_state *_state);
void _barycentricinterpolant_init_copy(void* _dst, void* _src, ae_state *_state);
void _barycentricinterpolant_clear(void* _p);
void _barycentricinterpolant_destroy(void* _p);
void polynomialbar2cheb(barycentricinterpolant* p,
     double a,
     double b,
     /* Real    */ ae_vector* t,
     ae_state *_state);
void polynomialcheb2bar(/* Real    */ ae_vector* t,
     ae_int_t n,
     double a,
     double b,
     barycentricinterpolant* p,
     ae_state *_state);
void polynomialbar2pow(barycentricinterpolant* p,
     double c,
     double s,
     /* Real    */ ae_vector* a,
     ae_state *_state);
void polynomialpow2bar(/* Real    */ ae_vector* a,
     ae_int_t n,
     double c,
     double s,
     barycentricinterpolant* p,
     ae_state *_state);
void polynomialbuild(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     ae_int_t n,
     barycentricinterpolant* p,
     ae_state *_state);
void polynomialbuildeqdist(double a,
     double b,
     /* Real    */ ae_vector* y,
     ae_int_t n,
     barycentricinterpolant* p,
     ae_state *_state);
void polynomialbuildcheb1(double a,
     double b,
     /* Real    */ ae_vector* y,
     ae_int_t n,
     barycentricinterpolant* p,
     ae_state *_state);
void polynomialbuildcheb2(double a,
     double b,
     /* Real    */ ae_vector* y,
     ae_int_t n,
     barycentricinterpolant* p,
     ae_state *_state);
double polynomialcalceqdist(double a,
     double b,
     /* Real    */ ae_vector* f,
     ae_int_t n,
     double t,
     ae_state *_state);
double polynomialcalccheb1(double a,
     double b,
     /* Real    */ ae_vector* f,
     ae_int_t n,
     double t,
     ae_state *_state);
double polynomialcalccheb2(double a,
     double b,
     /* Real    */ ae_vector* f,
     ae_int_t n,
     double t,
     ae_state *_state);
void spline1dbuildlinear(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     ae_int_t n,
     spline1dinterpolant* c,
     ae_state *_state);
void spline1dbuildcubic(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     ae_int_t n,
     ae_int_t boundltype,
     double boundl,
     ae_int_t boundrtype,
     double boundr,
     spline1dinterpolant* c,
     ae_state *_state);
void spline1dgriddiffcubic(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     ae_int_t n,
     ae_int_t boundltype,
     double boundl,
     ae_int_t boundrtype,
     double boundr,
     /* Real    */ ae_vector* d,
     ae_state *_state);
void spline1dgriddiff2cubic(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     ae_int_t n,
     ae_int_t boundltype,
     double boundl,
     ae_int_t boundrtype,
     double boundr,
     /* Real    */ ae_vector* d1,
     /* Real    */ ae_vector* d2,
     ae_state *_state);
void spline1dconvcubic(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     ae_int_t n,
     ae_int_t boundltype,
     double boundl,
     ae_int_t boundrtype,
     double boundr,
     /* Real    */ ae_vector* x2,
     ae_int_t n2,
     /* Real    */ ae_vector* y2,
     ae_state *_state);
void spline1dconvdiffcubic(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     ae_int_t n,
     ae_int_t boundltype,
     double boundl,
     ae_int_t boundrtype,
     double boundr,
     /* Real    */ ae_vector* x2,
     ae_int_t n2,
     /* Real    */ ae_vector* y2,
     /* Real    */ ae_vector* d2,
     ae_state *_state);
void spline1dconvdiff2cubic(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     ae_int_t n,
     ae_int_t boundltype,
     double boundl,
     ae_int_t boundrtype,
     double boundr,
     /* Real    */ ae_vector* x2,
     ae_int_t n2,
     /* Real    */ ae_vector* y2,
     /* Real    */ ae_vector* d2,
     /* Real    */ ae_vector* dd2,
     ae_state *_state);
