/usr/include/libalglib/linalg.h is in libalglib-dev 3.10.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 | /*************************************************************************
ALGLIB 3.10.0 (source code generated 2015-08-19)
Copyright (c) Sergey Bochkanov (ALGLIB project).
>>> SOURCE LICENSE >>>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation (www.fsf.org); either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
A copy of the GNU General Public License is available at
http://www.fsf.org/licensing/licenses
>>> END OF LICENSE >>>
*************************************************************************/
#ifndef _linalg_pkg_h
#define _linalg_pkg_h
#include "ap.h"
#include "alglibinternal.h"
#include "alglibmisc.h"
/////////////////////////////////////////////////////////////////////////
//
// THIS SECTION CONTAINS COMPUTATIONAL CORE DECLARATIONS (DATATYPES)
//
/////////////////////////////////////////////////////////////////////////
namespace alglib_impl
{
typedef struct
{
ae_vector vals;
ae_vector idx;
ae_vector ridx;
ae_vector didx;
ae_vector uidx;
ae_int_t matrixtype;
ae_int_t m;
ae_int_t n;
ae_int_t nfree;
ae_int_t ninitialized;
ae_int_t tablesize;
} sparsematrix;
typedef struct
{
ae_vector d;
ae_vector u;
sparsematrix s;
} sparsebuffers;
typedef struct
{
double r1;
double rinf;
} matinvreport;
typedef struct
{
double e1;
double e2;
ae_vector x;
ae_vector ax;
double xax;
ae_int_t n;
ae_vector rk;
ae_vector rk1;
ae_vector xk;
ae_vector xk1;
ae_vector pk;
ae_vector pk1;
ae_vector b;
rcommstate rstate;
ae_vector tmp2;
} fblslincgstate;
typedef struct
{
ae_int_t n;
ae_int_t m;
ae_int_t nstart;
ae_int_t nits;
ae_int_t seedval;
ae_vector x0;
ae_vector x1;
ae_vector t;
ae_vector xbest;
hqrndstate r;
ae_vector x;
ae_vector mv;
ae_vector mtv;
ae_bool needmv;
ae_bool needmtv;
double repnorm;
rcommstate rstate;
} normestimatorstate;
}
/////////////////////////////////////////////////////////////////////////
//
// THIS SECTION CONTAINS C++ INTERFACE
//
/////////////////////////////////////////////////////////////////////////
namespace alglib
{
/*************************************************************************
Sparse matrix structure.
You should use ALGLIB functions to work with sparse matrix. Never try to
access its fields directly!
NOTES ON THE SPARSE STORAGE FORMATS
Sparse matrices can be stored using several formats:
* Hash-Table representation
* Compressed Row Storage (CRS)
* Skyline matrix storage (SKS)
Each of the formats has benefits and drawbacks:
* Hash-table is good for dynamic operations (insertion of new elements),
but does not support linear algebra operations
* CRS is good for operations like matrix-vector or matrix-matrix products,
but its initialization is less convenient - you have to tell row sizes
at the initialization, and you have to fill matrix only row by row,
from left to right.
* SKS is a special format which is used to store triangular factors from
Cholesky factorization. It does not support dynamic modification, and
support for linear algebra operations is very limited.
Tables below outline information about these two formats:
OPERATIONS WITH MATRIX HASH CRS SKS
creation + + +
SparseGet + + +
SparseRewriteExisting + + +
SparseSet +
SparseAdd +
SparseGetRow + +
SparseGetCompressedRow + +
sparse-dense linear algebra + +
*************************************************************************/
class _sparsematrix_owner
{
public:
_sparsematrix_owner();
_sparsematrix_owner(const _sparsematrix_owner &rhs);
_sparsematrix_owner& operator=(const _sparsematrix_owner &rhs);
virtual ~_sparsematrix_owner();
alglib_impl::sparsematrix* c_ptr();
alglib_impl::sparsematrix* c_ptr() const;
protected:
alglib_impl::sparsematrix *p_struct;
};
class sparsematrix : public _sparsematrix_owner
{
public:
sparsematrix();
sparsematrix(const sparsematrix &rhs);
sparsematrix& operator=(const sparsematrix &rhs);
virtual ~sparsematrix();
};
/*************************************************************************
Temporary buffers for sparse matrix operations.
You should pass an instance of this structure to factorization functions.
It allows to reuse memory during repeated sparse factorizations. You do
not have to call some initialization function - simply passing an instance
to factorization function is enough.
*************************************************************************/
class _sparsebuffers_owner
{
public:
_sparsebuffers_owner();
_sparsebuffers_owner(const _sparsebuffers_owner &rhs);
_sparsebuffers_owner& operator=(const _sparsebuffers_owner &rhs);
virtual ~_sparsebuffers_owner();
alglib_impl::sparsebuffers* c_ptr();
alglib_impl::sparsebuffers* c_ptr() const;
protected:
alglib_impl::sparsebuffers *p_struct;
};
class sparsebuffers : public _sparsebuffers_owner
{
public:
sparsebuffers();
sparsebuffers(const sparsebuffers &rhs);
sparsebuffers& operator=(const sparsebuffers &rhs);
virtual ~sparsebuffers();
};
/*************************************************************************
Matrix inverse report:
* R1 reciprocal of condition number in 1-norm
* RInf reciprocal of condition number in inf-norm
*************************************************************************/
class _matinvreport_owner
{
public:
_matinvreport_owner();
_matinvreport_owner(const _matinvreport_owner &rhs);
_matinvreport_owner& operator=(const _matinvreport_owner &rhs);
virtual ~_matinvreport_owner();
alglib_impl::matinvreport* c_ptr();
alglib_impl::matinvreport* c_ptr() const;
protected:
alglib_impl::matinvreport *p_struct;
};
class matinvreport : public _matinvreport_owner
{
public:
matinvreport();
matinvreport(const matinvreport &rhs);
matinvreport& operator=(const matinvreport &rhs);
virtual ~matinvreport();
double &r1;
double &rinf;
};
/*************************************************************************
This object stores state of the iterative norm estimation algorithm.
You should use ALGLIB functions to work with this object.
*************************************************************************/
class _normestimatorstate_owner
{
public:
_normestimatorstate_owner();
_normestimatorstate_owner(const _normestimatorstate_owner &rhs);
_normestimatorstate_owner& operator=(const _normestimatorstate_owner &rhs);
virtual ~_normestimatorstate_owner();
alglib_impl::normestimatorstate* c_ptr();
alglib_impl::normestimatorstate* c_ptr() const;
protected:
alglib_impl::normestimatorstate *p_struct;
};
class normestimatorstate : public _normestimatorstate_owner
{
public:
normestimatorstate();
normestimatorstate(const normestimatorstate &rhs);
normestimatorstate& operator=(const normestimatorstate &rhs);
virtual ~normestimatorstate();
};
/*************************************************************************
Cache-oblivous complex "copy-and-transpose"
Input parameters:
M - number of rows
N - number of columns
A - source matrix, MxN submatrix is copied and transposed
IA - submatrix offset (row index)
JA - submatrix offset (column index)
B - destination matrix, must be large enough to store result
IB - submatrix offset (row index)
JB - submatrix offset (column index)
*************************************************************************/
void cmatrixtranspose(const ae_int_t m, const ae_int_t n, const complex_2d_array &a, const ae_int_t ia, const ae_int_t ja, complex_2d_array &b, const ae_int_t ib, const ae_int_t jb);
/*************************************************************************
Cache-oblivous real "copy-and-transpose"
Input parameters:
M - number of rows
N - number of columns
A - source matrix, MxN submatrix is copied and transposed
IA - submatrix offset (row index)
JA - submatrix offset (column index)
B - destination matrix, must be large enough to store result
IB - submatrix offset (row index)
JB - submatrix offset (column index)
*************************************************************************/
void rmatrixtranspose(const ae_int_t m, const ae_int_t n, const real_2d_array &a, const ae_int_t ia, const ae_int_t ja, const real_2d_array &b, const ae_int_t ib, const ae_int_t jb);
/*************************************************************************
This code enforces symmetricy of the matrix by copying Upper part to lower
one (or vice versa).
INPUT PARAMETERS:
A - matrix
N - number of rows/columns
IsUpper - whether we want to copy upper triangle to lower one (True)
or vice versa (False).
*************************************************************************/
void rmatrixenforcesymmetricity(const real_2d_array &a, const ae_int_t n, const bool isupper);
/*************************************************************************
Copy
Input parameters:
M - number of rows
N - number of columns
A - source matrix, MxN submatrix is copied and transposed
IA - submatrix offset (row index)
JA - submatrix offset (column index)
B - destination matrix, must be large enough to store result
IB - submatrix offset (row index)
JB - submatrix offset (column index)
*************************************************************************/
void cmatrixcopy(const ae_int_t m, const ae_int_t n, const complex_2d_array &a, const ae_int_t ia, const ae_int_t ja, complex_2d_array &b, const ae_int_t ib, const ae_int_t jb);
/*************************************************************************
Copy
Input parameters:
M - number of rows
N - number of columns
A - source matrix, MxN submatrix is copied and transposed
IA - submatrix offset (row index)
JA - submatrix offset (column index)
B - destination matrix, must be large enough to store result
IB - submatrix offset (row index)
JB - submatrix offset (column index)
*************************************************************************/
void rmatrixcopy(const ae_int_t m, const ae_int_t n, const real_2d_array &a, const ae_int_t ia, const ae_int_t ja, real_2d_array &b, const ae_int_t ib, const ae_int_t jb);
/*************************************************************************
Rank-1 correction: A := A + u*v'
INPUT PARAMETERS:
M - number of rows
N - number of columns
A - target matrix, MxN submatrix is updated
IA - submatrix offset (row index)
JA - submatrix offset (column index)
U - vector #1
IU - subvector offset
V - vector #2
IV - subvector offset
*************************************************************************/
void cmatrixrank1(const ae_int_t m, const ae_int_t n, complex_2d_array &a, const ae_int_t ia, const ae_int_t ja, complex_1d_array &u, const ae_int_t iu, complex_1d_array &v, const ae_int_t iv);
/*************************************************************************
Rank-1 correction: A := A + u*v'
INPUT PARAMETERS:
M - number of rows
N - number of columns
A - target matrix, MxN submatrix is updated
IA - submatrix offset (row index)
JA - submatrix offset (column index)
U - vector #1
IU - subvector offset
V - vector #2
IV - subvector offset
*************************************************************************/
void rmatrixrank1(const ae_int_t m, const ae_int_t n, real_2d_array &a, const ae_int_t ia, const ae_int_t ja, real_1d_array &u, const ae_int_t iu, real_1d_array &v, const ae_int_t iv);
/*************************************************************************
Matrix-vector product: y := op(A)*x
INPUT PARAMETERS:
M - number of rows of op(A)
M>=0
N - number of columns of op(A)
N>=0
A - target matrix
IA - submatrix offset (row index)
JA - submatrix offset (column index)
OpA - operation type:
* OpA=0 => op(A) = A
* OpA=1 => op(A) = A^T
* OpA=2 => op(A) = A^H
X - input vector
IX - subvector offset
IY - subvector offset
Y - preallocated matrix, must be large enough to store result
OUTPUT PARAMETERS:
Y - vector which stores result
if M=0, then subroutine does nothing.
if N=0, Y is filled by zeros.
-- ALGLIB routine --
28.01.2010
Bochkanov Sergey
*************************************************************************/
void cmatrixmv(const ae_int_t m, const ae_int_t n, const complex_2d_array &a, const ae_int_t ia, const ae_int_t ja, const ae_int_t opa, const complex_1d_array &x, const ae_int_t ix, complex_1d_array &y, const ae_int_t iy);
/*************************************************************************
Matrix-vector product: y := op(A)*x
INPUT PARAMETERS:
M - number of rows of op(A)
N - number of columns of op(A)
A - target matrix
IA - submatrix offset (row index)
JA - submatrix offset (column index)
OpA - operation type:
* OpA=0 => op(A) = A
* OpA=1 => op(A) = A^T
X - input vector
IX - subvector offset
IY - subvector offset
Y - preallocated matrix, must be large enough to store result
OUTPUT PARAMETERS:
Y - vector which stores result
if M=0, then subroutine does nothing.
if N=0, Y is filled by zeros.
-- ALGLIB routine --
28.01.2010
Bochkanov Sergey
*************************************************************************/
void rmatrixmv(const ae_int_t m, const ae_int_t n, const real_2d_array &a, const ae_int_t ia, const ae_int_t ja, const ae_int_t opa, const real_1d_array &x, const ae_int_t ix, real_1d_array &y, const ae_int_t iy);
/*************************************************************************
This subroutine calculates X*op(A^-1) where:
* X is MxN general matrix
* A is NxN upper/lower triangular/unitriangular matrix
* "op" may be identity transformation, transposition, conjugate transposition
Multiplication result replaces X.
Cache-oblivious algorithm is used.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. Because starting/stopping worker thread always
! involves some overhead, parallelism starts to be profitable for N's
! larger than 128.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
INPUT PARAMETERS
N - matrix size, N>=0
M - matrix size, N>=0
A - matrix, actial matrix is stored in A[I1:I1+N-1,J1:J1+N-1]
I1 - submatrix offset
J1 - submatrix offset
IsUpper - whether matrix is upper triangular
IsUnit - whether matrix is unitriangular
OpType - transformation type:
* 0 - no transformation
* 1 - transposition
* 2 - conjugate transposition
X - matrix, actial matrix is stored in X[I2:I2+M-1,J2:J2+N-1]
I2 - submatrix offset
J2 - submatrix offset
-- ALGLIB routine --
15.12.2009
Bochkanov Sergey
*************************************************************************/
void cmatrixrighttrsm(const ae_int_t m, const ae_int_t n, const complex_2d_array &a, const ae_int_t i1, const ae_int_t j1, const bool isupper, const bool isunit, const ae_int_t optype, const complex_2d_array &x, const ae_int_t i2, const ae_int_t j2);
void smp_cmatrixrighttrsm(const ae_int_t m, const ae_int_t n, const complex_2d_array &a, const ae_int_t i1, const ae_int_t j1, const bool isupper, const bool isunit, const ae_int_t optype, const complex_2d_array &x, const ae_int_t i2, const ae_int_t j2);
/*************************************************************************
This subroutine calculates op(A^-1)*X where:
* X is MxN general matrix
* A is MxM upper/lower triangular/unitriangular matrix
* "op" may be identity transformation, transposition, conjugate transposition
Multiplication result replaces X.
Cache-oblivious algorithm is used.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. Because starting/stopping worker thread always
! involves some overhead, parallelism starts to be profitable for N's
! larger than 128.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
INPUT PARAMETERS
N - matrix size, N>=0
M - matrix size, N>=0
A - matrix, actial matrix is stored in A[I1:I1+M-1,J1:J1+M-1]
I1 - submatrix offset
J1 - submatrix offset
IsUpper - whether matrix is upper triangular
IsUnit - whether matrix is unitriangular
OpType - transformation type:
* 0 - no transformation
* 1 - transposition
* 2 - conjugate transposition
X - matrix, actial matrix is stored in X[I2:I2+M-1,J2:J2+N-1]
I2 - submatrix offset
J2 - submatrix offset
-- ALGLIB routine --
15.12.2009
Bochkanov Sergey
*************************************************************************/
void cmatrixlefttrsm(const ae_int_t m, const ae_int_t n, const complex_2d_array &a, const ae_int_t i1, const ae_int_t j1, const bool isupper, const bool isunit, const ae_int_t optype, const complex_2d_array &x, const ae_int_t i2, const ae_int_t j2);
void smp_cmatrixlefttrsm(const ae_int_t m, const ae_int_t n, const complex_2d_array &a, const ae_int_t i1, const ae_int_t j1, const bool isupper, const bool isunit, const ae_int_t optype, const complex_2d_array &x, const ae_int_t i2, const ae_int_t j2);
/*************************************************************************
This subroutine calculates X*op(A^-1) where:
* X is MxN general matrix
* A is NxN upper/lower triangular/unitriangular matrix
* "op" may be identity transformation, transposition
Multiplication result replaces X.
Cache-oblivious algorithm is used.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. Because starting/stopping worker thread always
! involves some overhead, parallelism starts to be profitable for N's
! larger than 128.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
INPUT PARAMETERS
N - matrix size, N>=0
M - matrix size, N>=0
A - matrix, actial matrix is stored in A[I1:I1+N-1,J1:J1+N-1]
I1 - submatrix offset
J1 - submatrix offset
IsUpper - whether matrix is upper triangular
IsUnit - whether matrix is unitriangular
OpType - transformation type:
* 0 - no transformation
* 1 - transposition
X - matrix, actial matrix is stored in X[I2:I2+M-1,J2:J2+N-1]
I2 - submatrix offset
J2 - submatrix offset
-- ALGLIB routine --
15.12.2009
Bochkanov Sergey
*************************************************************************/
void rmatrixrighttrsm(const ae_int_t m, const ae_int_t n, const real_2d_array &a, const ae_int_t i1, const ae_int_t j1, const bool isupper, const bool isunit, const ae_int_t optype, const real_2d_array &x, const ae_int_t i2, const ae_int_t j2);
void smp_rmatrixrighttrsm(const ae_int_t m, const ae_int_t n, const real_2d_array &a, const ae_int_t i1, const ae_int_t j1, const bool isupper, const bool isunit, const ae_int_t optype, const real_2d_array &x, const ae_int_t i2, const ae_int_t j2);
/*************************************************************************
This subroutine calculates op(A^-1)*X where:
* X is MxN general matrix
* A is MxM upper/lower triangular/unitriangular matrix
* "op" may be identity transformation, transposition
Multiplication result replaces X.
Cache-oblivious algorithm is used.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. Because starting/stopping worker thread always
! involves some overhead, parallelism starts to be profitable for N's
! larger than 128.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
INPUT PARAMETERS
N - matrix size, N>=0
M - matrix size, N>=0
A - matrix, actial matrix is stored in A[I1:I1+M-1,J1:J1+M-1]
I1 - submatrix offset
J1 - submatrix offset
IsUpper - whether matrix is upper triangular
IsUnit - whether matrix is unitriangular
OpType - transformation type:
* 0 - no transformation
* 1 - transposition
X - matrix, actial matrix is stored in X[I2:I2+M-1,J2:J2+N-1]
I2 - submatrix offset
J2 - submatrix offset
-- ALGLIB routine --
15.12.2009
Bochkanov Sergey
*************************************************************************/
void rmatrixlefttrsm(const ae_int_t m, const ae_int_t n, const real_2d_array &a, const ae_int_t i1, const ae_int_t j1, const bool isupper, const bool isunit, const ae_int_t optype, const real_2d_array &x, const ae_int_t i2, const ae_int_t j2);
void smp_rmatrixlefttrsm(const ae_int_t m, const ae_int_t n, const real_2d_array &a, const ae_int_t i1, const ae_int_t j1, const bool isupper, const bool isunit, const ae_int_t optype, const real_2d_array &x, const ae_int_t i2, const ae_int_t j2);
/*************************************************************************
This subroutine calculates C=alpha*A*A^H+beta*C or C=alpha*A^H*A+beta*C
where:
* C is NxN Hermitian matrix given by its upper/lower triangle
* A is NxK matrix when A*A^H is calculated, KxN matrix otherwise
Additional info:
* cache-oblivious algorithm is used.
* multiplication result replaces C. If Beta=0, C elements are not used in
calculations (not multiplied by zero - just not referenced)
* if Alpha=0, A is not used (not multiplied by zero - just not referenced)
* if both Beta and Alpha are zero, C is filled by zeros.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. Because starting/stopping worker thread always
! involves some overhead, parallelism starts to be profitable for N's
! larger than 128.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
INPUT PARAMETERS
N - matrix size, N>=0
K - matrix size, K>=0
Alpha - coefficient
A - matrix
IA - submatrix offset (row index)
JA - submatrix offset (column index)
OpTypeA - multiplication type:
* 0 - A*A^H is calculated
* 2 - A^H*A is calculated
Beta - coefficient
C - preallocated input/output matrix
IC - submatrix offset (row index)
JC - submatrix offset (column index)
IsUpper - whether upper or lower triangle of C is updated;
this function updates only one half of C, leaving
other half unchanged (not referenced at all).
-- ALGLIB routine --
16.12.2009
Bochkanov Sergey
*************************************************************************/
void cmatrixherk(const ae_int_t n, const ae_int_t k, const double alpha, const complex_2d_array &a, const ae_int_t ia, const ae_int_t ja, const ae_int_t optypea, const double beta, const complex_2d_array &c, const ae_int_t ic, const ae_int_t jc, const bool isupper);
void smp_cmatrixherk(const ae_int_t n, const ae_int_t k, const double alpha, const complex_2d_array &a, const ae_int_t ia, const ae_int_t ja, const ae_int_t optypea, const double beta, const complex_2d_array &c, const ae_int_t ic, const ae_int_t jc, const bool isupper);
/*************************************************************************
This subroutine calculates C=alpha*A*A^T+beta*C or C=alpha*A^T*A+beta*C
where:
* C is NxN symmetric matrix given by its upper/lower triangle
* A is NxK matrix when A*A^T is calculated, KxN matrix otherwise
Additional info:
* cache-oblivious algorithm is used.
* multiplication result replaces C. If Beta=0, C elements are not used in
calculations (not multiplied by zero - just not referenced)
* if Alpha=0, A is not used (not multiplied by zero - just not referenced)
* if both Beta and Alpha are zero, C is filled by zeros.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. Because starting/stopping worker thread always
! involves some overhead, parallelism starts to be profitable for N's
! larger than 128.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
INPUT PARAMETERS
N - matrix size, N>=0
K - matrix size, K>=0
Alpha - coefficient
A - matrix
IA - submatrix offset (row index)
JA - submatrix offset (column index)
OpTypeA - multiplication type:
* 0 - A*A^T is calculated
* 2 - A^T*A is calculated
Beta - coefficient
C - preallocated input/output matrix
IC - submatrix offset (row index)
JC - submatrix offset (column index)
IsUpper - whether C is upper triangular or lower triangular
-- ALGLIB routine --
16.12.2009
Bochkanov Sergey
*************************************************************************/
void rmatrixsyrk(const ae_int_t n, const ae_int_t k, const double alpha, const real_2d_array &a, const ae_int_t ia, const ae_int_t ja, const ae_int_t optypea, const double beta, const real_2d_array &c, const ae_int_t ic, const ae_int_t jc, const bool isupper);
void smp_rmatrixsyrk(const ae_int_t n, const ae_int_t k, const double alpha, const real_2d_array &a, const ae_int_t ia, const ae_int_t ja, const ae_int_t optypea, const double beta, const real_2d_array &c, const ae_int_t ic, const ae_int_t jc, const bool isupper);
/*************************************************************************
This subroutine calculates C = alpha*op1(A)*op2(B) +beta*C where:
* C is MxN general matrix
* op1(A) is MxK matrix
* op2(B) is KxN matrix
* "op" may be identity transformation, transposition, conjugate transposition
Additional info:
* cache-oblivious algorithm is used.
* multiplication result replaces C. If Beta=0, C elements are not used in
calculations (not multiplied by zero - just not referenced)
* if Alpha=0, A is not used (not multiplied by zero - just not referenced)
* if both Beta and Alpha are zero, C is filled by zeros.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. Because starting/stopping worker thread always
! involves some overhead, parallelism starts to be profitable for N's
! larger than 128.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
IMPORTANT:
This function does NOT preallocate output matrix C, it MUST be preallocated
by caller prior to calling this function. In case C does not have enough
space to store result, exception will be generated.
INPUT PARAMETERS
M - matrix size, M>0
N - matrix size, N>0
K - matrix size, K>0
Alpha - coefficient
A - matrix
IA - submatrix offset
JA - submatrix offset
OpTypeA - transformation type:
* 0 - no transformation
* 1 - transposition
* 2 - conjugate transposition
B - matrix
IB - submatrix offset
JB - submatrix offset
OpTypeB - transformation type:
* 0 - no transformation
* 1 - transposition
* 2 - conjugate transposition
Beta - coefficient
C - matrix (PREALLOCATED, large enough to store result)
IC - submatrix offset
JC - submatrix offset
-- ALGLIB routine --
16.12.2009
Bochkanov Sergey
*************************************************************************/
void cmatrixgemm(const ae_int_t m, const ae_int_t n, const ae_int_t k, const alglib::complex alpha, const complex_2d_array &a, const ae_int_t ia, const ae_int_t ja, const ae_int_t optypea, const complex_2d_array &b, const ae_int_t ib, const ae_int_t jb, const ae_int_t optypeb, const alglib::complex beta, const complex_2d_array &c, const ae_int_t ic, const ae_int_t jc);
void smp_cmatrixgemm(const ae_int_t m, const ae_int_t n, const ae_int_t k, const alglib::complex alpha, const complex_2d_array &a, const ae_int_t ia, const ae_int_t ja, const ae_int_t optypea, const complex_2d_array &b, const ae_int_t ib, const ae_int_t jb, const ae_int_t optypeb, const alglib::complex beta, const complex_2d_array &c, const ae_int_t ic, const ae_int_t jc);
/*************************************************************************
This subroutine calculates C = alpha*op1(A)*op2(B) +beta*C where:
* C is MxN general matrix
* op1(A) is MxK matrix
* op2(B) is KxN matrix
* "op" may be identity transformation, transposition
Additional info:
* cache-oblivious algorithm is used.
* multiplication result replaces C. If Beta=0, C elements are not used in
calculations (not multiplied by zero - just not referenced)
* if Alpha=0, A is not used (not multiplied by zero - just not referenced)
* if both Beta and Alpha are zero, C is filled by zeros.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. Because starting/stopping worker thread always
! involves some overhead, parallelism starts to be profitable for N's
! larger than 128.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
IMPORTANT:
This function does NOT preallocate output matrix C, it MUST be preallocated
by caller prior to calling this function. In case C does not have enough
space to store result, exception will be generated.
INPUT PARAMETERS
M - matrix size, M>0
N - matrix size, N>0
K - matrix size, K>0
Alpha - coefficient
A - matrix
IA - submatrix offset
JA - submatrix offset
OpTypeA - transformation type:
* 0 - no transformation
* 1 - transposition
B - matrix
IB - submatrix offset
JB - submatrix offset
OpTypeB - transformation type:
* 0 - no transformation
* 1 - transposition
Beta - coefficient
C - PREALLOCATED output matrix, large enough to store result
IC - submatrix offset
JC - submatrix offset
-- ALGLIB routine --
2009-2013
Bochkanov Sergey
*************************************************************************/
void rmatrixgemm(const ae_int_t m, const ae_int_t n, const ae_int_t k, const double alpha, const real_2d_array &a, const ae_int_t ia, const ae_int_t ja, const ae_int_t optypea, const real_2d_array &b, const ae_int_t ib, const ae_int_t jb, const ae_int_t optypeb, const double beta, const real_2d_array &c, const ae_int_t ic, const ae_int_t jc);
void smp_rmatrixgemm(const ae_int_t m, const ae_int_t n, const ae_int_t k, const double alpha, const real_2d_array &a, const ae_int_t ia, const ae_int_t ja, const ae_int_t optypea, const real_2d_array &b, const ae_int_t ib, const ae_int_t jb, const ae_int_t optypeb, const double beta, const real_2d_array &c, const ae_int_t ic, const ae_int_t jc);
/*************************************************************************
This subroutine is an older version of CMatrixHERK(), one with wrong name
(it is HErmitian update, not SYmmetric). It is left here for backward
compatibility.
-- ALGLIB routine --
16.12.2009
Bochkanov Sergey
*************************************************************************/
void cmatrixsyrk(const ae_int_t n, const ae_int_t k, const double alpha, const complex_2d_array &a, const ae_int_t ia, const ae_int_t ja, const ae_int_t optypea, const double beta, const complex_2d_array &c, const ae_int_t ic, const ae_int_t jc, const bool isupper);
void smp_cmatrixsyrk(const ae_int_t n, const ae_int_t k, const double alpha, const complex_2d_array &a, const ae_int_t ia, const ae_int_t ja, const ae_int_t optypea, const double beta, const complex_2d_array &c, const ae_int_t ic, const ae_int_t jc, const bool isupper);
/*************************************************************************
QR decomposition of a rectangular matrix of size MxN
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions. Generally, MKL accelerates any
! problem whose size is at least 128, with best efficiency achieved for
! N's larger than 512.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. We should note that QP decomposition is harder to
! parallelize than, say, matrix-matrix product - this algorithm has
! many internal synchronization points which can not be avoided. However
! parallelism starts to be profitable starting from N=512, achieving
! near-linear speedup for N=4096 or higher.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
Input parameters:
A - matrix A whose indexes range within [0..M-1, 0..N-1].
M - number of rows in matrix A.
N - number of columns in matrix A.
Output parameters:
A - matrices Q and R in compact form (see below).
Tau - array of scalar factors which are used to form
matrix Q. Array whose index ranges within [0.. Min(M-1,N-1)].
Matrix A is represented as A = QR, where Q is an orthogonal matrix of size
MxM, R - upper triangular (or upper trapezoid) matrix of size M x N.
The elements of matrix R are located on and above the main diagonal of
matrix A. The elements which are located in Tau array and below the main
diagonal of matrix A are used to form matrix Q as follows:
Matrix Q is represented as a product of elementary reflections
Q = H(0)*H(2)*...*H(k-1),
where k = min(m,n), and each H(i) is in the form
H(i) = 1 - tau * v * (v^T)
where tau is a scalar stored in Tau[I]; v - real vector,
so that v(0:i-1) = 0, v(i) = 1, v(i+1:m-1) stored in A(i+1:m-1,i).
-- ALGLIB routine --
17.02.2010
Bochkanov Sergey
*************************************************************************/
void rmatrixqr(real_2d_array &a, const ae_int_t m, const ae_int_t n, real_1d_array &tau);
void smp_rmatrixqr(real_2d_array &a, const ae_int_t m, const ae_int_t n, real_1d_array &tau);
/*************************************************************************
LQ decomposition of a rectangular matrix of size MxN
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions. Generally, MKL accelerates any
! problem whose size is at least 128, with best efficiency achieved for
! N's larger than 512.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. We should note that QP decomposition is harder to
! parallelize than, say, matrix-matrix product - this algorithm has
! many internal synchronization points which can not be avoided. However
! parallelism starts to be profitable starting from N=512, achieving
! near-linear speedup for N=4096 or higher.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
Input parameters:
A - matrix A whose indexes range within [0..M-1, 0..N-1].
M - number of rows in matrix A.
N - number of columns in matrix A.
Output parameters:
A - matrices L and Q in compact form (see below)
Tau - array of scalar factors which are used to form
matrix Q. Array whose index ranges within [0..Min(M,N)-1].
Matrix A is represented as A = LQ, where Q is an orthogonal matrix of size
MxM, L - lower triangular (or lower trapezoid) matrix of size M x N.
The elements of matrix L are located on and below the main diagonal of
matrix A. The elements which are located in Tau array and above the main
diagonal of matrix A are used to form matrix Q as follows:
Matrix Q is represented as a product of elementary reflections
Q = H(k-1)*H(k-2)*...*H(1)*H(0),
where k = min(m,n), and each H(i) is of the form
H(i) = 1 - tau * v * (v^T)
where tau is a scalar stored in Tau[I]; v - real vector, so that v(0:i-1)=0,
v(i) = 1, v(i+1:n-1) stored in A(i,i+1:n-1).
-- ALGLIB routine --
17.02.2010
Bochkanov Sergey
*************************************************************************/
void rmatrixlq(real_2d_array &a, const ae_int_t m, const ae_int_t n, real_1d_array &tau);
void smp_rmatrixlq(real_2d_array &a, const ae_int_t m, const ae_int_t n, real_1d_array &tau);
/*************************************************************************
QR decomposition of a rectangular complex matrix of size MxN
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions. Generally, MKL accelerates any
! problem whose size is at least 128, with best efficiency achieved for
! N's larger than 512.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. We should note that QP decomposition is harder to
! parallelize than, say, matrix-matrix product - this algorithm has
! many internal synchronization points which can not be avoided. However
! parallelism starts to be profitable starting from N=512, achieving
! near-linear speedup for N=4096 or higher.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
Input parameters:
A - matrix A whose indexes range within [0..M-1, 0..N-1]
M - number of rows in matrix A.
N - number of columns in matrix A.
Output parameters:
A - matrices Q and R in compact form
Tau - array of scalar factors which are used to form matrix Q. Array
whose indexes range within [0.. Min(M,N)-1]
Matrix A is represented as A = QR, where Q is an orthogonal matrix of size
MxM, R - upper triangular (or upper trapezoid) matrix of size MxN.
-- LAPACK routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
September 30, 1994
*************************************************************************/
void cmatrixqr(complex_2d_array &a, const ae_int_t m, const ae_int_t n, complex_1d_array &tau);
void smp_cmatrixqr(complex_2d_array &a, const ae_int_t m, const ae_int_t n, complex_1d_array &tau);
/*************************************************************************
LQ decomposition of a rectangular complex matrix of size MxN
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions. Generally, MKL accelerates any
! problem whose size is at least 128, with best efficiency achieved for
! N's larger than 512.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. We should note that QP decomposition is harder to
! parallelize than, say, matrix-matrix product - this algorithm has
! many internal synchronization points which can not be avoided. However
! parallelism starts to be profitable starting from N=512, achieving
! near-linear speedup for N=4096 or higher.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
Input parameters:
A - matrix A whose indexes range within [0..M-1, 0..N-1]
M - number of rows in matrix A.
N - number of columns in matrix A.
Output parameters:
A - matrices Q and L in compact form
Tau - array of scalar factors which are used to form matrix Q. Array
whose indexes range within [0.. Min(M,N)-1]
Matrix A is represented as A = LQ, where Q is an orthogonal matrix of size
MxM, L - lower triangular (or lower trapezoid) matrix of size MxN.
-- LAPACK routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
September 30, 1994
*************************************************************************/
void cmatrixlq(complex_2d_array &a, const ae_int_t m, const ae_int_t n, complex_1d_array &tau);
void smp_cmatrixlq(complex_2d_array &a, const ae_int_t m, const ae_int_t n, complex_1d_array &tau);
/*************************************************************************
Partial unpacking of matrix Q from the QR decomposition of a matrix A
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions. Generally, MKL accelerates any
! problem whose size is at least 128, with best efficiency achieved for
! N's larger than 512.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. We should note that QP decomposition is harder to
! parallelize than, say, matrix-matrix product - this algorithm has
! many internal synchronization points which can not be avoided. However
! parallelism starts to be profitable starting from N=512, achieving
! near-linear speedup for N=4096 or higher.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
Input parameters:
A - matrices Q and R in compact form.
Output of RMatrixQR subroutine.
M - number of rows in given matrix A. M>=0.
N - number of columns in given matrix A. N>=0.
Tau - scalar factors which are used to form Q.
Output of the RMatrixQR subroutine.
QColumns - required number of columns of matrix Q. M>=QColumns>=0.
Output parameters:
Q - first QColumns columns of matrix Q.
Array whose indexes range within [0..M-1, 0..QColumns-1].
If QColumns=0, the array remains unchanged.
-- ALGLIB routine --
17.02.2010
Bochkanov Sergey
*************************************************************************/
void rmatrixqrunpackq(const real_2d_array &a, const ae_int_t m, const ae_int_t n, const real_1d_array &tau, const ae_int_t qcolumns, real_2d_array &q);
void smp_rmatrixqrunpackq(const real_2d_array &a, const ae_int_t m, const ae_int_t n, const real_1d_array &tau, const ae_int_t qcolumns, real_2d_array &q);
/*************************************************************************
Unpacking of matrix R from the QR decomposition of a matrix A
Input parameters:
A - matrices Q and R in compact form.
Output of RMatrixQR subroutine.
M - number of rows in given matrix A. M>=0.
N - number of columns in given matrix A. N>=0.
Output parameters:
R - matrix R, array[0..M-1, 0..N-1].