void spline1dbuildcatmullrom(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     ae_int_t n,
     ae_int_t boundtype,
     double tension,
     spline1dinterpolant* c,
     ae_state *_state);
void spline1dbuildhermite(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     /* Real    */ ae_vector* d,
     ae_int_t n,
     spline1dinterpolant* c,
     ae_state *_state);
void spline1dbuildakima(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     ae_int_t n,
     spline1dinterpolant* c,
     ae_state *_state);
double spline1dcalc(spline1dinterpolant* c, double x, ae_state *_state);
void spline1ddiff(spline1dinterpolant* c,
     double x,
     double* s,
     double* ds,
     double* d2s,
     ae_state *_state);
void spline1dcopy(spline1dinterpolant* c,
     spline1dinterpolant* cc,
     ae_state *_state);
void spline1dunpack(spline1dinterpolant* c,
     ae_int_t* n,
     /* Real    */ ae_matrix* tbl,
     ae_state *_state);
void spline1dlintransx(spline1dinterpolant* c,
     double a,
     double b,
     ae_state *_state);
void spline1dlintransy(spline1dinterpolant* c,
     double a,
     double b,
     ae_state *_state);
double spline1dintegrate(spline1dinterpolant* c,
     double x,
     ae_state *_state);
void spline1dconvdiffinternal(/* Real    */ ae_vector* xold,
     /* Real    */ ae_vector* yold,
     /* Real    */ ae_vector* dold,
     ae_int_t n,
     /* Real    */ ae_vector* x2,
     ae_int_t n2,
     /* Real    */ ae_vector* y,
     ae_bool needy,
     /* Real    */ ae_vector* d1,
     ae_bool needd1,
     /* Real    */ ae_vector* d2,
     ae_bool needd2,
     ae_state *_state);
void spline1drootsandextrema(spline1dinterpolant* c,
     /* Real    */ ae_vector* r,
     ae_int_t* nr,
     ae_bool* dr,
     /* Real    */ ae_vector* e,
     /* Integer */ ae_vector* et,
     ae_int_t* ne,
     ae_bool* de,
     ae_state *_state);
void heapsortdpoints(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     /* Real    */ ae_vector* d,
     ae_int_t n,
     ae_state *_state);
void solvepolinom2(double p0,
     double m0,
     double p1,
     double m1,
     double* x0,
     double* x1,
     ae_int_t* nr,
     ae_state *_state);
void solvecubicpolinom(double pa,
     double ma,
     double pb,
     double mb,
     double a,
     double b,
     double* x0,
     double* x1,
     double* x2,
     double* ex0,
     double* ex1,
     ae_int_t* nr,
     ae_int_t* ne,
     /* Real    */ ae_vector* tempdata,
     ae_state *_state);
ae_int_t bisectmethod(double pa,
     double ma,
     double pb,
     double mb,
     double a,
     double b,
     double* x,
     ae_state *_state);
void spline1dbuildmonotone(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     ae_int_t n,
     spline1dinterpolant* c,
     ae_state *_state);
void _spline1dinterpolant_init(void* _p, ae_state *_state);
void _spline1dinterpolant_init_copy(void* _dst, void* _src, ae_state *_state);
void _spline1dinterpolant_clear(void* _p);
void _spline1dinterpolant_destroy(void* _p);
void lstfitpiecewiselinearrdpfixed(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     ae_int_t n,
     ae_int_t m,
     /* Real    */ ae_vector* x2,
     /* Real    */ ae_vector* y2,
     ae_int_t* nsections,
     ae_state *_state);
void lstfitpiecewiselinearrdp(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     ae_int_t n,
     double eps,
     /* Real    */ ae_vector* x2,
     /* Real    */ ae_vector* y2,
     ae_int_t* nsections,
     ae_state *_state);
void polynomialfit(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     ae_int_t n,
     ae_int_t m,
     ae_int_t* info,
     barycentricinterpolant* p,
     polynomialfitreport* rep,
     ae_state *_state);