-- ALGLIB routine --
17.02.2010
Bochkanov Sergey
*************************************************************************/
void rmatrixqrunpackr(const real_2d_array &a, const ae_int_t m, const ae_int_t n, real_2d_array &r);
/*************************************************************************
Partial unpacking of matrix Q from the LQ decomposition of a matrix A
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions. Generally, MKL accelerates any
! problem whose size is at least 128, with best efficiency achieved for
! N's larger than 512.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. We should note that QP decomposition is harder to
! parallelize than, say, matrix-matrix product - this algorithm has
! many internal synchronization points which can not be avoided. However
! parallelism starts to be profitable starting from N=512, achieving
! near-linear speedup for N=4096 or higher.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
Input parameters:
A - matrices L and Q in compact form.
Output of RMatrixLQ subroutine.
M - number of rows in given matrix A. M>=0.
N - number of columns in given matrix A. N>=0.
Tau - scalar factors which are used to form Q.
Output of the RMatrixLQ subroutine.
QRows - required number of rows in matrix Q. N>=QRows>=0.
Output parameters:
Q - first QRows rows of matrix Q. Array whose indexes range
within [0..QRows-1, 0..N-1]. If QRows=0, the array remains
unchanged.
-- ALGLIB routine --
17.02.2010
Bochkanov Sergey
*************************************************************************/
void rmatrixlqunpackq(const real_2d_array &a, const ae_int_t m, const ae_int_t n, const real_1d_array &tau, const ae_int_t qrows, real_2d_array &q);
void smp_rmatrixlqunpackq(const real_2d_array &a, const ae_int_t m, const ae_int_t n, const real_1d_array &tau, const ae_int_t qrows, real_2d_array &q);
/*************************************************************************
Unpacking of matrix L from the LQ decomposition of a matrix A
Input parameters:
A - matrices Q and L in compact form.
Output of RMatrixLQ subroutine.
M - number of rows in given matrix A. M>=0.
N - number of columns in given matrix A. N>=0.
Output parameters:
L - matrix L, array[0..M-1, 0..N-1].
-- ALGLIB routine --
17.02.2010
Bochkanov Sergey
*************************************************************************/
void rmatrixlqunpackl(const real_2d_array &a, const ae_int_t m, const ae_int_t n, real_2d_array &l);
/*************************************************************************
Partial unpacking of matrix Q from QR decomposition of a complex matrix A.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions. Generally, MKL accelerates any
! problem whose size is at least 128, with best efficiency achieved for
! N's larger than 512.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. We should note that QP decomposition is harder to
! parallelize than, say, matrix-matrix product - this algorithm has
! many internal synchronization points which can not be avoided. However
! parallelism starts to be profitable starting from N=512, achieving
! near-linear speedup for N=4096 or higher.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
Input parameters:
A - matrices Q and R in compact form.
Output of CMatrixQR subroutine .
M - number of rows in matrix A. M>=0.
N - number of columns in matrix A. N>=0.
Tau - scalar factors which are used to form Q.
Output of CMatrixQR subroutine .
QColumns - required number of columns in matrix Q. M>=QColumns>=0.
Output parameters:
Q - first QColumns columns of matrix Q.
Array whose index ranges within [0..M-1, 0..QColumns-1].
If QColumns=0, array isn't changed.
-- ALGLIB routine --
17.02.2010
Bochkanov Sergey
*************************************************************************/
void cmatrixqrunpackq(const complex_2d_array &a, const ae_int_t m, const ae_int_t n, const complex_1d_array &tau, const ae_int_t qcolumns, complex_2d_array &q);
void smp_cmatrixqrunpackq(const complex_2d_array &a, const ae_int_t m, const ae_int_t n, const complex_1d_array &tau, const ae_int_t qcolumns, complex_2d_array &q);
/*************************************************************************
Unpacking of matrix R from the QR decomposition of a matrix A
Input parameters:
A - matrices Q and R in compact form.
Output of CMatrixQR subroutine.
M - number of rows in given matrix A. M>=0.
N - number of columns in given matrix A. N>=0.
Output parameters:
R - matrix R, array[0..M-1, 0..N-1].
-- ALGLIB routine --
17.02.2010
Bochkanov Sergey
*************************************************************************/
void cmatrixqrunpackr(const complex_2d_array &a, const ae_int_t m, const ae_int_t n, complex_2d_array &r);
/*************************************************************************
Partial unpacking of matrix Q from LQ decomposition of a complex matrix A.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions. Generally, MKL accelerates any
! problem whose size is at least 128, with best efficiency achieved for
! N's larger than 512.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. We should note that QP decomposition is harder to
! parallelize than, say, matrix-matrix product - this algorithm has
! many internal synchronization points which can not be avoided. However
! parallelism starts to be profitable starting from N=512, achieving
! near-linear speedup for N=4096 or higher.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
Input parameters:
A - matrices Q and R in compact form.
Output of CMatrixLQ subroutine .
M - number of rows in matrix A. M>=0.
N - number of columns in matrix A. N>=0.
Tau - scalar factors which are used to form Q.
Output of CMatrixLQ subroutine .
QRows - required number of rows in matrix Q. N>=QColumns>=0.
Output parameters:
Q - first QRows rows of matrix Q.
Array whose index ranges within [0..QRows-1, 0..N-1].
If QRows=0, array isn't changed.
-- ALGLIB routine --
17.02.2010
Bochkanov Sergey
*************************************************************************/
void cmatrixlqunpackq(const complex_2d_array &a, const ae_int_t m, const ae_int_t n, const complex_1d_array &tau, const ae_int_t qrows, complex_2d_array &q);
void smp_cmatrixlqunpackq(const complex_2d_array &a, const ae_int_t m, const ae_int_t n, const complex_1d_array &tau, const ae_int_t qrows, complex_2d_array &q);
/*************************************************************************
Unpacking of matrix L from the LQ decomposition of a matrix A
Input parameters:
A - matrices Q and L in compact form.
Output of CMatrixLQ subroutine.
M - number of rows in given matrix A. M>=0.
N - number of columns in given matrix A. N>=0.
Output parameters:
L - matrix L, array[0..M-1, 0..N-1].
-- ALGLIB routine --
17.02.2010
Bochkanov Sergey
*************************************************************************/
void cmatrixlqunpackl(const complex_2d_array &a, const ae_int_t m, const ae_int_t n, complex_2d_array &l);
/*************************************************************************
Reduction of a rectangular matrix to bidiagonal form
The algorithm reduces the rectangular matrix A to bidiagonal form by
orthogonal transformations P and Q: A = Q*B*(P^T).
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes one important improvement of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Multithreaded acceleration is NOT supported for this function because
! bidiagonal decompostion is inherently sequential in nature.
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
Input parameters:
A - source matrix. array[0..M-1, 0..N-1]
M - number of rows in matrix A.
N - number of columns in matrix A.
Output parameters:
A - matrices Q, B, P in compact form (see below).
TauQ - scalar factors which are used to form matrix Q.
TauP - scalar factors which are used to form matrix P.
The main diagonal and one of the secondary diagonals of matrix A are
replaced with bidiagonal matrix B. Other elements contain elementary
reflections which form MxM matrix Q and NxN matrix P, respectively.
If M>=N, B is the upper bidiagonal MxN matrix and is stored in the
corresponding elements of matrix A. Matrix Q is represented as a
product of elementary reflections Q = H(0)*H(1)*...*H(n-1), where
H(i) = 1-tau*v*v'. Here tau is a scalar which is stored in TauQ[i], and
vector v has the following structure: v(0:i-1)=0, v(i)=1, v(i+1:m-1) is
stored in elements A(i+1:m-1,i). Matrix P is as follows: P =
G(0)*G(1)*...*G(n-2), where G(i) = 1 - tau*u*u'. Tau is stored in TauP[i],
u(0:i)=0, u(i+1)=1, u(i+2:n-1) is stored in elements A(i,i+2:n-1).
If M<N, B is the lower bidiagonal MxN matrix and is stored in the
corresponding elements of matrix A. Q = H(0)*H(1)*...*H(m-2), where
H(i) = 1 - tau*v*v', tau is stored in TauQ, v(0:i)=0, v(i+1)=1, v(i+2:m-1)
is stored in elements A(i+2:m-1,i). P = G(0)*G(1)*...*G(m-1),
G(i) = 1-tau*u*u', tau is stored in TauP, u(0:i-1)=0, u(i)=1, u(i+1:n-1)
is stored in A(i,i+1:n-1).
EXAMPLE:
m=6, n=5 (m > n): m=5, n=6 (m < n):
( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 )
( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 )
( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 )
( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 )
( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 )
( v1 v2 v3 v4 v5 )
Here vi and ui are vectors which form H(i) and G(i), and d and e -
are the diagonal and off-diagonal elements of matrix B.
-- LAPACK routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
September 30, 1994.
Sergey Bochkanov, ALGLIB project, translation from FORTRAN to
pseudocode, 2007-2010.
*************************************************************************/
void rmatrixbd(real_2d_array &a, const ae_int_t m, const ae_int_t n, real_1d_array &tauq, real_1d_array &taup);
/*************************************************************************
Unpacking matrix Q which reduces a matrix to bidiagonal form.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes one important improvement of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Multithreaded acceleration is NOT supported for this function.
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
Input parameters:
QP - matrices Q and P in compact form.
Output of ToBidiagonal subroutine.
M - number of rows in matrix A.
N - number of columns in matrix A.
TAUQ - scalar factors which are used to form Q.
Output of ToBidiagonal subroutine.
QColumns - required number of columns in matrix Q.
M>=QColumns>=0.
Output parameters:
Q - first QColumns columns of matrix Q.
Array[0..M-1, 0..QColumns-1]
If QColumns=0, the array is not modified.
-- ALGLIB --
2005-2010
Bochkanov Sergey
*************************************************************************/
void rmatrixbdunpackq(const real_2d_array &qp, const ae_int_t m, const ae_int_t n, const real_1d_array &tauq, const ae_int_t qcolumns, real_2d_array &q);
/*************************************************************************
Multiplication by matrix Q which reduces matrix A to bidiagonal form.
The algorithm allows pre- or post-multiply by Q or Q'.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes one important improvement of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Multithreaded acceleration is NOT supported for this function.
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
Input parameters:
QP - matrices Q and P in compact form.
Output of ToBidiagonal subroutine.
M - number of rows in matrix A.
N - number of columns in matrix A.
TAUQ - scalar factors which are used to form Q.
Output of ToBidiagonal subroutine.
Z - multiplied matrix.
array[0..ZRows-1,0..ZColumns-1]
ZRows - number of rows in matrix Z. If FromTheRight=False,
ZRows=M, otherwise ZRows can be arbitrary.
ZColumns - number of columns in matrix Z. If FromTheRight=True,
ZColumns=M, otherwise ZColumns can be arbitrary.
FromTheRight - pre- or post-multiply.
DoTranspose - multiply by Q or Q'.
Output parameters:
Z - product of Z and Q.
Array[0..ZRows-1,0..ZColumns-1]
If ZRows=0 or ZColumns=0, the array is not modified.
-- ALGLIB --
2005-2010
Bochkanov Sergey
*************************************************************************/
void rmatrixbdmultiplybyq(const real_2d_array &qp, const ae_int_t m, const ae_int_t n, const real_1d_array &tauq, real_2d_array &z, const ae_int_t zrows, const ae_int_t zcolumns, const bool fromtheright, const bool dotranspose);
/*************************************************************************
Unpacking matrix P which reduces matrix A to bidiagonal form.
The subroutine returns transposed matrix P.
Input parameters:
QP - matrices Q and P in compact form.
Output of ToBidiagonal subroutine.
M - number of rows in matrix A.
N - number of columns in matrix A.
TAUP - scalar factors which are used to form P.
Output of ToBidiagonal subroutine.
PTRows - required number of rows of matrix P^T. N >= PTRows >= 0.
Output parameters:
PT - first PTRows columns of matrix P^T
Array[0..PTRows-1, 0..N-1]
If PTRows=0, the array is not modified.
-- ALGLIB --
2005-2010
Bochkanov Sergey
*************************************************************************/
void rmatrixbdunpackpt(const real_2d_array &qp, const ae_int_t m, const ae_int_t n, const real_1d_array &taup, const ae_int_t ptrows, real_2d_array &pt);
/*************************************************************************
Multiplication by matrix P which reduces matrix A to bidiagonal form.
The algorithm allows pre- or post-multiply by P or P'.
Input parameters:
QP - matrices Q and P in compact form.
Output of RMatrixBD subroutine.
M - number of rows in matrix A.
N - number of columns in matrix A.
TAUP - scalar factors which are used to form P.
Output of RMatrixBD subroutine.
Z - multiplied matrix.
Array whose indexes range within [0..ZRows-1,0..ZColumns-1].
ZRows - number of rows in matrix Z. If FromTheRight=False,
ZRows=N, otherwise ZRows can be arbitrary.
ZColumns - number of columns in matrix Z. If FromTheRight=True,
ZColumns=N, otherwise ZColumns can be arbitrary.
FromTheRight - pre- or post-multiply.
DoTranspose - multiply by P or P'.
Output parameters:
Z - product of Z and P.
Array whose indexes range within [0..ZRows-1,0..ZColumns-1].
If ZRows=0 or ZColumns=0, the array is not modified.
-- ALGLIB --
2005-2010
Bochkanov Sergey
*************************************************************************/
void rmatrixbdmultiplybyp(const real_2d_array &qp, const ae_int_t m, const ae_int_t n, const real_1d_array &taup, real_2d_array &z, const ae_int_t zrows, const ae_int_t zcolumns, const bool fromtheright, const bool dotranspose);
/*************************************************************************
Unpacking of the main and secondary diagonals of bidiagonal decomposition
of matrix A.
Input parameters:
B - output of RMatrixBD subroutine.
M - number of rows in matrix B.
N - number of columns in matrix B.
Output parameters:
IsUpper - True, if the matrix is upper bidiagonal.
otherwise IsUpper is False.
D - the main diagonal.
Array whose index ranges within [0..Min(M,N)-1].
E - the secondary diagonal (upper or lower, depending on
the value of IsUpper).
Array index ranges within [0..Min(M,N)-1], the last
element is not used.
-- ALGLIB --
2005-2010
Bochkanov Sergey
*************************************************************************/
void rmatrixbdunpackdiagonals(const real_2d_array &b, const ae_int_t m, const ae_int_t n, bool &isupper, real_1d_array &d, real_1d_array &e);
/*************************************************************************
Reduction of a square matrix to upper Hessenberg form: Q'*A*Q = H,
where Q is an orthogonal matrix, H - Hessenberg matrix.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes one important improvement of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Generally, commercial ALGLIB is several times faster than open-source
! generic C edition, and many times faster than open-source C# edition.
!
! Multithreaded acceleration is NOT supported for this function.
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
Input parameters:
A - matrix A with elements [0..N-1, 0..N-1]
N - size of matrix A.
Output parameters:
A - matrices Q and P in compact form (see below).
Tau - array of scalar factors which are used to form matrix Q.
Array whose index ranges within [0..N-2]
Matrix H is located on the main diagonal, on the lower secondary diagonal
and above the main diagonal of matrix A. The elements which are used to
form matrix Q are situated in array Tau and below the lower secondary
diagonal of matrix A as follows:
Matrix Q is represented as a product of elementary reflections
Q = H(0)*H(2)*...*H(n-2),
where each H(i) is given by
H(i) = 1 - tau * v * (v^T)
where tau is a scalar stored in Tau[I]; v - is a real vector,
so that v(0:i) = 0, v(i+1) = 1, v(i+2:n-1) stored in A(i+2:n-1,i).
-- LAPACK routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
October 31, 1992
*************************************************************************/
void rmatrixhessenberg(real_2d_array &a, const ae_int_t n, real_1d_array &tau);
/*************************************************************************
Unpacking matrix Q which reduces matrix A to upper Hessenberg form
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes one important improvement of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Generally, commercial ALGLIB is several times faster than open-source
! generic C edition, and many times faster than open-source C# edition.
!
! Multithreaded acceleration is NOT supported for this function.
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
Input parameters:
A - output of RMatrixHessenberg subroutine.
N - size of matrix A.
Tau - scalar factors which are used to form Q.
Output of RMatrixHessenberg subroutine.
Output parameters:
Q - matrix Q.
Array whose indexes range within [0..N-1, 0..N-1].
-- ALGLIB --
2005-2010
Bochkanov Sergey
*************************************************************************/
void rmatrixhessenbergunpackq(const real_2d_array &a, const ae_int_t n, const real_1d_array &tau, real_2d_array &q);
/*************************************************************************
Unpacking matrix H (the result of matrix A reduction to upper Hessenberg form)
Input parameters:
A - output of RMatrixHessenberg subroutine.
N - size of matrix A.
Output parameters:
H - matrix H. Array whose indexes range within [0..N-1, 0..N-1].
-- ALGLIB --
2005-2010
Bochkanov Sergey
*************************************************************************/
void rmatrixhessenbergunpackh(const real_2d_array &a, const ae_int_t n, real_2d_array &h);
/*************************************************************************
Reduction of a symmetric matrix which is given by its higher or lower
triangular part to a tridiagonal matrix using orthogonal similarity
transformation: Q'*A*Q=T.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes one important improvement of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Generally, commercial ALGLIB is several times faster than open-source
! generic C edition, and many times faster than open-source C# edition.
!
! Multithreaded acceleration is NOT supported for this function.
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
Input parameters:
A - matrix to be transformed
array with elements [0..N-1, 0..N-1].
N - size of matrix A.
IsUpper - storage format. If IsUpper = True, then matrix A is given
by its upper triangle, and the lower triangle is not used
and not modified by the algorithm, and vice versa
if IsUpper = False.
Output parameters:
A - matrices T and Q in compact form (see lower)
Tau - array of factors which are forming matrices H(i)
array with elements [0..N-2].
D - main diagonal of symmetric matrix T.
array with elements [0..N-1].
E - secondary diagonal of symmetric matrix T.
array with elements [0..N-2].