void _pexec_polynomialfit(/* Real    */ ae_vector* x,
    /* Real    */ ae_vector* y,
    ae_int_t n,
    ae_int_t m,
    ae_int_t* info,
    barycentricinterpolant* p,
    polynomialfitreport* rep, ae_state *_state);
void polynomialfitwc(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     /* Real    */ ae_vector* w,
     ae_int_t n,
     /* Real    */ ae_vector* xc,
     /* Real    */ ae_vector* yc,
     /* Integer */ ae_vector* dc,
     ae_int_t k,
     ae_int_t m,
     ae_int_t* info,
     barycentricinterpolant* p,
     polynomialfitreport* rep,
     ae_state *_state);
void _pexec_polynomialfitwc(/* Real    */ ae_vector* x,
    /* Real    */ ae_vector* y,
    /* Real    */ ae_vector* w,
    ae_int_t n,
    /* Real    */ ae_vector* xc,
    /* Real    */ ae_vector* yc,
    /* Integer */ ae_vector* dc,
    ae_int_t k,
    ae_int_t m,
    ae_int_t* info,
    barycentricinterpolant* p,
    polynomialfitreport* rep, ae_state *_state);
double logisticcalc4(double x,
     double a,
     double b,
     double c,
     double d,
     ae_state *_state);
double logisticcalc5(double x,
     double a,
     double b,
     double c,
     double d,
     double g,
     ae_state *_state);
void logisticfit4(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     ae_int_t n,
     double* a,
     double* b,
     double* c,
     double* d,
     lsfitreport* rep,
     ae_state *_state);
void logisticfit4ec(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     ae_int_t n,
     double cnstrleft,
     double cnstrright,
     double* a,
     double* b,
     double* c,
     double* d,
     lsfitreport* rep,
     ae_state *_state);
void logisticfit5(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     ae_int_t n,
     double* a,
     double* b,
     double* c,
     double* d,
     double* g,
     lsfitreport* rep,
     ae_state *_state);
void logisticfit5ec(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     ae_int_t n,
     double cnstrleft,
     double cnstrright,
     double* a,
     double* b,
     double* c,
     double* d,
     double* g,
     lsfitreport* rep,
     ae_state *_state);
void logisticfit45x(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     ae_int_t n,
     double cnstrleft,
     double cnstrright,
     ae_bool is4pl,
     double lambdav,
     double epsx,
     ae_int_t rscnt,
     double* a,
     double* b,
     double* c,
     double* d,
     double* g,
     lsfitreport* rep,
     ae_state *_state);
void barycentricfitfloaterhormannwc(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     /* Real    */ ae_vector* w,
     ae_int_t n,
     /* Real    */ ae_vector* xc,
     /* Real    */ ae_vector* yc,
     /* Integer */ ae_vector* dc,
     ae_int_t k,
     ae_int_t m,
     ae_int_t* info,
     barycentricinterpolant* b,
     barycentricfitreport* rep,
     ae_state *_state);
void _pexec_barycentricfitfloaterhormannwc(/* Real    */ ae_vector* x,
    /* Real    */ ae_vector* y,
    /* Real    */ ae_vector* w,
    ae_int_t n,
    /* Real    */ ae_vector* xc,
    /* Real    */ ae_vector* yc,
    /* Integer */ ae_vector* dc,
    ae_int_t k,
    ae_int_t m,
    ae_int_t* info,
    barycentricinterpolant* b,
    barycentricfitreport* rep, ae_state *_state);
void barycentricfitfloaterhormann(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     ae_int_t n,
     ae_int_t m,
     ae_int_t* info,
     barycentricinterpolant* b,
     barycentricfitreport* rep,
     ae_state *_state);
void _pexec_barycentricfitfloaterhormann(/* Real    */ ae_vector* x,
    /* Real    */ ae_vector* y,
    ae_int_t n,
    ae_int_t m,
    ae_int_t* info,
    barycentricinterpolant* b,
    barycentricfitreport* rep, ae_state *_state);