If IsUpper=True, the matrix Q is represented as a product of elementary
reflectors
Q = H(n-2) . . . H(2) H(0).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(i+1:n-1) = 0, v(i) = 1, v(0:i-1) is stored on exit in
A(0:i-1,i+1), and tau in TAU(i).
If IsUpper=False, the matrix Q is represented as a product of elementary
reflectors
Q = H(0) H(2) . . . H(n-2).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(0:i) = 0, v(i+1) = 1, v(i+2:n-1) is stored on exit in A(i+2:n-1,i),
and tau in TAU(i).
The contents of A on exit are illustrated by the following examples
with n = 5:
if UPLO = 'U': if UPLO = 'L':
( d e v1 v2 v3 ) ( d )
( d e v2 v3 ) ( e d )
( d e v3 ) ( v0 e d )
( d e ) ( v0 v1 e d )
( d ) ( v0 v1 v2 e d )
where d and e denote diagonal and off-diagonal elements of T, and vi
denotes an element of the vector defining H(i).
-- LAPACK routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
October 31, 1992
*************************************************************************/
void smatrixtd(real_2d_array &a, const ae_int_t n, const bool isupper, real_1d_array &tau, real_1d_array &d, real_1d_array &e);
/*************************************************************************
Unpacking matrix Q which reduces symmetric matrix to a tridiagonal
form.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes one important improvement of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Generally, commercial ALGLIB is several times faster than open-source
! generic C edition, and many times faster than open-source C# edition.
!
! Multithreaded acceleration is NOT supported for this function.
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
Input parameters:
A - the result of a SMatrixTD subroutine
N - size of matrix A.
IsUpper - storage format (a parameter of SMatrixTD subroutine)
Tau - the result of a SMatrixTD subroutine
Output parameters:
Q - transformation matrix.
array with elements [0..N-1, 0..N-1].
-- ALGLIB --
Copyright 2005-2010 by Bochkanov Sergey
*************************************************************************/
void smatrixtdunpackq(const real_2d_array &a, const ae_int_t n, const bool isupper, const real_1d_array &tau, real_2d_array &q);
/*************************************************************************
Reduction of a Hermitian matrix which is given by its higher or lower
triangular part to a real tridiagonal matrix using unitary similarity
transformation: Q'*A*Q = T.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes one important improvement of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Generally, commercial ALGLIB is several times faster than open-source
! generic C edition, and many times faster than open-source C# edition.
!
! Multithreaded acceleration is NOT supported for this function.
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
Input parameters:
A - matrix to be transformed
array with elements [0..N-1, 0..N-1].
N - size of matrix A.
IsUpper - storage format. If IsUpper = True, then matrix A is given
by its upper triangle, and the lower triangle is not used
and not modified by the algorithm, and vice versa
if IsUpper = False.
Output parameters:
A - matrices T and Q in compact form (see lower)
Tau - array of factors which are forming matrices H(i)
array with elements [0..N-2].
D - main diagonal of real symmetric matrix T.
array with elements [0..N-1].
E - secondary diagonal of real symmetric matrix T.
array with elements [0..N-2].
If IsUpper=True, the matrix Q is represented as a product of elementary
reflectors
Q = H(n-2) . . . H(2) H(0).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a complex scalar, and v is a complex vector with
v(i+1:n-1) = 0, v(i) = 1, v(0:i-1) is stored on exit in
A(0:i-1,i+1), and tau in TAU(i).
If IsUpper=False, the matrix Q is represented as a product of elementary
reflectors
Q = H(0) H(2) . . . H(n-2).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a complex scalar, and v is a complex vector with
v(0:i) = 0, v(i+1) = 1, v(i+2:n-1) is stored on exit in A(i+2:n-1,i),
and tau in TAU(i).
The contents of A on exit are illustrated by the following examples
with n = 5:
if UPLO = 'U': if UPLO = 'L':
( d e v1 v2 v3 ) ( d )
( d e v2 v3 ) ( e d )
( d e v3 ) ( v0 e d )
( d e ) ( v0 v1 e d )
( d ) ( v0 v1 v2 e d )
where d and e denote diagonal and off-diagonal elements of T, and vi
denotes an element of the vector defining H(i).
-- LAPACK routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
October 31, 1992
*************************************************************************/
void hmatrixtd(complex_2d_array &a, const ae_int_t n, const bool isupper, complex_1d_array &tau, real_1d_array &d, real_1d_array &e);
/*************************************************************************
Unpacking matrix Q which reduces a Hermitian matrix to a real tridiagonal
form.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes one important improvement of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Generally, commercial ALGLIB is several times faster than open-source
! generic C edition, and many times faster than open-source C# edition.
!
! Multithreaded acceleration is NOT supported for this function.
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
Input parameters:
A - the result of a HMatrixTD subroutine
N - size of matrix A.
IsUpper - storage format (a parameter of HMatrixTD subroutine)
Tau - the result of a HMatrixTD subroutine
Output parameters:
Q - transformation matrix.
array with elements [0..N-1, 0..N-1].
-- ALGLIB --
Copyright 2005-2010 by Bochkanov Sergey
*************************************************************************/
void hmatrixtdunpackq(const complex_2d_array &a, const ae_int_t n, const bool isupper, const complex_1d_array &tau, complex_2d_array &q);
/*************************************************************************
Singular value decomposition of a bidiagonal matrix (extended algorithm)
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes one important improvement of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Generally, commercial ALGLIB is several times faster than open-source
! generic C edition, and many times faster than open-source C# edition.
!
! Multithreaded acceleration is NOT supported for this function.
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
The algorithm performs the singular value decomposition of a bidiagonal
matrix B (upper or lower) representing it as B = Q*S*P^T, where Q and P -
orthogonal matrices, S - diagonal matrix with non-negative elements on the
main diagonal, in descending order.
The algorithm finds singular values. In addition, the algorithm can
calculate matrices Q and P (more precisely, not the matrices, but their
product with given matrices U and VT - U*Q and (P^T)*VT)). Of course,
matrices U and VT can be of any type, including identity. Furthermore, the
algorithm can calculate Q'*C (this product is calculated more effectively
than U*Q, because this calculation operates with rows instead of matrix
columns).
The feature of the algorithm is its ability to find all singular values
including those which are arbitrarily close to 0 with relative accuracy
close to machine precision. If the parameter IsFractionalAccuracyRequired
is set to True, all singular values will have high relative accuracy close
to machine precision. If the parameter is set to False, only the biggest
singular value will have relative accuracy close to machine precision.
The absolute error of other singular values is equal to the absolute error
of the biggest singular value.
Input parameters:
D - main diagonal of matrix B.
Array whose index ranges within [0..N-1].
E - superdiagonal (or subdiagonal) of matrix B.
Array whose index ranges within [0..N-2].
N - size of matrix B.
IsUpper - True, if the matrix is upper bidiagonal.
IsFractionalAccuracyRequired -
THIS PARAMETER IS IGNORED SINCE ALGLIB 3.5.0
SINGULAR VALUES ARE ALWAYS SEARCHED WITH HIGH ACCURACY.
U - matrix to be multiplied by Q.
Array whose indexes range within [0..NRU-1, 0..N-1].
The matrix can be bigger, in that case only the submatrix
[0..NRU-1, 0..N-1] will be multiplied by Q.
NRU - number of rows in matrix U.
C - matrix to be multiplied by Q'.
Array whose indexes range within [0..N-1, 0..NCC-1].
The matrix can be bigger, in that case only the submatrix
[0..N-1, 0..NCC-1] will be multiplied by Q'.
NCC - number of columns in matrix C.
VT - matrix to be multiplied by P^T.
Array whose indexes range within [0..N-1, 0..NCVT-1].
The matrix can be bigger, in that case only the submatrix
[0..N-1, 0..NCVT-1] will be multiplied by P^T.
NCVT - number of columns in matrix VT.
Output parameters:
D - singular values of matrix B in descending order.
U - if NRU>0, contains matrix U*Q.
VT - if NCVT>0, contains matrix (P^T)*VT.
C - if NCC>0, contains matrix Q'*C.
Result:
True, if the algorithm has converged.
False, if the algorithm hasn't converged (rare case).
NOTE: multiplication U*Q is performed by means of transposition to internal
buffer, multiplication and backward transposition. It helps to avoid
costly columnwise operations and speed-up algorithm.
Additional information:
The type of convergence is controlled by the internal parameter TOL.
If the parameter is greater than 0, the singular values will have
relative accuracy TOL. If TOL<0, the singular values will have
absolute accuracy ABS(TOL)*norm(B).
By default, |TOL| falls within the range of 10*Epsilon and 100*Epsilon,
where Epsilon is the machine precision. It is not recommended to use
TOL less than 10*Epsilon since this will considerably slow down the
algorithm and may not lead to error decreasing.
History:
* 31 March, 2007.
changed MAXITR from 6 to 12.
-- LAPACK routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
October 31, 1999.
*************************************************************************/
bool rmatrixbdsvd(real_1d_array &d, const real_1d_array &e, const ae_int_t n, const bool isupper, const bool isfractionalaccuracyrequired, real_2d_array &u, const ae_int_t nru, real_2d_array &c, const ae_int_t ncc, real_2d_array &vt, const ae_int_t ncvt);
/*************************************************************************
Singular value decomposition of a rectangular matrix.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes one important improvement of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Generally, commercial ALGLIB is several times faster than open-source
! generic C edition, and many times faster than open-source C# edition.
!
! Multithreaded acceleration is only partially supported (some parts are
! optimized, but most - are not).
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
The algorithm calculates the singular value decomposition of a matrix of
size MxN: A = U * S * V^T
The algorithm finds the singular values and, optionally, matrices U and V^T.
The algorithm can find both first min(M,N) columns of matrix U and rows of
matrix V^T (singular vectors), and matrices U and V^T wholly (of sizes MxM
and NxN respectively).
Take into account that the subroutine does not return matrix V but V^T.
Input parameters:
A - matrix to be decomposed.
Array whose indexes range within [0..M-1, 0..N-1].
M - number of rows in matrix A.
N - number of columns in matrix A.
UNeeded - 0, 1 or 2. See the description of the parameter U.
VTNeeded - 0, 1 or 2. See the description of the parameter VT.
AdditionalMemory -
If the parameter:
* equals 0, the algorithm doesn�t use additional
memory (lower requirements, lower performance).
* equals 1, the algorithm uses additional
memory of size min(M,N)*min(M,N) of real numbers.
It often speeds up the algorithm.
* equals 2, the algorithm uses additional
memory of size M*min(M,N) of real numbers.
It allows to get a maximum performance.
The recommended value of the parameter is 2.
Output parameters:
W - contains singular values in descending order.
U - if UNeeded=0, U isn't changed, the left singular vectors
are not calculated.
if Uneeded=1, U contains left singular vectors (first
min(M,N) columns of matrix U). Array whose indexes range
within [0..M-1, 0..Min(M,N)-1].
if UNeeded=2, U contains matrix U wholly. Array whose
indexes range within [0..M-1, 0..M-1].
VT - if VTNeeded=0, VT isn�t changed, the right singular vectors
are not calculated.
if VTNeeded=1, VT contains right singular vectors (first
min(M,N) rows of matrix V^T). Array whose indexes range
within [0..min(M,N)-1, 0..N-1].
if VTNeeded=2, VT contains matrix V^T wholly. Array whose
indexes range within [0..N-1, 0..N-1].
-- ALGLIB --
Copyright 2005 by Bochkanov Sergey
*************************************************************************/
bool rmatrixsvd(const real_2d_array &a, const ae_int_t m, const ae_int_t n, const ae_int_t uneeded, const ae_int_t vtneeded, const ae_int_t additionalmemory, real_1d_array &w, real_2d_array &u, real_2d_array &vt);
bool smp_rmatrixsvd(const real_2d_array &a, const ae_int_t m, const ae_int_t n, const ae_int_t uneeded, const ae_int_t vtneeded, const ae_int_t additionalmemory, real_1d_array &w, real_2d_array &u, real_2d_array &vt);
/*************************************************************************
Finding the eigenvalues and eigenvectors of a symmetric matrix
The algorithm finds eigen pairs of a symmetric matrix by reducing it to
tridiagonal form and using the QL/QR algorithm.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes one important improvement of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Generally, commercial ALGLIB is several times faster than open-source
! generic C edition, and many times faster than open-source C# edition.
!
! Multithreaded acceleration is NOT supported for this function.
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
Input parameters:
A - symmetric matrix which is given by its upper or lower
triangular part.
Array whose indexes range within [0..N-1, 0..N-1].
N - size of matrix A.
ZNeeded - flag controlling whether the eigenvectors are needed or not.
If ZNeeded is equal to:
* 0, the eigenvectors are not returned;
* 1, the eigenvectors are returned.
IsUpper - storage format.
Output parameters:
D - eigenvalues in ascending order.
Array whose index ranges within [0..N-1].
Z - if ZNeeded is equal to:
* 0, Z hasn�t changed;
* 1, Z contains the eigenvectors.
Array whose indexes range within [0..N-1, 0..N-1].
The eigenvectors are stored in the matrix columns.
Result:
True, if the algorithm has converged.
False, if the algorithm hasn't converged (rare case).
-- ALGLIB --
Copyright 2005-2008 by Bochkanov Sergey
*************************************************************************/
bool smatrixevd(const real_2d_array &a, const ae_int_t n, const ae_int_t zneeded, const bool isupper, real_1d_array &d, real_2d_array &z);
/*************************************************************************
Subroutine for finding the eigenvalues (and eigenvectors) of a symmetric
matrix in a given half open interval (A, B] by using a bisection and
inverse iteration
Input parameters:
A - symmetric matrix which is given by its upper or lower
triangular part. Array [0..N-1, 0..N-1].
N - size of matrix A.
ZNeeded - flag controlling whether the eigenvectors are needed or not.
If ZNeeded is equal to:
* 0, the eigenvectors are not returned;
* 1, the eigenvectors are returned.
IsUpperA - storage format of matrix A.
B1, B2 - half open interval (B1, B2] to search eigenvalues in.
Output parameters:
M - number of eigenvalues found in a given half-interval (M>=0).
W - array of the eigenvalues found.
Array whose index ranges within [0..M-1].
Z - if ZNeeded is equal to:
* 0, Z hasn�t changed;
* 1, Z contains eigenvectors.
Array whose indexes range within [0..N-1, 0..M-1].
The eigenvectors are stored in the matrix columns.
Result:
True, if successful. M contains the number of eigenvalues in the given
half-interval (could be equal to 0), W contains the eigenvalues,
Z contains the eigenvectors (if needed).
False, if the bisection method subroutine wasn't able to find the
eigenvalues in the given interval or if the inverse iteration subroutine
wasn't able to find all the corresponding eigenvectors.
In that case, the eigenvalues and eigenvectors are not returned,
M is equal to 0.
-- ALGLIB --
Copyright 07.01.2006 by Bochkanov Sergey
*************************************************************************/
bool smatrixevdr(const real_2d_array &a, const ae_int_t n, const ae_int_t zneeded, const bool isupper, const double b1, const double b2, ae_int_t &m, real_1d_array &w, real_2d_array &z);
/*************************************************************************
Subroutine for finding the eigenvalues and eigenvectors of a symmetric
matrix with given indexes by using bisection and inverse iteration methods.
Input parameters:
A - symmetric matrix which is given by its upper or lower
triangular part. Array whose indexes range within [0..N-1, 0..N-1].
N - size of matrix A.
ZNeeded - flag controlling whether the eigenvectors are needed or not.
If ZNeeded is equal to:
* 0, the eigenvectors are not returned;
* 1, the eigenvectors are returned.
IsUpperA - storage format of matrix A.
I1, I2 - index interval for searching (from I1 to I2).
0 <= I1 <= I2 <= N-1.
Output parameters:
W - array of the eigenvalues found.
Array whose index ranges within [0..I2-I1].
Z - if ZNeeded is equal to:
* 0, Z hasn�t changed;
* 1, Z contains eigenvectors.
Array whose indexes range within [0..N-1, 0..I2-I1].
In that case, the eigenvectors are stored in the matrix columns.
Result:
True, if successful. W contains the eigenvalues, Z contains the
eigenvectors (if needed).
False, if the bisection method subroutine wasn't able to find the
eigenvalues in the given interval or if the inverse iteration subroutine
wasn't able to find all the corresponding eigenvectors.
In that case, the eigenvalues and eigenvectors are not returned.
-- ALGLIB --
Copyright 07.01.2006 by Bochkanov Sergey
*************************************************************************/
bool smatrixevdi(const real_2d_array &a, const ae_int_t n, const ae_int_t zneeded, const bool isupper, const ae_int_t i1, const ae_int_t i2, real_1d_array &w, real_2d_array &z);
/*************************************************************************
Finding the eigenvalues and eigenvectors of a Hermitian matrix
The algorithm finds eigen pairs of a Hermitian matrix by reducing it to
real tridiagonal form and using the QL/QR algorithm.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes one important improvement of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Generally, commercial ALGLIB is several times faster than open-source
! generic C edition, and many times faster than open-source C# edition.
!
! Multithreaded acceleration is NOT supported for this function.
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
Input parameters:
A - Hermitian matrix which is given by its upper or lower
triangular part.
Array whose indexes range within [0..N-1, 0..N-1].
N - size of matrix A.
IsUpper - storage format.
ZNeeded - flag controlling whether the eigenvectors are needed or
not. If ZNeeded is equal to:
* 0, the eigenvectors are not returned;
* 1, the eigenvectors are returned.
Output parameters:
D - eigenvalues in ascending order.
Array whose index ranges within [0..N-1].
Z - if ZNeeded is equal to:
* 0, Z hasn�t changed;
* 1, Z contains the eigenvectors.
Array whose indexes range within [0..N-1, 0..N-1].
The eigenvectors are stored in the matrix columns.
Result:
True, if the algorithm has converged.
False, if the algorithm hasn't converged (rare case).
Note:
eigenvectors of Hermitian matrix are defined up to multiplication by
a complex number L, such that |L|=1.