void spline1dfitpenalized(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     ae_int_t n,
     ae_int_t m,
     double rho,
     ae_int_t* info,
     spline1dinterpolant* s,
     spline1dfitreport* rep,
     ae_state *_state);
void _pexec_spline1dfitpenalized(/* Real    */ ae_vector* x,
    /* Real    */ ae_vector* y,
    ae_int_t n,
    ae_int_t m,
    double rho,
    ae_int_t* info,
    spline1dinterpolant* s,
    spline1dfitreport* rep, ae_state *_state);
void spline1dfitpenalizedw(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     /* Real    */ ae_vector* w,
     ae_int_t n,
     ae_int_t m,
     double rho,
     ae_int_t* info,
     spline1dinterpolant* s,
     spline1dfitreport* rep,
     ae_state *_state);
void _pexec_spline1dfitpenalizedw(/* Real    */ ae_vector* x,
    /* Real    */ ae_vector* y,
    /* Real    */ ae_vector* w,
    ae_int_t n,
    ae_int_t m,
    double rho,
    ae_int_t* info,
    spline1dinterpolant* s,
    spline1dfitreport* rep, ae_state *_state);
void spline1dfitcubicwc(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     /* Real    */ ae_vector* w,
     ae_int_t n,
     /* Real    */ ae_vector* xc,
     /* Real    */ ae_vector* yc,
     /* Integer */ ae_vector* dc,
     ae_int_t k,
     ae_int_t m,
     ae_int_t* info,
     spline1dinterpolant* s,
     spline1dfitreport* rep,
     ae_state *_state);
void _pexec_spline1dfitcubicwc(/* Real    */ ae_vector* x,
    /* Real    */ ae_vector* y,
    /* Real    */ ae_vector* w,
    ae_int_t n,
    /* Real    */ ae_vector* xc,
    /* Real    */ ae_vector* yc,
    /* Integer */ ae_vector* dc,
    ae_int_t k,
    ae_int_t m,
    ae_int_t* info,
    spline1dinterpolant* s,
    spline1dfitreport* rep, ae_state *_state);
void spline1dfithermitewc(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     /* Real    */ ae_vector* w,
     ae_int_t n,
     /* Real    */ ae_vector* xc,
     /* Real    */ ae_vector* yc,
     /* Integer */ ae_vector* dc,
     ae_int_t k,
     ae_int_t m,
     ae_int_t* info,
     spline1dinterpolant* s,
     spline1dfitreport* rep,
     ae_state *_state);
void _pexec_spline1dfithermitewc(/* Real    */ ae_vector* x,
    /* Real    */ ae_vector* y,
    /* Real    */ ae_vector* w,
    ae_int_t n,
    /* Real    */ ae_vector* xc,
    /* Real    */ ae_vector* yc,
    /* Integer */ ae_vector* dc,
    ae_int_t k,
    ae_int_t m,
    ae_int_t* info,
    spline1dinterpolant* s,
    spline1dfitreport* rep, ae_state *_state);
void spline1dfitcubic(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     ae_int_t n,
     ae_int_t m,
     ae_int_t* info,
     spline1dinterpolant* s,
     spline1dfitreport* rep,
     ae_state *_state);
void _pexec_spline1dfitcubic(/* Real    */ ae_vector* x,
    /* Real    */ ae_vector* y,
    ae_int_t n,
    ae_int_t m,
    ae_int_t* info,
    spline1dinterpolant* s,
    spline1dfitreport* rep, ae_state *_state);
void spline1dfithermite(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     ae_int_t n,
     ae_int_t m,
     ae_int_t* info,
     spline1dinterpolant* s,
     spline1dfitreport* rep,
     ae_state *_state);
void _pexec_spline1dfithermite(/* Real    */ ae_vector* x,
    /* Real    */ ae_vector* y,
    ae_int_t n,
    ae_int_t m,
    ae_int_t* info,
    spline1dinterpolant* s,
    spline1dfitreport* rep, ae_state *_state);
void lsfitlinearw(/* Real    */ ae_vector* y,
     /* Real    */ ae_vector* w,
     /* Real    */ ae_matrix* fmatrix,
     ae_int_t n,
     ae_int_t m,
     ae_int_t* info,
     /* Real    */ ae_vector* c,
     lsfitreport* rep,
     ae_state *_state);
void _pexec_lsfitlinearw(/* Real    */ ae_vector* y,
    /* Real    */ ae_vector* w,
    /* Real    */ ae_matrix* fmatrix,
    ae_int_t n,
    ae_int_t m,
    ae_int_t* info,
    /* Real    */ ae_vector* c,
    lsfitreport* rep, ae_state *_state);
void lsfitlinearwc(/* Real    */ ae_vector* y,
     /* Real    */ ae_vector* w,
     /* Real    */ ae_matrix* fmatrix,
     /* Real    */ ae_matrix* cmatrix,
     ae_int_t n,
     ae_int_t m,
     ae_int_t k,
     ae_int_t* info,
     /* Real    */ ae_vector* c,
     lsfitreport* rep,
     ae_state *_state);
void _pexec_lsfitlinearwc(/* Real    */ ae_vector* y,
    /* Real    */ ae_vector* w,
    /* Real    */ ae_matrix* fmatrix,
    /* Real    */ ae_matrix* cmatrix,
    ae_int_t n,
    ae_int_t m,
    ae_int_t k,
    ae_int_t* info,
    /* Real    */ ae_vector* c,
    lsfitreport* rep, ae_state *_state);
void lsfitlinear(/* Real    */ ae_vector* y,
     /* Real    */ ae_matrix* fmatrix,
     ae_int_t n,
     ae_int_t m,
     ae_int_t* info,
     /* Real    */ ae_vector* c,
     lsfitreport* rep,
     ae_state *_state);
void _pexec_lsfitlinear(/* Real    */ ae_vector* y,
    /* Real    */ ae_matrix* fmatrix,
    ae_int_t n,
    ae_int_t m,
    ae_int_t* info,
    /* Real    */ ae_vector* c,
    lsfitreport* rep, ae_state *_state);
void lsfitlinearc(/* Real    */ ae_vector* y,
     /* Real    */ ae_matrix* fmatrix,
     /* Real    */ ae_matrix* cmatrix,
     ae_int_t n,
     ae_int_t m,
     ae_int_t k,
     ae_int_t* info,
     /* Real    */ ae_vector* c,
     lsfitreport* rep,
     ae_state *_state);
void _pexec_lsfitlinearc(/* Real    */ ae_vector* y,
    /* Real    */ ae_matrix* fmatrix,
    /* Real    */ ae_matrix* cmatrix,
    ae_int_t n,
    ae_int_t m,
    ae_int_t k,
    ae_int_t* info,
    /* Real    */ ae_vector* c,
    lsfitreport* rep, ae_state *_state);
void lsfitcreatewf(/* Real    */ ae_matrix* x,
     /* Real    */ ae_vector* y,
     /* Real    */ ae_vector* w,
     /* Real    */ ae_vector* c,
     ae_int_t n,
     ae_int_t m,
     ae_int_t k,
     double diffstep,
     lsfitstate* state,
     ae_state *_state);
void lsfitcreatef(/* Real    */ ae_matrix* x,
     /* Real    */ ae_vector* y,
     /* Real    */ ae_vector* c,
     ae_int_t n,
     ae_int_t m,
     ae_int_t k,
     double diffstep,
     lsfitstate* state,
     ae_state *_state);
void lsfitcreatewfg(/* Real    */ ae_matrix* x,
     /* Real    */ ae_vector* y,
     /* Real    */ ae_vector* w,
     /* Real    */ ae_vector* c,
     ae_int_t n,
     ae_int_t m,
     ae_int_t k,
     ae_bool cheapfg,
     lsfitstate* state,
     ae_state *_state);
void lsfitcreatefg(/* Real    */ ae_matrix* x,
     /* Real    */ ae_vector* y,
     /* Real    */ ae_vector* c,
     ae_int_t n,
     ae_int_t m,
     ae_int_t k,
     ae_bool cheapfg,
     lsfitstate* state,
     ae_state *_state);
void lsfitcreatewfgh(/* Real    */ ae_matrix* x,
     /* Real    */ ae_vector* y,
     /* Real    */ ae_vector* w,
     /* Real    */ ae_vector* c,
     ae_int_t n,
     ae_int_t m,
     ae_int_t k,
     lsfitstate* state,
     ae_state *_state);
void lsfitcreatefgh(/* Real    */ ae_matrix* x,
     /* Real    */ ae_vector* y,
     /* Real    */ ae_vector* c,
     ae_int_t n,
     ae_int_t m,
     ae_int_t k,
     lsfitstate* state,
     ae_state *_state);
void lsfitsetcond(lsfitstate* state,
     double epsf,
     double epsx,
     ae_int_t maxits,
     ae_state *_state);
void lsfitsetstpmax(lsfitstate* state, double stpmax, ae_state *_state);
void lsfitsetxrep(lsfitstate* state, ae_bool needxrep, ae_state *_state);
void lsfitsetscale(lsfitstate* state,
     /* Real    */ ae_vector* s,
     ae_state *_state);
void lsfitsetbc(lsfitstate* state,
     /* Real    */ ae_vector* bndl,
     /* Real    */ ae_vector* bndu,
     ae_state *_state);
ae_bool lsfititeration(lsfitstate* state, ae_state *_state);
void lsfitresults(lsfitstate* state,