-- ALGLIB --
Copyright 2005, 23 March 2007 by Bochkanov Sergey
*************************************************************************/
bool hmatrixevd(const complex_2d_array &a, const ae_int_t n, const ae_int_t zneeded, const bool isupper, real_1d_array &d, complex_2d_array &z);
/*************************************************************************
Subroutine for finding the eigenvalues (and eigenvectors) of a Hermitian
matrix in a given half-interval (A, B] by using a bisection and inverse
iteration
Input parameters:
A - Hermitian matrix which is given by its upper or lower
triangular part. Array whose indexes range within
[0..N-1, 0..N-1].
N - size of matrix A.
ZNeeded - flag controlling whether the eigenvectors are needed or
not. If ZNeeded is equal to:
* 0, the eigenvectors are not returned;
* 1, the eigenvectors are returned.
IsUpperA - storage format of matrix A.
B1, B2 - half-interval (B1, B2] to search eigenvalues in.
Output parameters:
M - number of eigenvalues found in a given half-interval, M>=0
W - array of the eigenvalues found.
Array whose index ranges within [0..M-1].
Z - if ZNeeded is equal to:
* 0, Z hasn�t changed;
* 1, Z contains eigenvectors.
Array whose indexes range within [0..N-1, 0..M-1].
The eigenvectors are stored in the matrix columns.
Result:
True, if successful. M contains the number of eigenvalues in the given
half-interval (could be equal to 0), W contains the eigenvalues,
Z contains the eigenvectors (if needed).
False, if the bisection method subroutine wasn't able to find the
eigenvalues in the given interval or if the inverse iteration
subroutine wasn't able to find all the corresponding eigenvectors.
In that case, the eigenvalues and eigenvectors are not returned, M is
equal to 0.
Note:
eigen vectors of Hermitian matrix are defined up to multiplication by
a complex number L, such as |L|=1.
-- ALGLIB --
Copyright 07.01.2006, 24.03.2007 by Bochkanov Sergey.
*************************************************************************/
bool hmatrixevdr(const complex_2d_array &a, const ae_int_t n, const ae_int_t zneeded, const bool isupper, const double b1, const double b2, ae_int_t &m, real_1d_array &w, complex_2d_array &z);
/*************************************************************************
Subroutine for finding the eigenvalues and eigenvectors of a Hermitian
matrix with given indexes by using bisection and inverse iteration methods
Input parameters:
A - Hermitian matrix which is given by its upper or lower
triangular part.
Array whose indexes range within [0..N-1, 0..N-1].
N - size of matrix A.
ZNeeded - flag controlling whether the eigenvectors are needed or
not. If ZNeeded is equal to:
* 0, the eigenvectors are not returned;
* 1, the eigenvectors are returned.
IsUpperA - storage format of matrix A.
I1, I2 - index interval for searching (from I1 to I2).
0 <= I1 <= I2 <= N-1.
Output parameters:
W - array of the eigenvalues found.
Array whose index ranges within [0..I2-I1].
Z - if ZNeeded is equal to:
* 0, Z hasn�t changed;
* 1, Z contains eigenvectors.
Array whose indexes range within [0..N-1, 0..I2-I1].
In that case, the eigenvectors are stored in the matrix
columns.
Result:
True, if successful. W contains the eigenvalues, Z contains the
eigenvectors (if needed).
False, if the bisection method subroutine wasn't able to find the
eigenvalues in the given interval or if the inverse iteration
subroutine wasn't able to find all the corresponding eigenvectors.
In that case, the eigenvalues and eigenvectors are not returned.
Note:
eigen vectors of Hermitian matrix are defined up to multiplication by
a complex number L, such as |L|=1.
-- ALGLIB --
Copyright 07.01.2006, 24.03.2007 by Bochkanov Sergey.
*************************************************************************/
bool hmatrixevdi(const complex_2d_array &a, const ae_int_t n, const ae_int_t zneeded, const bool isupper, const ae_int_t i1, const ae_int_t i2, real_1d_array &w, complex_2d_array &z);
/*************************************************************************
Finding the eigenvalues and eigenvectors of a tridiagonal symmetric matrix
The algorithm finds the eigen pairs of a tridiagonal symmetric matrix by
using an QL/QR algorithm with implicit shifts.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes one important improvement of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Generally, commercial ALGLIB is several times faster than open-source
! generic C edition, and many times faster than open-source C# edition.
!
! Multithreaded acceleration is NOT supported for this function.
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
Input parameters:
D - the main diagonal of a tridiagonal matrix.
Array whose index ranges within [0..N-1].
E - the secondary diagonal of a tridiagonal matrix.
Array whose index ranges within [0..N-2].
N - size of matrix A.
ZNeeded - flag controlling whether the eigenvectors are needed or not.
If ZNeeded is equal to:
* 0, the eigenvectors are not needed;
* 1, the eigenvectors of a tridiagonal matrix
are multiplied by the square matrix Z. It is used if the
tridiagonal matrix is obtained by the similarity
transformation of a symmetric matrix;
* 2, the eigenvectors of a tridiagonal matrix replace the
square matrix Z;
* 3, matrix Z contains the first row of the eigenvectors
matrix.
Z - if ZNeeded=1, Z contains the square matrix by which the
eigenvectors are multiplied.
Array whose indexes range within [0..N-1, 0..N-1].
Output parameters:
D - eigenvalues in ascending order.
Array whose index ranges within [0..N-1].
Z - if ZNeeded is equal to:
* 0, Z hasn�t changed;
* 1, Z contains the product of a given matrix (from the left)
and the eigenvectors matrix (from the right);
* 2, Z contains the eigenvectors.
* 3, Z contains the first row of the eigenvectors matrix.
If ZNeeded<3, Z is the array whose indexes range within [0..N-1, 0..N-1].
In that case, the eigenvectors are stored in the matrix columns.
If ZNeeded=3, Z is the array whose indexes range within [0..0, 0..N-1].
Result:
True, if the algorithm has converged.
False, if the algorithm hasn't converged.
-- LAPACK routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
September 30, 1994
*************************************************************************/
bool smatrixtdevd(real_1d_array &d, const real_1d_array &e, const ae_int_t n, const ae_int_t zneeded, real_2d_array &z);
/*************************************************************************
Subroutine for finding the tridiagonal matrix eigenvalues/vectors in a
given half-interval (A, B] by using bisection and inverse iteration.
Input parameters:
D - the main diagonal of a tridiagonal matrix.
Array whose index ranges within [0..N-1].
E - the secondary diagonal of a tridiagonal matrix.
Array whose index ranges within [0..N-2].
N - size of matrix, N>=0.
ZNeeded - flag controlling whether the eigenvectors are needed or not.
If ZNeeded is equal to:
* 0, the eigenvectors are not needed;
* 1, the eigenvectors of a tridiagonal matrix are multiplied
by the square matrix Z. It is used if the tridiagonal
matrix is obtained by the similarity transformation
of a symmetric matrix.
* 2, the eigenvectors of a tridiagonal matrix replace matrix Z.
A, B - half-interval (A, B] to search eigenvalues in.
Z - if ZNeeded is equal to:
* 0, Z isn't used and remains unchanged;
* 1, Z contains the square matrix (array whose indexes range
within [0..N-1, 0..N-1]) which reduces the given symmetric
matrix to tridiagonal form;
* 2, Z isn't used (but changed on the exit).
Output parameters:
D - array of the eigenvalues found.
Array whose index ranges within [0..M-1].
M - number of eigenvalues found in the given half-interval (M>=0).
Z - if ZNeeded is equal to:
* 0, doesn't contain any information;
* 1, contains the product of a given NxN matrix Z (from the
left) and NxM matrix of the eigenvectors found (from the
right). Array whose indexes range within [0..N-1, 0..M-1].
* 2, contains the matrix of the eigenvectors found.
Array whose indexes range within [0..N-1, 0..M-1].
Result:
True, if successful. In that case, M contains the number of eigenvalues
in the given half-interval (could be equal to 0), D contains the eigenvalues,
Z contains the eigenvectors (if needed).
It should be noted that the subroutine changes the size of arrays D and Z.
False, if the bisection method subroutine wasn't able to find the
eigenvalues in the given interval or if the inverse iteration subroutine
wasn't able to find all the corresponding eigenvectors. In that case,
the eigenvalues and eigenvectors are not returned, M is equal to 0.
-- ALGLIB --
Copyright 31.03.2008 by Bochkanov Sergey
*************************************************************************/
bool smatrixtdevdr(real_1d_array &d, const real_1d_array &e, const ae_int_t n, const ae_int_t zneeded, const double a, const double b, ae_int_t &m, real_2d_array &z);
/*************************************************************************
Subroutine for finding tridiagonal matrix eigenvalues/vectors with given
indexes (in ascending order) by using the bisection and inverse iteraion.
Input parameters:
D - the main diagonal of a tridiagonal matrix.
Array whose index ranges within [0..N-1].
E - the secondary diagonal of a tridiagonal matrix.
Array whose index ranges within [0..N-2].
N - size of matrix. N>=0.
ZNeeded - flag controlling whether the eigenvectors are needed or not.
If ZNeeded is equal to:
* 0, the eigenvectors are not needed;
* 1, the eigenvectors of a tridiagonal matrix are multiplied
by the square matrix Z. It is used if the
tridiagonal matrix is obtained by the similarity transformation
of a symmetric matrix.
* 2, the eigenvectors of a tridiagonal matrix replace
matrix Z.
I1, I2 - index interval for searching (from I1 to I2).
0 <= I1 <= I2 <= N-1.
Z - if ZNeeded is equal to:
* 0, Z isn't used and remains unchanged;
* 1, Z contains the square matrix (array whose indexes range within [0..N-1, 0..N-1])
which reduces the given symmetric matrix to tridiagonal form;
* 2, Z isn't used (but changed on the exit).
Output parameters:
D - array of the eigenvalues found.
Array whose index ranges within [0..I2-I1].
Z - if ZNeeded is equal to:
* 0, doesn't contain any information;
* 1, contains the product of a given NxN matrix Z (from the left) and
Nx(I2-I1) matrix of the eigenvectors found (from the right).
Array whose indexes range within [0..N-1, 0..I2-I1].
* 2, contains the matrix of the eigenvalues found.
Array whose indexes range within [0..N-1, 0..I2-I1].
Result:
True, if successful. In that case, D contains the eigenvalues,
Z contains the eigenvectors (if needed).
It should be noted that the subroutine changes the size of arrays D and Z.
False, if the bisection method subroutine wasn't able to find the eigenvalues
in the given interval or if the inverse iteration subroutine wasn't able
to find all the corresponding eigenvectors. In that case, the eigenvalues
and eigenvectors are not returned.
-- ALGLIB --
Copyright 25.12.2005 by Bochkanov Sergey
*************************************************************************/
bool smatrixtdevdi(real_1d_array &d, const real_1d_array &e, const ae_int_t n, const ae_int_t zneeded, const ae_int_t i1, const ae_int_t i2, real_2d_array &z);
/*************************************************************************
Finding eigenvalues and eigenvectors of a general (unsymmetric) matrix
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes one important improvement of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison. Speed-up provided by MKL for this particular problem (EVD)
! is really high, because MKL uses combination of (a) better low-level
! optimizations, and (b) better EVD algorithms.
!
! On one particular SSE-capable machine for N=1024, commercial MKL-
! -capable ALGLIB was:
! * 7-10 times faster than open source "generic C" version
! * 15-18 times faster than "pure C#" version
!
! Multithreaded acceleration is NOT supported for this function.
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
The algorithm finds eigenvalues and eigenvectors of a general matrix by
using the QR algorithm with multiple shifts. The algorithm can find
eigenvalues and both left and right eigenvectors.
The right eigenvector is a vector x such that A*x = w*x, and the left
eigenvector is a vector y such that y'*A = w*y' (here y' implies a complex
conjugate transposition of vector y).
Input parameters:
A - matrix. Array whose indexes range within [0..N-1, 0..N-1].
N - size of matrix A.
VNeeded - flag controlling whether eigenvectors are needed or not.
If VNeeded is equal to:
* 0, eigenvectors are not returned;
* 1, right eigenvectors are returned;
* 2, left eigenvectors are returned;
* 3, both left and right eigenvectors are returned.
Output parameters:
WR - real parts of eigenvalues.
Array whose index ranges within [0..N-1].
WR - imaginary parts of eigenvalues.
Array whose index ranges within [0..N-1].
VL, VR - arrays of left and right eigenvectors (if they are needed).
If WI[i]=0, the respective eigenvalue is a real number,
and it corresponds to the column number I of matrices VL/VR.
If WI[i]>0, we have a pair of complex conjugate numbers with
positive and negative imaginary parts:
the first eigenvalue WR[i] + sqrt(-1)*WI[i];
the second eigenvalue WR[i+1] + sqrt(-1)*WI[i+1];
WI[i]>0
WI[i+1] = -WI[i] < 0
In that case, the eigenvector corresponding to the first
eigenvalue is located in i and i+1 columns of matrices
VL/VR (the column number i contains the real part, and the
column number i+1 contains the imaginary part), and the vector
corresponding to the second eigenvalue is a complex conjugate to
the first vector.
Arrays whose indexes range within [0..N-1, 0..N-1].
Result:
True, if the algorithm has converged.
False, if the algorithm has not converged.
Note 1:
Some users may ask the following question: what if WI[N-1]>0?
WI[N] must contain an eigenvalue which is complex conjugate to the
N-th eigenvalue, but the array has only size N?
The answer is as follows: such a situation cannot occur because the
algorithm finds a pairs of eigenvalues, therefore, if WI[i]>0, I is
strictly less than N-1.
Note 2:
The algorithm performance depends on the value of the internal parameter
NS of the InternalSchurDecomposition subroutine which defines the number
of shifts in the QR algorithm (similarly to the block width in block-matrix
algorithms of linear algebra). If you require maximum performance
on your machine, it is recommended to adjust this parameter manually.
See also the InternalTREVC subroutine.
The algorithm is based on the LAPACK 3.0 library.
*************************************************************************/
bool rmatrixevd(const real_2d_array &a, const ae_int_t n, const ae_int_t vneeded, real_1d_array &wr, real_1d_array &wi, real_2d_array &vl, real_2d_array &vr);
/*************************************************************************
Generation of a random uniformly distributed (Haar) orthogonal matrix
INPUT PARAMETERS:
N - matrix size, N>=1
OUTPUT PARAMETERS:
A - orthogonal NxN matrix, array[0..N-1,0..N-1]
NOTE: this function uses algorithm described in Stewart, G. W. (1980),
"The Efficient Generation of Random Orthogonal Matrices with an
Application to Condition Estimators".
Speaking short, to generate an (N+1)x(N+1) orthogonal matrix, it:
* takes an NxN one
* takes uniformly distributed unit vector of dimension N+1.
* constructs a Householder reflection from the vector, then applies
it to the smaller matrix (embedded in the larger size with a 1 at
the bottom right corner).
-- ALGLIB routine --
04.12.2009
Bochkanov Sergey
*************************************************************************/
void rmatrixrndorthogonal(const ae_int_t n, real_2d_array &a);
/*************************************************************************
Generation of random NxN matrix with given condition number and norm2(A)=1
INPUT PARAMETERS:
N - matrix size
C - condition number (in 2-norm)
OUTPUT PARAMETERS:
A - random matrix with norm2(A)=1 and cond(A)=C
-- ALGLIB routine --
04.12.2009
Bochkanov Sergey
*************************************************************************/
void rmatrixrndcond(const ae_int_t n, const double c, real_2d_array &a);
/*************************************************************************
Generation of a random Haar distributed orthogonal complex matrix
INPUT PARAMETERS:
N - matrix size, N>=1
OUTPUT PARAMETERS:
A - orthogonal NxN matrix, array[0..N-1,0..N-1]
NOTE: this function uses algorithm described in Stewart, G. W. (1980),
"The Efficient Generation of Random Orthogonal Matrices with an
Application to Condition Estimators".
Speaking short, to generate an (N+1)x(N+1) orthogonal matrix, it:
* takes an NxN one
* takes uniformly distributed unit vector of dimension N+1.
* constructs a Householder reflection from the vector, then applies
it to the smaller matrix (embedded in the larger size with a 1 at
the bottom right corner).
-- ALGLIB routine --
04.12.2009
Bochkanov Sergey
*************************************************************************/
void cmatrixrndorthogonal(const ae_int_t n, complex_2d_array &a);
/*************************************************************************
Generation of random NxN complex matrix with given condition number C and
norm2(A)=1
INPUT PARAMETERS:
N - matrix size
C - condition number (in 2-norm)
OUTPUT PARAMETERS:
A - random matrix with norm2(A)=1 and cond(A)=C
-- ALGLIB routine --
04.12.2009
Bochkanov Sergey
*************************************************************************/
void cmatrixrndcond(const ae_int_t n, const double c, complex_2d_array &a);
/*************************************************************************
Generation of random NxN symmetric matrix with given condition number and
norm2(A)=1
INPUT PARAMETERS:
N - matrix size
C - condition number (in 2-norm)
OUTPUT PARAMETERS:
A - random matrix with norm2(A)=1 and cond(A)=C
-- ALGLIB routine --
04.12.2009
Bochkanov Sergey
*************************************************************************/
void smatrixrndcond(const ae_int_t n, const double c, real_2d_array &a);
/*************************************************************************
Generation of random NxN symmetric positive definite matrix with given
condition number and norm2(A)=1
INPUT PARAMETERS:
N - matrix size
C - condition number (in 2-norm)
OUTPUT PARAMETERS:
A - random SPD matrix with norm2(A)=1 and cond(A)=C
-- ALGLIB routine --
04.12.2009
Bochkanov Sergey
*************************************************************************/
void spdmatrixrndcond(const ae_int_t n, const double c, real_2d_array &a);
/*************************************************************************
Generation of random NxN Hermitian matrix with given condition number and
norm2(A)=1
INPUT PARAMETERS:
N - matrix size
C - condition number (in 2-norm)
OUTPUT PARAMETERS:
A - random matrix with norm2(A)=1 and cond(A)=C
-- ALGLIB routine --
04.12.2009
Bochkanov Sergey
*************************************************************************/
void hmatrixrndcond(const ae_int_t n, const double c, complex_2d_array &a);
/*************************************************************************
Generation of random NxN Hermitian positive definite matrix with given
condition number and norm2(A)=1
INPUT PARAMETERS:
N - matrix size
C - condition number (in 2-norm)
OUTPUT PARAMETERS:
A - random HPD matrix with norm2(A)=1 and cond(A)=C
-- ALGLIB routine --
04.12.2009
Bochkanov Sergey
*************************************************************************/
void hpdmatrixrndcond(const ae_int_t n, const double c, complex_2d_array &a);
/*************************************************************************
Multiplication of MxN matrix by NxN random Haar distributed orthogonal matrix
INPUT PARAMETERS:
A - matrix, array[0..M-1, 0..N-1]
M, N- matrix size
OUTPUT PARAMETERS:
A - A*Q, where Q is random NxN orthogonal matrix
-- ALGLIB routine --
04.12.2009
Bochkanov Sergey
*************************************************************************/
void rmatrixrndorthogonalfromtheright(real_2d_array &a, const ae_int_t m, const ae_int_t n);
/*************************************************************************
Multiplication of MxN matrix by MxM random Haar distributed orthogonal matrix
INPUT PARAMETERS:
A - matrix, array[0..M-1, 0..N-1]
M, N- matrix size
OUTPUT PARAMETERS:
A - Q*A, where Q is random MxM orthogonal matrix
-- ALGLIB routine --
04.12.2009
Bochkanov Sergey
*************************************************************************/
void rmatrixrndorthogonalfromtheleft(real_2d_array &a, const ae_int_t m, const ae_int_t n);
/*************************************************************************
Multiplication of MxN complex matrix by NxN random Haar distributed
complex orthogonal matrix
INPUT PARAMETERS:
A - matrix, array[0..M-1, 0..N-1]
M, N- matrix size
OUTPUT PARAMETERS:
A - A*Q, where Q is random NxN orthogonal matrix
-- ALGLIB routine --
04.12.2009
Bochkanov Sergey
*************************************************************************/
void cmatrixrndorthogonalfromtheright(complex_2d_array &a, const ae_int_t m, const ae_int_t n);
/*************************************************************************
Multiplication of MxN complex matrix by MxM random Haar distributed
complex orthogonal matrix
INPUT PARAMETERS:
A - matrix, array[0..M-1, 0..N-1]
M, N- matrix size
OUTPUT PARAMETERS:
A - Q*A, where Q is random MxM orthogonal matrix
-- ALGLIB routine --
04.12.2009
Bochkanov Sergey
*************************************************************************/
void cmatrixrndorthogonalfromtheleft(complex_2d_array &a, const ae_int_t m, const ae_int_t n);
/*************************************************************************
Symmetric multiplication of NxN matrix by random Haar distributed
orthogonal matrix
INPUT PARAMETERS:
A - matrix, array[0..N-1, 0..N-1]
N - matrix size
OUTPUT PARAMETERS:
A - Q'*A*Q, where Q is random NxN orthogonal matrix
-- ALGLIB routine --
04.12.2009
Bochkanov Sergey
*************************************************************************/
void smatrixrndmultiply(real_2d_array &a, const ae_int_t n);
/*************************************************************************
Hermitian multiplication of NxN matrix by random Haar distributed
complex orthogonal matrix
INPUT PARAMETERS:
A - matrix, array[0..N-1, 0..N-1]
N - matrix size
OUTPUT PARAMETERS:
A - Q^H*A*Q, where Q is random NxN orthogonal matrix
-- ALGLIB routine --
04.12.2009
Bochkanov Sergey
*************************************************************************/
void hmatrixrndmultiply(complex_2d_array &a, const ae_int_t n);
/*************************************************************************
This function creates sparse matrix in a Hash-Table format.
This function creates Hast-Table matrix, which can be converted to CRS
format after its initialization is over. Typical usage scenario for a
sparse matrix is:
1. creation in a Hash-Table format
2. insertion of the matrix elements
3. conversion to the CRS representation
4. matrix is passed to some linear algebra algorithm
Some information about different matrix formats can be found below, in
the "NOTES" section.
INPUT PARAMETERS
M - number of rows in a matrix, M>=1
N - number of columns in a matrix, N>=1
K - K>=0, expected number of non-zero elements in a matrix.
K can be inexact approximation, can be less than actual
number of elements (table will grow when needed) or
even zero).
It is important to understand that although hash-table
may grow automatically, it is better to provide good
estimate of data size.
OUTPUT PARAMETERS
S - sparse M*N matrix in Hash-Table representation.
All elements of the matrix are zero.
NOTE 1
Hash-tables use memory inefficiently, and they have to keep some amount
of the "spare memory" in order to have good performance. Hash table for
matrix with K non-zero elements will need C*K*(8+2*sizeof(int)) bytes,
where C is a small constant, about 1.5-2 in magnitude.
CRS storage, from the other side, is more memory-efficient, and needs
just K*(8+sizeof(int))+M*sizeof(int) bytes, where M is a number of rows
in a matrix.
When you convert from the Hash-Table to CRS representation, all unneeded
memory will be freed.
NOTE 2
Comments of SparseMatrix structure outline information about different
sparse storage formats. We recommend you to read them before starting to
use ALGLIB sparse matrices.
NOTE 3
This function completely overwrites S with new sparse matrix. Previously
allocated storage is NOT reused. If you want to reuse already allocated
memory, call SparseCreateBuf function.
-- ALGLIB PROJECT --
Copyright 14.10.2011 by Bochkanov Sergey
*************************************************************************/
void sparsecreate(const ae_int_t m, const ae_int_t n, const ae_int_t k, sparsematrix &s);
void sparsecreate(const ae_int_t m, const ae_int_t n, sparsematrix &s);
/*************************************************************************
This version of SparseCreate function creates sparse matrix in Hash-Table
format, reusing previously allocated storage as much as possible. Read
comments for SparseCreate() for more information.
INPUT PARAMETERS
M - number of rows in a matrix, M>=1
N - number of columns in a matrix, N>=1
K - K>=0, expected number of non-zero elements in a matrix.
K can be inexact approximation, can be less than actual
number of elements (table will grow when needed) or
even zero).
It is important to understand that although hash-table
may grow automatically, it is better to provide good
estimate of data size.
S - SparseMatrix structure which MAY contain some already
allocated storage.
OUTPUT PARAMETERS
S - sparse M*N matrix in Hash-Table representation.
All elements of the matrix are zero.
Previously allocated storage is reused, if its size
is compatible with expected number of non-zeros K.
-- ALGLIB PROJECT --
Copyright 14.01.2014 by Bochkanov Sergey
*************************************************************************/
void sparsecreatebuf(const ae_int_t m, const ae_int_t n, const ae_int_t k, const sparsematrix &s);
void sparsecreatebuf(const ae_int_t m, const ae_int_t n, const sparsematrix &s);
/*************************************************************************
This function creates sparse matrix in a CRS format (expert function for
situations when you are running out of memory).
This function creates CRS matrix. Typical usage scenario for a CRS matrix
is:
1. creation (you have to tell number of non-zero elements at each row at
this moment)
2. insertion of the matrix elements (row by row, from left to right)
3. matrix is passed to some linear algebra algorithm
This function is a memory-efficient alternative to SparseCreate(), but it
is more complex because it requires you to know in advance how large your
matrix is. Some information about different matrix formats can be found
in comments on SparseMatrix structure. We recommend you to read them
before starting to use ALGLIB sparse matrices..
INPUT PARAMETERS
M - number of rows in a matrix, M>=1
N - number of columns in a matrix, N>=1
NER - number of elements at each row, array[M], NER[I]>=0
OUTPUT PARAMETERS
S - sparse M*N matrix in CRS representation.
You have to fill ALL non-zero elements by calling
SparseSet() BEFORE you try to use this matrix.
NOTE: this function completely overwrites S with new sparse matrix.
Previously allocated storage is NOT reused. If you want to reuse
already allocated memory, call SparseCreateCRSBuf function.
-- ALGLIB PROJECT --
Copyright 14.10.2011 by Bochkanov Sergey
*************************************************************************/
void sparsecreatecrs(const ae_int_t m, const ae_int_t n, const integer_1d_array &ner, sparsematrix &s);
/*************************************************************************
This function creates sparse matrix in a CRS format (expert function for
situations when you are running out of memory). This version of CRS
matrix creation function may reuse memory already allocated in S.
This function creates CRS matrix. Typical usage scenario for a CRS matrix
is:
1. creation (you have to tell number of non-zero elements at each row at
this moment)
2. insertion of the matrix elements (row by row, from left to right)
3. matrix is passed to some linear algebra algorithm
This function is a memory-efficient alternative to SparseCreate(), but it
is more complex because it requires you to know in advance how large your
matrix is. Some information about different matrix formats can be found
in comments on SparseMatrix structure. We recommend you to read them
before starting to use ALGLIB sparse matrices..
INPUT PARAMETERS
M - number of rows in a matrix, M>=1
N - number of columns in a matrix, N>=1
NER - number of elements at each row, array[M], NER[I]>=0
S - sparse matrix structure with possibly preallocated
memory.
OUTPUT PARAMETERS
S - sparse M*N matrix in CRS representation.
You have to fill ALL non-zero elements by calling
SparseSet() BEFORE you try to use this matrix.
-- ALGLIB PROJECT --
Copyright 14.10.2011 by Bochkanov Sergey
*************************************************************************/
void sparsecreatecrsbuf(const ae_int_t m, const ae_int_t n, const integer_1d_array &ner, const sparsematrix &s);
/*************************************************************************
This function creates sparse matrix in a SKS format (skyline storage
format). In most cases you do not need this function - CRS format better
suits most use cases.
INPUT PARAMETERS
M, N - number of rows(M) and columns (N) in a matrix:
* M=N (as for now, ALGLIB supports only square SKS)
* N>=1
* M>=1
D - "bottom" bandwidths, array[M], D[I]>=0.
I-th element stores number of non-zeros at I-th row,
below the diagonal (diagonal itself is not included)
U - "top" bandwidths, array[N], U[I]>=0.
I-th element stores number of non-zeros at I-th row,
above the diagonal (diagonal itself is not included)
OUTPUT PARAMETERS
S - sparse M*N matrix in SKS representation.
All elements are filled by zeros.
You may use SparseRewriteExisting() to change their
values.
NOTE: this function completely overwrites S with new sparse matrix.
Previously allocated storage is NOT reused. If you want to reuse
already allocated memory, call SparseCreateSKSBuf function.
-- ALGLIB PROJECT --
Copyright 13.01.2014 by Bochkanov Sergey
*************************************************************************/
void sparsecreatesks(const ae_int_t m, const ae_int_t n, const integer_1d_array &d, const integer_1d_array &u, sparsematrix &s);
/*************************************************************************
This is "buffered" version of SparseCreateSKS() which reuses memory
previously allocated in S (of course, memory is reallocated if needed).
This function creates sparse matrix in a SKS format (skyline storage
format). In most cases you do not need this function - CRS format better
suits most use cases.
INPUT PARAMETERS
M, N - number of rows(M) and columns (N) in a matrix:
* M=N (as for now, ALGLIB supports only square SKS)
* N>=1
* M>=1
D - "bottom" bandwidths, array[M], 0<=D[I]<=I.
I-th element stores number of non-zeros at I-th row,
below the diagonal (diagonal itself is not included)
U - "top" bandwidths, array[N], 0<=U[I]<=I.
I-th element stores number of non-zeros at I-th row,
above the diagonal (diagonal itself is not included)
OUTPUT PARAMETERS
S - sparse M*N matrix in SKS representation.
All elements are filled by zeros.
You may use SparseSet()/SparseAdd() to change their
values.
-- ALGLIB PROJECT --
Copyright 13.01.2014 by Bochkanov Sergey
*************************************************************************/
void sparsecreatesksbuf(const ae_int_t m, const ae_int_t n, const integer_1d_array &d, const integer_1d_array &u, const sparsematrix &s);
/*************************************************************************
This function copies S0 to S1.
This function completely deallocates memory owned by S1 before creating a
copy of S0. If you want to reuse memory, use SparseCopyBuf.
NOTE: this function does not verify its arguments, it just copies all
fields of the structure.
-- ALGLIB PROJECT --
Copyright 14.10.2011 by Bochkanov Sergey
*************************************************************************/
void sparsecopy(const sparsematrix &s0, sparsematrix &s1);
/*************************************************************************
This function copies S0 to S1.
Memory already allocated in S1 is reused as much as possible.
NOTE: this function does not verify its arguments, it just copies all
fields of the structure.
-- ALGLIB PROJECT --
Copyright 14.10.2011 by Bochkanov Sergey
*************************************************************************/
void sparsecopybuf(const sparsematrix &s0, const sparsematrix &s1);
/*************************************************************************
This function efficiently swaps contents of S0 and S1.
-- ALGLIB PROJECT --
Copyright 16.01.2014 by Bochkanov Sergey
*************************************************************************/
void sparseswap(const sparsematrix &s0, const sparsematrix &s1);
/*************************************************************************
This function adds value to S[i,j] - element of the sparse matrix. Matrix
must be in a Hash-Table mode.
In case S[i,j] already exists in the table, V i added to its value. In
case S[i,j] is non-existent, it is inserted in the table. Table
automatically grows when necessary.
INPUT PARAMETERS
S - sparse M*N matrix in Hash-Table representation.
Exception will be thrown for CRS matrix.
I - row index of the element to modify, 0<=I<M
J - column index of the element to modify, 0<=J<N
V - value to add, must be finite number
OUTPUT PARAMETERS
S - modified matrix
NOTE 1: when S[i,j] is exactly zero after modification, it is deleted
from the table.
-- ALGLIB PROJECT --
Copyright 14.10.2011 by Bochkanov Sergey
*************************************************************************/
void sparseadd(const sparsematrix &s, const ae_int_t i, const ae_int_t j, const double v);
/*************************************************************************
This function modifies S[i,j] - element of the sparse matrix.
For Hash-based storage format:
* this function can be called at any moment - during matrix initialization
or later
* new value can be zero or non-zero. In case new value of S[i,j] is zero,
this element is deleted from the table.
* this function has no effect when called with zero V for non-existent
element.
For CRS-bases storage format:
* this function can be called ONLY DURING MATRIX INITIALIZATION
* new value MUST be non-zero. Exception will be thrown for zero V.
* elements must be initialized in correct order - from top row to bottom,
within row - from left to right.
For SKS storage: NOT SUPPORTED! Use SparseRewriteExisting() to work with
SKS matrices.
INPUT PARAMETERS
S - sparse M*N matrix in Hash-Table or CRS representation.
I - row index of the element to modify, 0<=I<M
J - column index of the element to modify, 0<=J<N
V - value to set, must be finite number, can be zero
OUTPUT PARAMETERS
S - modified matrix
-- ALGLIB PROJECT --
Copyright 14.10.2011 by Bochkanov Sergey
*************************************************************************/
void sparseset(const sparsematrix &s, const ae_int_t i, const ae_int_t j, const double v);
/*************************************************************************
This function returns S[i,j] - element of the sparse matrix. Matrix can
be in any mode (Hash-Table, CRS, SKS), but this function is less efficient
for CRS matrices. Hash-Table and SKS matrices can find element in O(1)
time, while CRS matrices need O(log(RS)) time, where RS is an number of
non-zero elements in a row.
INPUT PARAMETERS
S - sparse M*N matrix in Hash-Table representation.
Exception will be thrown for CRS matrix.
I - row index of the element to modify, 0<=I<M
J - column index of the element to modify, 0<=J<N
RESULT
value of S[I,J] or zero (in case no element with such index is found)
-- ALGLIB PROJECT --
Copyright 14.10.2011 by Bochkanov Sergey
*************************************************************************/
double sparseget(const sparsematrix &s, const ae_int_t i, const ae_int_t j);
/*************************************************************************
This function returns I-th diagonal element of the sparse matrix.
Matrix can be in any mode (Hash-Table or CRS storage), but this function
is most efficient for CRS matrices - it requires less than 50 CPU cycles
to extract diagonal element. For Hash-Table matrices we still have O(1)
query time, but function is many times slower.
INPUT PARAMETERS
S - sparse M*N matrix in Hash-Table representation.
Exception will be thrown for CRS matrix.
I - index of the element to modify, 0<=I<min(M,N)
RESULT
value of S[I,I] or zero (in case no element with such index is found)
-- ALGLIB PROJECT --
Copyright 14.10.2011 by Bochkanov Sergey
*************************************************************************/
double sparsegetdiagonal(const sparsematrix &s, const ae_int_t i);
/*************************************************************************
This function calculates matrix-vector product S*x. Matrix S must be
stored in CRS or SKS format (exception will be thrown otherwise).
INPUT PARAMETERS
S - sparse M*N matrix in CRS or SKS format.
X - array[N], input vector. For performance reasons we
make only quick checks - we check that array size is
at least N, but we do not check for NAN's or INF's.
Y - output buffer, possibly preallocated. In case buffer
size is too small to store result, this buffer is
automatically resized.
OUTPUT PARAMETERS
Y - array[M], S*x
NOTE: this function throws exception when called for non-CRS/SKS matrix.
You must convert your matrix with SparseConvertToCRS/SKS() before using
this function.
-- ALGLIB PROJECT --
Copyright 14.10.2011 by Bochkanov Sergey
*************************************************************************/
void sparsemv(const sparsematrix &s, const real_1d_array &x, real_1d_array &y);
/*************************************************************************
This function calculates matrix-vector product S^T*x. Matrix S must be
stored in CRS or SKS format (exception will be thrown otherwise).
INPUT PARAMETERS
S - sparse M*N matrix in CRS or SKS format.
X - array[M], input vector. For performance reasons we
make only quick checks - we check that array size is
at least M, but we do not check for NAN's or INF's.
Y - output buffer, possibly preallocated. In case buffer
size is too small to store result, this buffer is
automatically resized.
OUTPUT PARAMETERS
Y - array[N], S^T*x
NOTE: this function throws exception when called for non-CRS/SKS matrix.
You must convert your matrix with SparseConvertToCRS/SKS() before using
this function.