     ae_int_t* info,
     /* Real    */ ae_vector* c,
     lsfitreport* rep,
     ae_state *_state);
void lsfitsetgradientcheck(lsfitstate* state,
     double teststep,
     ae_state *_state);
void lsfitscalexy(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     /* Real    */ ae_vector* w,
     ae_int_t n,
     /* Real    */ ae_vector* xc,
     /* Real    */ ae_vector* yc,
     /* Integer */ ae_vector* dc,
     ae_int_t k,
     double* xa,
     double* xb,
     double* sa,
     double* sb,
     /* Real    */ ae_vector* xoriginal,
     /* Real    */ ae_vector* yoriginal,
     ae_state *_state);
void _polynomialfitreport_init(void* _p, ae_state *_state);
void _polynomialfitreport_init_copy(void* _dst, void* _src, ae_state *_state);
void _polynomialfitreport_clear(void* _p);
void _polynomialfitreport_destroy(void* _p);
void _barycentricfitreport_init(void* _p, ae_state *_state);
void _barycentricfitreport_init_copy(void* _dst, void* _src, ae_state *_state);
void _barycentricfitreport_clear(void* _p);
void _barycentricfitreport_destroy(void* _p);
void _spline1dfitreport_init(void* _p, ae_state *_state);
void _spline1dfitreport_init_copy(void* _dst, void* _src, ae_state *_state);
void _spline1dfitreport_clear(void* _p);
void _spline1dfitreport_destroy(void* _p);
void _lsfitreport_init(void* _p, ae_state *_state);
void _lsfitreport_init_copy(void* _dst, void* _src, ae_state *_state);
void _lsfitreport_clear(void* _p);
void _lsfitreport_destroy(void* _p);
void _lsfitstate_init(void* _p, ae_state *_state);
void _lsfitstate_init_copy(void* _dst, void* _src, ae_state *_state);
void _lsfitstate_clear(void* _p);
void _lsfitstate_destroy(void* _p);
void pspline2build(/* Real    */ ae_matrix* xy,
     ae_int_t n,
     ae_int_t st,
     ae_int_t pt,
     pspline2interpolant* p,
     ae_state *_state);
void pspline3build(/* Real    */ ae_matrix* xy,
     ae_int_t n,
     ae_int_t st,
     ae_int_t pt,
     pspline3interpolant* p,
     ae_state *_state);
void pspline2buildperiodic(/* Real    */ ae_matrix* xy,
     ae_int_t n,
     ae_int_t st,
     ae_int_t pt,
     pspline2interpolant* p,
     ae_state *_state);
void pspline3buildperiodic(/* Real    */ ae_matrix* xy,
     ae_int_t n,
     ae_int_t st,
     ae_int_t pt,
     pspline3interpolant* p,
     ae_state *_state);
void pspline2parametervalues(pspline2interpolant* p,
     ae_int_t* n,
     /* Real    */ ae_vector* t,
     ae_state *_state);
void pspline3parametervalues(pspline3interpolant* p,
     ae_int_t* n,
     /* Real    */ ae_vector* t,
     ae_state *_state);
void pspline2calc(pspline2interpolant* p,
     double t,
     double* x,
     double* y,
     ae_state *_state);
void pspline3calc(pspline3interpolant* p,
     double t,
     double* x,
     double* y,
     double* z,
     ae_state *_state);
void pspline2tangent(pspline2interpolant* p,
     double t,
     double* x,
     double* y,
     ae_state *_state);
void pspline3tangent(pspline3interpolant* p,
     double t,
     double* x,
     double* y,
     double* z,
     ae_state *_state);
void pspline2diff(pspline2interpolant* p,
     double t,
     double* x,
     double* dx,
     double* y,
     double* dy,
     ae_state *_state);
void pspline3diff(pspline3interpolant* p,
     double t,
     double* x,
     double* dx,
     double* y,
     double* dy,
     double* z,
     double* dz,
     ae_state *_state);
void pspline2diff2(pspline2interpolant* p,
     double t,
     double* x,
     double* dx,
     double* d2x,
     double* y,
     double* dy,
     double* d2y,
     ae_state *_state);
void pspline3diff2(pspline3interpolant* p,
     double t,
     double* x,
     double* dx,
     double* d2x,
     double* y,
     double* dy,
     double* d2y,
     double* z,
     double* dz,
     double* d2z,
     ae_state *_state);
double pspline2arclength(pspline2interpolant* p,
     double a,
     double b,
     ae_state *_state);
double pspline3arclength(pspline3interpolant* p,
     double a,
     double b,
     ae_state *_state);
void parametricrdpfixed(/* Real    */ ae_matrix* x,
     ae_int_t n,
     ae_int_t d,
     ae_int_t stopm,
     double stopeps,
     /* Real    */ ae_matrix* x2,
     /* Integer */ ae_vector* idx2,
     ae_int_t* nsections,
     ae_state *_state);
void _pspline2interpolant_init(void* _p, ae_state *_state);
void _pspline2interpolant_init_copy(void* _dst, void* _src, ae_state *_state);
void _pspline2interpolant_clear(void* _p);
void _pspline2interpolant_destroy(void* _p);
void _pspline3interpolant_init(void* _p, ae_state *_state);
void _pspline3interpolant_init_copy(void* _dst, void* _src, ae_state *_state);
void _pspline3interpolant_clear(void* _p);
void _pspline3interpolant_destroy(void* _p);
void rbfcreate(ae_int_t nx, ae_int_t ny, rbfmodel* s, ae_state *_state);
void rbfsetpoints(rbfmodel* s,
     /* Real    */ ae_matrix* xy,
     ae_int_t n,
     ae_state *_state);
void rbfsetalgoqnn(rbfmodel* s, double q, double z, ae_state *_state);
void rbfsetalgomultilayer(rbfmodel* s,
     double rbase,
     ae_int_t nlayers,
     double lambdav,
     ae_state *_state);
void rbfsetlinterm(rbfmodel* s, ae_state *_state);
void rbfsetconstterm(rbfmodel* s, ae_state *_state);
void rbfsetzeroterm(rbfmodel* s, ae_state *_state);
void rbfsetcond(rbfmodel* s,
     double epsort,
     double epserr,
     ae_int_t maxits,
     ae_state *_state);
void rbfbuildmodel(rbfmodel* s, rbfreport* rep, ae_state *_state);
double rbfcalc2(rbfmodel* s, double x0, double x1, ae_state *_state);
double rbfcalc3(rbfmodel* s,
     double x0,
     double x1,
     double x2,
     ae_state *_state);
void rbfcalc(rbfmodel* s,
     /* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     ae_state *_state);
void rbfcalcbuf(rbfmodel* s,
     /* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     ae_state *_state);
void rbfgridcalc2(rbfmodel* s,
     /* Real    */ ae_vector* x0,
     ae_int_t n0,
     /* Real    */ ae_vector* x1,
     ae_int_t n1,
     /* Real    */ ae_matrix* y,
     ae_state *_state);
void rbfunpack(rbfmodel* s,
     ae_int_t* nx,
     ae_int_t* ny,
     /* Real    */ ae_matrix* xwr,
     ae_int_t* nc,
     /* Real    */ ae_matrix* v,
     ae_state *_state);
void rbfalloc(ae_serializer* s, rbfmodel* model, ae_state *_state);
void rbfserialize(ae_serializer* s, rbfmodel* model, ae_state *_state);
void rbfunserialize(ae_serializer* s, rbfmodel* model, ae_state *_state);
void _rbfmodel_init(void* _p, ae_state *_state);
void _rbfmodel_init_copy(void* _dst, void* _src, ae_state *_state);
void _rbfmodel_clear(void* _p);
void _rbfmodel_destroy(void* _p);
void _rbfreport_init(void* _p, ae_state *_state);
void _rbfreport_init_copy(void* _dst, void* _src, ae_state *_state);
void _rbfreport_clear(void* _p);
void _rbfreport_destroy(void* _p);
double spline2dcalc(spline2dinterpolant* c,
     double x,
     double y,
     ae_state *_state);
void spline2ddiff(spline2dinterpolant* c,
     double x,
     double y,
     double* f,
     double* fx,
     double* fy,
     double* fxy,
     ae_state *_state);
void spline2dlintransxy(spline2dinterpolant* c,
     double ax,
     double bx,
     double ay,
     double by,
     ae_state *_state);
void spline2dlintransf(spline2dinterpolant* c,
     double a,
     double b,
     ae_state *_state);
void spline2dcopy(spline2dinterpolant* c,
     spline2dinterpolant* cc,
     ae_state *_state);
void spline2dresamplebicubic(/* Real    */ ae_matrix* a,
     ae_int_t oldheight,