-- ALGLIB PROJECT --
Copyright 14.10.2011 by Bochkanov Sergey
*************************************************************************/
void sparsemtv(const sparsematrix &s, const real_1d_array &x, real_1d_array &y);
/*************************************************************************
This function simultaneously calculates two matrix-vector products:
S*x and S^T*x.
S must be square (non-rectangular) matrix stored in CRS or SKS format
(exception will be thrown otherwise).
INPUT PARAMETERS
S - sparse N*N matrix in CRS or SKS format.
X - array[N], input vector. For performance reasons we
make only quick checks - we check that array size is
at least N, but we do not check for NAN's or INF's.
Y0 - output buffer, possibly preallocated. In case buffer
size is too small to store result, this buffer is
automatically resized.
Y1 - output buffer, possibly preallocated. In case buffer
size is too small to store result, this buffer is
automatically resized.
OUTPUT PARAMETERS
Y0 - array[N], S*x
Y1 - array[N], S^T*x
NOTE: this function throws exception when called for non-CRS/SKS matrix.
You must convert your matrix with SparseConvertToCRS/SKS() before using
this function.
-- ALGLIB PROJECT --
Copyright 14.10.2011 by Bochkanov Sergey
*************************************************************************/
void sparsemv2(const sparsematrix &s, const real_1d_array &x, real_1d_array &y0, real_1d_array &y1);
/*************************************************************************
This function calculates matrix-vector product S*x, when S is symmetric
matrix. Matrix S must be stored in CRS or SKS format (exception will be
thrown otherwise).
INPUT PARAMETERS
S - sparse M*M matrix in CRS or SKS format.
IsUpper - whether upper or lower triangle of S is given:
* if upper triangle is given, only S[i,j] for j>=i
are used, and lower triangle is ignored (it can be
empty - these elements are not referenced at all).
* if lower triangle is given, only S[i,j] for j<=i
are used, and upper triangle is ignored.
X - array[N], input vector. For performance reasons we
make only quick checks - we check that array size is
at least N, but we do not check for NAN's or INF's.
Y - output buffer, possibly preallocated. In case buffer
size is too small to store result, this buffer is
automatically resized.
OUTPUT PARAMETERS
Y - array[M], S*x
NOTE: this function throws exception when called for non-CRS/SKS matrix.
You must convert your matrix with SparseConvertToCRS/SKS() before using
this function.
-- ALGLIB PROJECT --
Copyright 14.10.2011 by Bochkanov Sergey
*************************************************************************/
void sparsesmv(const sparsematrix &s, const bool isupper, const real_1d_array &x, real_1d_array &y);
/*************************************************************************
This function calculates vector-matrix-vector product x'*S*x, where S is
symmetric matrix. Matrix S must be stored in CRS or SKS format (exception
will be thrown otherwise).
INPUT PARAMETERS
S - sparse M*M matrix in CRS or SKS format.
IsUpper - whether upper or lower triangle of S is given:
* if upper triangle is given, only S[i,j] for j>=i
are used, and lower triangle is ignored (it can be
empty - these elements are not referenced at all).
* if lower triangle is given, only S[i,j] for j<=i
are used, and upper triangle is ignored.
X - array[N], input vector. For performance reasons we
make only quick checks - we check that array size is
at least N, but we do not check for NAN's or INF's.
RESULT
x'*S*x
NOTE: this function throws exception when called for non-CRS/SKS matrix.
You must convert your matrix with SparseConvertToCRS/SKS() before using
this function.
-- ALGLIB PROJECT --
Copyright 27.01.2014 by Bochkanov Sergey
*************************************************************************/
double sparsevsmv(const sparsematrix &s, const bool isupper, const real_1d_array &x);
/*************************************************************************
This function calculates matrix-matrix product S*A. Matrix S must be
stored in CRS or SKS format (exception will be thrown otherwise).
INPUT PARAMETERS
S - sparse M*N matrix in CRS or SKS format.
A - array[N][K], input dense matrix. For performance reasons
we make only quick checks - we check that array size
is at least N, but we do not check for NAN's or INF's.
K - number of columns of matrix (A).
B - output buffer, possibly preallocated. In case buffer
size is too small to store result, this buffer is
automatically resized.
OUTPUT PARAMETERS
B - array[M][K], S*A
NOTE: this function throws exception when called for non-CRS/SKS matrix.
You must convert your matrix with SparseConvertToCRS/SKS() before using
this function.
-- ALGLIB PROJECT --
Copyright 14.10.2011 by Bochkanov Sergey
*************************************************************************/
void sparsemm(const sparsematrix &s, const real_2d_array &a, const ae_int_t k, real_2d_array &b);
/*************************************************************************
This function calculates matrix-matrix product S^T*A. Matrix S must be
stored in CRS or SKS format (exception will be thrown otherwise).
INPUT PARAMETERS
S - sparse M*N matrix in CRS or SKS format.
A - array[M][K], input dense matrix. For performance reasons
we make only quick checks - we check that array size is
at least M, but we do not check for NAN's or INF's.
K - number of columns of matrix (A).
B - output buffer, possibly preallocated. In case buffer
size is too small to store result, this buffer is
automatically resized.
OUTPUT PARAMETERS
B - array[N][K], S^T*A
NOTE: this function throws exception when called for non-CRS/SKS matrix.
You must convert your matrix with SparseConvertToCRS/SKS() before using
this function.
-- ALGLIB PROJECT --
Copyright 14.10.2011 by Bochkanov Sergey
*************************************************************************/
void sparsemtm(const sparsematrix &s, const real_2d_array &a, const ae_int_t k, real_2d_array &b);
/*************************************************************************
This function simultaneously calculates two matrix-matrix products:
S*A and S^T*A.
S must be square (non-rectangular) matrix stored in CRS or SKS format
(exception will be thrown otherwise).
INPUT PARAMETERS
S - sparse N*N matrix in CRS or SKS format.
A - array[N][K], input dense matrix. For performance reasons
we make only quick checks - we check that array size is
at least N, but we do not check for NAN's or INF's.
K - number of columns of matrix (A).
B0 - output buffer, possibly preallocated. In case buffer
size is too small to store result, this buffer is
automatically resized.
B1 - output buffer, possibly preallocated. In case buffer
size is too small to store result, this buffer is
automatically resized.
OUTPUT PARAMETERS
B0 - array[N][K], S*A
B1 - array[N][K], S^T*A
NOTE: this function throws exception when called for non-CRS/SKS matrix.
You must convert your matrix with SparseConvertToCRS/SKS() before using
this function.
-- ALGLIB PROJECT --
Copyright 14.10.2011 by Bochkanov Sergey
*************************************************************************/
void sparsemm2(const sparsematrix &s, const real_2d_array &a, const ae_int_t k, real_2d_array &b0, real_2d_array &b1);
/*************************************************************************
This function calculates matrix-matrix product S*A, when S is symmetric
matrix. Matrix S must be stored in CRS or SKS format (exception will be
thrown otherwise).
INPUT PARAMETERS
S - sparse M*M matrix in CRS or SKS format.
IsUpper - whether upper or lower triangle of S is given:
* if upper triangle is given, only S[i,j] for j>=i
are used, and lower triangle is ignored (it can be
empty - these elements are not referenced at all).
* if lower triangle is given, only S[i,j] for j<=i
are used, and upper triangle is ignored.
A - array[N][K], input dense matrix. For performance reasons
we make only quick checks - we check that array size is
at least N, but we do not check for NAN's or INF's.
K - number of columns of matrix (A).
B - output buffer, possibly preallocated. In case buffer
size is too small to store result, this buffer is
automatically resized.
OUTPUT PARAMETERS
B - array[M][K], S*A
NOTE: this function throws exception when called for non-CRS/SKS matrix.
You must convert your matrix with SparseConvertToCRS/SKS() before using
this function.
-- ALGLIB PROJECT --
Copyright 14.10.2011 by Bochkanov Sergey
*************************************************************************/
void sparsesmm(const sparsematrix &s, const bool isupper, const real_2d_array &a, const ae_int_t k, real_2d_array &b);
/*************************************************************************
This function calculates matrix-vector product op(S)*x, when x is vector,
S is symmetric triangular matrix, op(S) is transposition or no operation.
Matrix S must be stored in CRS or SKS format (exception will be thrown
otherwise).
INPUT PARAMETERS
S - sparse square matrix in CRS or SKS format.
IsUpper - whether upper or lower triangle of S is used:
* if upper triangle is given, only S[i,j] for j>=i
are used, and lower triangle is ignored (it can be
empty - these elements are not referenced at all).
* if lower triangle is given, only S[i,j] for j<=i
are used, and upper triangle is ignored.
IsUnit - unit or non-unit diagonal:
* if True, diagonal elements of triangular matrix are
considered equal to 1.0. Actual elements stored in
S are not referenced at all.
* if False, diagonal stored in S is used
OpType - operation type:
* if 0, S*x is calculated
* if 1, (S^T)*x is calculated (transposition)
X - array[N] which stores input vector. For performance
reasons we make only quick checks - we check that
array size is at least N, but we do not check for
NAN's or INF's.
Y - possibly preallocated input buffer. Automatically
resized if its size is too small.
OUTPUT PARAMETERS
Y - array[N], op(S)*x
NOTE: this function throws exception when called for non-CRS/SKS matrix.
You must convert your matrix with SparseConvertToCRS/SKS() before using
this function.
-- ALGLIB PROJECT --
Copyright 20.01.2014 by Bochkanov Sergey
*************************************************************************/
void sparsetrmv(const sparsematrix &s, const bool isupper, const bool isunit, const ae_int_t optype, const real_1d_array &x, real_1d_array &y);
/*************************************************************************
This function solves linear system op(S)*y=x where x is vector, S is
symmetric triangular matrix, op(S) is transposition or no operation.
Matrix S must be stored in CRS or SKS format (exception will be thrown
otherwise).
INPUT PARAMETERS
S - sparse square matrix in CRS or SKS format.
IsUpper - whether upper or lower triangle of S is used:
* if upper triangle is given, only S[i,j] for j>=i
are used, and lower triangle is ignored (it can be
empty - these elements are not referenced at all).
* if lower triangle is given, only S[i,j] for j<=i
are used, and upper triangle is ignored.
IsUnit - unit or non-unit diagonal:
* if True, diagonal elements of triangular matrix are
considered equal to 1.0. Actual elements stored in
S are not referenced at all.
* if False, diagonal stored in S is used. It is your
responsibility to make sure that diagonal is
non-zero.
OpType - operation type:
* if 0, S*x is calculated
* if 1, (S^T)*x is calculated (transposition)
X - array[N] which stores input vector. For performance
reasons we make only quick checks - we check that
array size is at least N, but we do not check for
NAN's or INF's.
OUTPUT PARAMETERS
X - array[N], inv(op(S))*x
NOTE: this function throws exception when called for non-CRS/SKS matrix.
You must convert your matrix with SparseConvertToCRS/SKS() before
using this function.
NOTE: no assertion or tests are done during algorithm operation. It is
your responsibility to provide invertible matrix to algorithm.
-- ALGLIB PROJECT --
Copyright 20.01.2014 by Bochkanov Sergey
*************************************************************************/
void sparsetrsv(const sparsematrix &s, const bool isupper, const bool isunit, const ae_int_t optype, const real_1d_array &x);
/*************************************************************************
This procedure resizes Hash-Table matrix. It can be called when you have
deleted too many elements from the matrix, and you want to free unneeded
memory.
-- ALGLIB PROJECT --
Copyright 14.10.2011 by Bochkanov Sergey
*************************************************************************/
void sparseresizematrix(const sparsematrix &s);
/*************************************************************************
This function is used to enumerate all elements of the sparse matrix.
Before first call user initializes T0 and T1 counters by zero. These
counters are used to remember current position in a matrix; after each
call they are updated by the function.
Subsequent calls to this function return non-zero elements of the sparse
matrix, one by one. If you enumerate CRS matrix, matrix is traversed from
left to right, from top to bottom. In case you enumerate matrix stored as
Hash table, elements are returned in random order.
EXAMPLE
> T0=0
> T1=0
> while SparseEnumerate(S,T0,T1,I,J,V) do
> ....do something with I,J,V
INPUT PARAMETERS
S - sparse M*N matrix in Hash-Table or CRS representation.
T0 - internal counter
T1 - internal counter
OUTPUT PARAMETERS
T0 - new value of the internal counter
T1 - new value of the internal counter
I - row index of non-zero element, 0<=I<M.
J - column index of non-zero element, 0<=J<N
V - value of the T-th element
RESULT
True in case of success (next non-zero element was retrieved)
False in case all non-zero elements were enumerated
NOTE: you may call SparseRewriteExisting() during enumeration, but it is
THE ONLY matrix modification function you can call!!! Other
matrix modification functions should not be called during enumeration!
-- ALGLIB PROJECT --
Copyright 14.03.2012 by Bochkanov Sergey
*************************************************************************/
bool sparseenumerate(const sparsematrix &s, ae_int_t &t0, ae_int_t &t1, ae_int_t &i, ae_int_t &j, double &v);
/*************************************************************************
This function rewrites existing (non-zero) element. It returns True if
element exists or False, when it is called for non-existing (zero)
element.
This function works with any kind of the matrix.
The purpose of this function is to provide convenient thread-safe way to
modify sparse matrix. Such modification (already existing element is
rewritten) is guaranteed to be thread-safe without any synchronization, as
long as different threads modify different elements.
INPUT PARAMETERS
S - sparse M*N matrix in any kind of representation
(Hash, SKS, CRS).
I - row index of non-zero element to modify, 0<=I<M
J - column index of non-zero element to modify, 0<=J<N
V - value to rewrite, must be finite number
OUTPUT PARAMETERS
S - modified matrix
RESULT
True in case when element exists
False in case when element doesn't exist or it is zero
-- ALGLIB PROJECT --
Copyright 14.03.2012 by Bochkanov Sergey
*************************************************************************/
bool sparserewriteexisting(const sparsematrix &s, const ae_int_t i, const ae_int_t j, const double v);
/*************************************************************************
This function returns I-th row of the sparse matrix. Matrix must be stored
in CRS or SKS format.
INPUT PARAMETERS:
S - sparse M*N matrix in CRS format
I - row index, 0<=I<M
IRow - output buffer, can be preallocated. In case buffer
size is too small to store I-th row, it is
automatically reallocated.
OUTPUT PARAMETERS:
IRow - array[M], I-th row.
NOTE: this function has O(N) running time, where N is a column count. It
allocates and fills N-element array, even although most of its
elemets are zero.
NOTE: If you have O(non-zeros-per-row) time and memory requirements, use
SparseGetCompressedRow() function. It returns data in compressed
format.
NOTE: when incorrect I (outside of [0,M-1]) or matrix (non CRS/SKS)
is passed, this function throws exception.
-- ALGLIB PROJECT --
Copyright 10.12.2014 by Bochkanov Sergey
*************************************************************************/
void sparsegetrow(const sparsematrix &s, const ae_int_t i, real_1d_array &irow);
/*************************************************************************
This function returns I-th row of the sparse matrix IN COMPRESSED FORMAT -
only non-zero elements are returned (with their indexes). Matrix must be
stored in CRS or SKS format.
INPUT PARAMETERS:
S - sparse M*N matrix in CRS format
I - row index, 0<=I<M
ColIdx - output buffer for column indexes, can be preallocated.
In case buffer size is too small to store I-th row, it
is automatically reallocated.
Vals - output buffer for values, can be preallocated. In case
buffer size is too small to store I-th row, it is
automatically reallocated.
OUTPUT PARAMETERS:
ColIdx - column indexes of non-zero elements, sorted by
ascending. Symbolically non-zero elements are counted
(i.e. if you allocated place for element, but it has
zero numerical value - it is counted).
Vals - values. Vals[K] stores value of matrix element with
indexes (I,ColIdx[K]). Symbolically non-zero elements
are counted (i.e. if you allocated place for element,
but it has zero numerical value - it is counted).
NZCnt - number of symbolically non-zero elements per row.
NOTE: when incorrect I (outside of [0,M-1]) or matrix (non CRS/SKS)
is passed, this function throws exception.
NOTE: this function may allocate additional, unnecessary place for ColIdx
and Vals arrays. It is dictated by performance reasons - on SKS
matrices it is faster to allocate space at the beginning with
some "extra"-space, than performing two passes over matrix - first
time to calculate exact space required for data, second time - to
store data itself.
-- ALGLIB PROJECT --
Copyright 10.12.2014 by Bochkanov Sergey
*************************************************************************/
void sparsegetcompressedrow(const sparsematrix &s, const ae_int_t i, integer_1d_array &colidx, real_1d_array &vals, ae_int_t &nzcnt);
/*************************************************************************
This function performs efficient in-place transpose of SKS matrix. No
additional memory is allocated during transposition.
This function supports only skyline storage format (SKS).
INPUT PARAMETERS
S - sparse matrix in SKS format.
OUTPUT PARAMETERS
S - sparse matrix, transposed.
-- ALGLIB PROJECT --
Copyright 16.01.2014 by Bochkanov Sergey
*************************************************************************/
void sparsetransposesks(const sparsematrix &s);
/*************************************************************************
This function performs in-place conversion to desired sparse storage
format.
INPUT PARAMETERS
S0 - sparse matrix in any format.
Fmt - desired storage format of the output, as returned by
SparseGetMatrixType() function:
* 0 for hash-based storage
* 1 for CRS
* 2 for SKS
OUTPUT PARAMETERS
S0 - sparse matrix in requested format.
NOTE: in-place conversion wastes a lot of memory which is used to store
temporaries. If you perform a lot of repeated conversions, we
recommend to use out-of-place buffered conversion functions, like
SparseCopyToBuf(), which can reuse already allocated memory.
-- ALGLIB PROJECT --
Copyright 16.01.2014 by Bochkanov Sergey
*************************************************************************/
void sparseconvertto(const sparsematrix &s0, const ae_int_t fmt);
/*************************************************************************
This function performs out-of-place conversion to desired sparse storage
format. S0 is copied to S1 and converted on-the-fly. Memory allocated in
S1 is reused to maximum extent possible.
INPUT PARAMETERS
S0 - sparse matrix in any format.