     ae_int_t oldwidth,
     /* Real    */ ae_matrix* b,
     ae_int_t newheight,
     ae_int_t newwidth,
     ae_state *_state);
void spline2dresamplebilinear(/* Real    */ ae_matrix* a,
     ae_int_t oldheight,
     ae_int_t oldwidth,
     /* Real    */ ae_matrix* b,
     ae_int_t newheight,
     ae_int_t newwidth,
     ae_state *_state);
void spline2dbuildbilinearv(/* Real    */ ae_vector* x,
     ae_int_t n,
     /* Real    */ ae_vector* y,
     ae_int_t m,
     /* Real    */ ae_vector* f,
     ae_int_t d,
     spline2dinterpolant* c,
     ae_state *_state);
void spline2dbuildbicubicv(/* Real    */ ae_vector* x,
     ae_int_t n,
     /* Real    */ ae_vector* y,
     ae_int_t m,
     /* Real    */ ae_vector* f,
     ae_int_t d,
     spline2dinterpolant* c,
     ae_state *_state);
void spline2dcalcvbuf(spline2dinterpolant* c,
     double x,
     double y,
     /* Real    */ ae_vector* f,
     ae_state *_state);
void spline2dcalcv(spline2dinterpolant* c,
     double x,
     double y,
     /* Real    */ ae_vector* f,
     ae_state *_state);
void spline2dunpackv(spline2dinterpolant* c,
     ae_int_t* m,
     ae_int_t* n,
     ae_int_t* d,
     /* Real    */ ae_matrix* tbl,
     ae_state *_state);
void spline2dbuildbilinear(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     /* Real    */ ae_matrix* f,
     ae_int_t m,
     ae_int_t n,
     spline2dinterpolant* c,
     ae_state *_state);
void spline2dbuildbicubic(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     /* Real    */ ae_matrix* f,
     ae_int_t m,
     ae_int_t n,
     spline2dinterpolant* c,
     ae_state *_state);
void spline2dunpack(spline2dinterpolant* c,
     ae_int_t* m,
     ae_int_t* n,
     /* Real    */ ae_matrix* tbl,
     ae_state *_state);
void _spline2dinterpolant_init(void* _p, ae_state *_state);
void _spline2dinterpolant_init_copy(void* _dst, void* _src, ae_state *_state);
void _spline2dinterpolant_clear(void* _p);
void _spline2dinterpolant_destroy(void* _p);
double spline3dcalc(spline3dinterpolant* c,
     double x,
     double y,
     double z,
     ae_state *_state);
void spline3dlintransxyz(spline3dinterpolant* c,
     double ax,
     double bx,
     double ay,
     double by,
     double az,
     double bz,
     ae_state *_state);
void spline3dlintransf(spline3dinterpolant* c,
     double a,
     double b,
     ae_state *_state);
void spline3dcopy(spline3dinterpolant* c,
     spline3dinterpolant* cc,
     ae_state *_state);
void spline3dresampletrilinear(/* Real    */ ae_vector* a,
     ae_int_t oldzcount,
     ae_int_t oldycount,
     ae_int_t oldxcount,
     ae_int_t newzcount,
     ae_int_t newycount,
     ae_int_t newxcount,
     /* Real    */ ae_vector* b,
     ae_state *_state);
void spline3dbuildtrilinearv(/* Real    */ ae_vector* x,
     ae_int_t n,
     /* Real    */ ae_vector* y,
     ae_int_t m,
     /* Real    */ ae_vector* z,
     ae_int_t l,
     /* Real    */ ae_vector* f,
     ae_int_t d,
     spline3dinterpolant* c,
     ae_state *_state);
void spline3dcalcvbuf(spline3dinterpolant* c,
     double x,
     double y,
     double z,
     /* Real    */ ae_vector* f,
     ae_state *_state);
void spline3dcalcv(spline3dinterpolant* c,
     double x,
     double y,
     double z,
     /* Real    */ ae_vector* f,
     ae_state *_state);
void spline3dunpackv(spline3dinterpolant* c,
     ae_int_t* n,
     ae_int_t* m,
     ae_int_t* l,
     ae_int_t* d,
     ae_int_t* stype,
     /* Real    */ ae_matrix* tbl,
     ae_state *_state);
void _spline3dinterpolant_init(void* _p, ae_state *_state);
void _spline3dinterpolant_init_copy(void* _dst, void* _src, ae_state *_state);
void _spline3dinterpolant_clear(void* _p);
void _spline3dinterpolant_destroy(void* _p);

}
#endif