Fmt - desired storage format of the output, as returned by
SparseGetMatrixType() function:
* 0 for hash-based storage
* 1 for CRS
* 2 for SKS
OUTPUT PARAMETERS
S1 - sparse matrix in requested format.
-- ALGLIB PROJECT --
Copyright 16.01.2014 by Bochkanov Sergey
*************************************************************************/
void sparsecopytobuf(const sparsematrix &s0, const ae_int_t fmt, const sparsematrix &s1);
/*************************************************************************
This function performs in-place conversion to Hash table storage.
INPUT PARAMETERS
S - sparse matrix in CRS format.
OUTPUT PARAMETERS
S - sparse matrix in Hash table format.
NOTE: this function has no effect when called with matrix which is
already in Hash table mode.
NOTE: in-place conversion involves allocation of temporary arrays. If you
perform a lot of repeated in- place conversions, it may lead to
memory fragmentation. Consider using out-of-place SparseCopyToHashBuf()
function in this case.
-- ALGLIB PROJECT --
Copyright 20.07.2012 by Bochkanov Sergey
*************************************************************************/
void sparseconverttohash(const sparsematrix &s);
/*************************************************************************
This function performs out-of-place conversion to Hash table storage
format. S0 is copied to S1 and converted on-the-fly.
INPUT PARAMETERS
S0 - sparse matrix in any format.
OUTPUT PARAMETERS
S1 - sparse matrix in Hash table format.
NOTE: if S0 is stored as Hash-table, it is just copied without conversion.
NOTE: this function de-allocates memory occupied by S1 before starting
conversion. If you perform a lot of repeated conversions, it may
lead to memory fragmentation. In this case we recommend you to use
SparseCopyToHashBuf() function which re-uses memory in S1 as much as
possible.
-- ALGLIB PROJECT --
Copyright 20.07.2012 by Bochkanov Sergey
*************************************************************************/
void sparsecopytohash(const sparsematrix &s0, sparsematrix &s1);
/*************************************************************************
This function performs out-of-place conversion to Hash table storage
format. S0 is copied to S1 and converted on-the-fly. Memory allocated in
S1 is reused to maximum extent possible.
INPUT PARAMETERS
S0 - sparse matrix in any format.
OUTPUT PARAMETERS
S1 - sparse matrix in Hash table format.
NOTE: if S0 is stored as Hash-table, it is just copied without conversion.
-- ALGLIB PROJECT --
Copyright 20.07.2012 by Bochkanov Sergey
*************************************************************************/
void sparsecopytohashbuf(const sparsematrix &s0, const sparsematrix &s1);
/*************************************************************************
This function converts matrix to CRS format.
Some algorithms (linear algebra ones, for example) require matrices in
CRS format. This function allows to perform in-place conversion.
INPUT PARAMETERS
S - sparse M*N matrix in any format
OUTPUT PARAMETERS
S - matrix in CRS format
NOTE: this function has no effect when called with matrix which is
already in CRS mode.
NOTE: this function allocates temporary memory to store a copy of the
matrix. If you perform a lot of repeated conversions, we recommend
you to use SparseCopyToCRSBuf() function, which can reuse
previously allocated memory.
-- ALGLIB PROJECT --
Copyright 14.10.2011 by Bochkanov Sergey
*************************************************************************/
void sparseconverttocrs(const sparsematrix &s);
/*************************************************************************
This function performs out-of-place conversion to CRS format. S0 is
copied to S1 and converted on-the-fly.
INPUT PARAMETERS
S0 - sparse matrix in any format.
OUTPUT PARAMETERS
S1 - sparse matrix in CRS format.
NOTE: if S0 is stored as CRS, it is just copied without conversion.
NOTE: this function de-allocates memory occupied by S1 before starting CRS
conversion. If you perform a lot of repeated CRS conversions, it may
lead to memory fragmentation. In this case we recommend you to use
SparseCopyToCRSBuf() function which re-uses memory in S1 as much as
possible.
-- ALGLIB PROJECT --
Copyright 20.07.2012 by Bochkanov Sergey
*************************************************************************/
void sparsecopytocrs(const sparsematrix &s0, sparsematrix &s1);
/*************************************************************************
This function performs out-of-place conversion to CRS format. S0 is
copied to S1 and converted on-the-fly. Memory allocated in S1 is reused to
maximum extent possible.
INPUT PARAMETERS
S0 - sparse matrix in any format.
S1 - matrix which may contain some pre-allocated memory, or
can be just uninitialized structure.
OUTPUT PARAMETERS
S1 - sparse matrix in CRS format.
NOTE: if S0 is stored as CRS, it is just copied without conversion.
-- ALGLIB PROJECT --
Copyright 20.07.2012 by Bochkanov Sergey
*************************************************************************/
void sparsecopytocrsbuf(const sparsematrix &s0, const sparsematrix &s1);
/*************************************************************************
This function performs in-place conversion to SKS format.
INPUT PARAMETERS
S - sparse matrix in any format.
OUTPUT PARAMETERS
S - sparse matrix in SKS format.
NOTE: this function has no effect when called with matrix which is
already in SKS mode.
NOTE: in-place conversion involves allocation of temporary arrays. If you
perform a lot of repeated in- place conversions, it may lead to
memory fragmentation. Consider using out-of-place SparseCopyToSKSBuf()
function in this case.
-- ALGLIB PROJECT --
Copyright 15.01.2014 by Bochkanov Sergey
*************************************************************************/
void sparseconverttosks(const sparsematrix &s);
/*************************************************************************
This function performs out-of-place conversion to SKS storage format.
S0 is copied to S1 and converted on-the-fly.
INPUT PARAMETERS
S0 - sparse matrix in any format.
OUTPUT PARAMETERS
S1 - sparse matrix in SKS format.
NOTE: if S0 is stored as SKS, it is just copied without conversion.
NOTE: this function de-allocates memory occupied by S1 before starting
conversion. If you perform a lot of repeated conversions, it may
lead to memory fragmentation. In this case we recommend you to use
SparseCopyToSKSBuf() function which re-uses memory in S1 as much as
possible.
-- ALGLIB PROJECT --
Copyright 20.07.2012 by Bochkanov Sergey
*************************************************************************/
void sparsecopytosks(const sparsematrix &s0, sparsematrix &s1);
/*************************************************************************
This function performs out-of-place conversion to SKS format. S0 is
copied to S1 and converted on-the-fly. Memory allocated in S1 is reused
to maximum extent possible.
INPUT PARAMETERS
S0 - sparse matrix in any format.
OUTPUT PARAMETERS
S1 - sparse matrix in SKS format.
NOTE: if S0 is stored as SKS, it is just copied without conversion.
-- ALGLIB PROJECT --
Copyright 20.07.2012 by Bochkanov Sergey
*************************************************************************/
void sparsecopytosksbuf(const sparsematrix &s0, const sparsematrix &s1);
/*************************************************************************
This function returns type of the matrix storage format.
INPUT PARAMETERS:
S - sparse matrix.
RESULT:
sparse storage format used by matrix:
0 - Hash-table
1 - CRS (compressed row storage)
2 - SKS (skyline)
NOTE: future versions of ALGLIB may include additional sparse storage
formats.
-- ALGLIB PROJECT --
Copyright 20.07.2012 by Bochkanov Sergey
*************************************************************************/
ae_int_t sparsegetmatrixtype(const sparsematrix &s);
/*************************************************************************
This function checks matrix storage format and returns True when matrix is
stored using Hash table representation.
INPUT PARAMETERS:
S - sparse matrix.
RESULT:
True if matrix type is Hash table
False if matrix type is not Hash table
-- ALGLIB PROJECT --
Copyright 20.07.2012 by Bochkanov Sergey
*************************************************************************/
bool sparseishash(const sparsematrix &s);
/*************************************************************************
This function checks matrix storage format and returns True when matrix is
stored using CRS representation.
INPUT PARAMETERS:
S - sparse matrix.
RESULT:
True if matrix type is CRS
False if matrix type is not CRS
-- ALGLIB PROJECT --
Copyright 20.07.2012 by Bochkanov Sergey
*************************************************************************/
bool sparseiscrs(const sparsematrix &s);
/*************************************************************************
This function checks matrix storage format and returns True when matrix is
stored using SKS representation.
INPUT PARAMETERS:
S - sparse matrix.
RESULT:
True if matrix type is SKS
False if matrix type is not SKS
-- ALGLIB PROJECT --
Copyright 20.07.2012 by Bochkanov Sergey
*************************************************************************/
bool sparseissks(const sparsematrix &s);
/*************************************************************************
The function frees all memory occupied by sparse matrix. Sparse matrix
structure becomes unusable after this call.
OUTPUT PARAMETERS
S - sparse matrix to delete
-- ALGLIB PROJECT --
Copyright 24.07.2012 by Bochkanov Sergey
*************************************************************************/
void sparsefree(sparsematrix &s);
/*************************************************************************
The function returns number of rows of a sparse matrix.
RESULT: number of rows of a sparse matrix.
-- ALGLIB PROJECT --
Copyright 23.08.2012 by Bochkanov Sergey
*************************************************************************/
ae_int_t sparsegetnrows(const sparsematrix &s);
/*************************************************************************
The function returns number of columns of a sparse matrix.
RESULT: number of columns of a sparse matrix.
-- ALGLIB PROJECT --
Copyright 23.08.2012 by Bochkanov Sergey
*************************************************************************/
ae_int_t sparsegetncols(const sparsematrix &s);
/*************************************************************************
The function returns number of strictly upper triangular non-zero elements
in the matrix. It counts SYMBOLICALLY non-zero elements, i.e. entries
in the sparse matrix data structure. If some element has zero numerical
value, it is still counted.
This function has different cost for different types of matrices:
* for hash-based matrices it involves complete pass over entire hash-table
with O(NNZ) cost, where NNZ is number of non-zero elements
* for CRS and SKS matrix types cost of counting is O(N) (N - matrix size).
RESULT: number of non-zero elements strictly above main diagonal
-- ALGLIB PROJECT --
Copyright 12.02.2014 by Bochkanov Sergey
*************************************************************************/
ae_int_t sparsegetuppercount(const sparsematrix &s);
/*************************************************************************
The function returns number of strictly lower triangular non-zero elements
in the matrix. It counts SYMBOLICALLY non-zero elements, i.e. entries
in the sparse matrix data structure. If some element has zero numerical
value, it is still counted.
This function has different cost for different types of matrices:
* for hash-based matrices it involves complete pass over entire hash-table
with O(NNZ) cost, where NNZ is number of non-zero elements
* for CRS and SKS matrix types cost of counting is O(N) (N - matrix size).
RESULT: number of non-zero elements strictly below main diagonal
-- ALGLIB PROJECT --
Copyright 12.02.2014 by Bochkanov Sergey
*************************************************************************/
ae_int_t sparsegetlowercount(const sparsematrix &s);
/*************************************************************************
LU decomposition of a general real matrix with row pivoting
A is represented as A = P*L*U, where:
* L is lower unitriangular matrix
* U is upper triangular matrix
* P = P0*P1*...*PK, K=min(M,N)-1,
Pi - permutation matrix for I and Pivots[I]
This is cache-oblivous implementation of LU decomposition.
It is optimized for square matrices. As for rectangular matrices:
* best case - M>>N
* worst case - N>>M, small M, large N, matrix does not fit in CPU cache
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions. Generally, MKL accelerates any
! problem whose size is at least 128, with best efficiency achieved for
! N's larger than 512.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. We should note that LU decomposition is harder to
! parallelize than, say, matrix-matrix product - this algorithm has
! many internal synchronization points which can not be avoided. However
! parallelism starts to be profitable starting from N=1024, achieving
! near-linear speedup for N=4096 or higher.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
INPUT PARAMETERS:
A - array[0..M-1, 0..N-1].
M - number of rows in matrix A.
N - number of columns in matrix A.
OUTPUT PARAMETERS:
A - matrices L and U in compact form:
* L is stored under main diagonal
* U is stored on and above main diagonal
Pivots - permutation matrix in compact form.
array[0..Min(M-1,N-1)].
-- ALGLIB routine --
10.01.2010
Bochkanov Sergey
*************************************************************************/
void rmatrixlu(real_2d_array &a, const ae_int_t m, const ae_int_t n, integer_1d_array &pivots);
void smp_rmatrixlu(real_2d_array &a, const ae_int_t m, const ae_int_t n, integer_1d_array &pivots);
/*************************************************************************
LU decomposition of a general complex matrix with row pivoting
A is represented as A = P*L*U, where:
* L is lower unitriangular matrix
* U is upper triangular matrix
* P = P0*P1*...*PK, K=min(M,N)-1,
Pi - permutation matrix for I and Pivots[I]
This is cache-oblivous implementation of LU decomposition. It is optimized
for square matrices. As for rectangular matrices:
* best case - M>>N
* worst case - N>>M, small M, large N, matrix does not fit in CPU cache
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions. Generally, MKL accelerates any
! problem whose size is at least 128, with best efficiency achieved for
! N's larger than 512.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. We should note that LU decomposition is harder to
! parallelize than, say, matrix-matrix product - this algorithm has
! many internal synchronization points which can not be avoided. However
! parallelism starts to be profitable starting from N=1024, achieving
! near-linear speedup for N=4096 or higher.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
INPUT PARAMETERS:
A - array[0..M-1, 0..N-1].
M - number of rows in matrix A.
N - number of columns in matrix A.
OUTPUT PARAMETERS:
A - matrices L and U in compact form:
* L is stored under main diagonal
* U is stored on and above main diagonal
Pivots - permutation matrix in compact form.
array[0..Min(M-1,N-1)].
-- ALGLIB routine --
10.01.2010
Bochkanov Sergey
*************************************************************************/
void cmatrixlu(complex_2d_array &a, const ae_int_t m, const ae_int_t n, integer_1d_array &pivots);
void smp_cmatrixlu(complex_2d_array &a, const ae_int_t m, const ae_int_t n, integer_1d_array &pivots);
/*************************************************************************
Cache-oblivious Cholesky decomposition
The algorithm computes Cholesky decomposition of a Hermitian positive-
definite matrix. The result of an algorithm is a representation of A as
A=U'*U or A=L*L' (here X' detones conj(X^T)).
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions. Generally, MKL accelerates any
! problem whose size is at least 128, with best efficiency achieved for
! N's larger than 512.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. We should note that Cholesky decomposition is harder
! to parallelize than, say, matrix-matrix product - this algorithm has
! several synchronization points which can not be avoided. However,
! parallelism starts to be profitable starting from N=500.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
INPUT PARAMETERS:
A - upper or lower triangle of a factorized matrix.
array with elements [0..N-1, 0..N-1].
N - size of matrix A.
IsUpper - if IsUpper=True, then A contains an upper triangle of
a symmetric matrix, otherwise A contains a lower one.
OUTPUT PARAMETERS:
A - the result of factorization. If IsUpper=True, then
the upper triangle contains matrix U, so that A = U'*U,
and the elements below the main diagonal are not modified.
Similarly, if IsUpper = False.
RESULT:
If the matrix is positive-definite, the function returns True.
Otherwise, the function returns False. Contents of A is not determined
in such case.
-- ALGLIB routine --
15.12.2009
Bochkanov Sergey
*************************************************************************/
bool hpdmatrixcholesky(complex_2d_array &a, const ae_int_t n, const bool isupper);
bool smp_hpdmatrixcholesky(complex_2d_array &a, const ae_int_t n, const bool isupper);
/*************************************************************************
Cache-oblivious Cholesky decomposition
The algorithm computes Cholesky decomposition of a symmetric positive-
definite matrix. The result of an algorithm is a representation of A as
A=U^T*U or A=L*L^T
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions. Generally, MKL accelerates any
! problem whose size is at least 128, with best efficiency achieved for
! N's larger than 512.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. We should note that Cholesky decomposition is harder
! to parallelize than, say, matrix-matrix product - this algorithm has
! several synchronization points which can not be avoided. However,
! parallelism starts to be profitable starting from N=500.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
INPUT PARAMETERS:
A - upper or lower triangle of a factorized matrix.
array with elements [0..N-1, 0..N-1].
N - size of matrix A.
IsUpper - if IsUpper=True, then A contains an upper triangle of
a symmetric matrix, otherwise A contains a lower one.
OUTPUT PARAMETERS:
A - the result of factorization. If IsUpper=True, then
the upper triangle contains matrix U, so that A = U^T*U,
and the elements below the main diagonal are not modified.
Similarly, if IsUpper = False.
RESULT:
If the matrix is positive-definite, the function returns True.
Otherwise, the function returns False. Contents of A is not determined
in such case.
-- ALGLIB routine --
15.12.2009
Bochkanov Sergey
*************************************************************************/
bool spdmatrixcholesky(real_2d_array &a, const ae_int_t n, const bool isupper);
bool smp_spdmatrixcholesky(real_2d_array &a, const ae_int_t n, const bool isupper);
/*************************************************************************
Update of Cholesky decomposition: rank-1 update to original A. "Buffered"
version which uses preallocated buffer which is saved between subsequent
function calls.
This function uses internally allocated buffer which is not saved between
subsequent calls. So, if you perform a lot of subsequent updates,
we recommend you to use "buffered" version of this function:
SPDMatrixCholeskyUpdateAdd1Buf().
INPUT PARAMETERS:
A - upper or lower Cholesky factor.
array with elements [0..N-1, 0..N-1].
Exception is thrown if array size is too small.
N - size of matrix A, N>0
IsUpper - if IsUpper=True, then A contains upper Cholesky factor;
otherwise A contains a lower one.
U - array[N], rank-1 update to A: A_mod = A + u*u'
Exception is thrown if array size is too small.
BufR - possibly preallocated buffer; automatically resized if
needed. It is recommended to reuse this buffer if you
perform a lot of subsequent decompositions.
OUTPUT PARAMETERS:
A - updated factorization. If IsUpper=True, then the upper
triangle contains matrix U, and the elements below the main
diagonal are not modified. Similarly, if IsUpper = False.
NOTE: this function always succeeds, so it does not return completion code
NOTE: this function checks sizes of input arrays, but it does NOT checks
for presence of infinities or NAN's.
-- ALGLIB --
03.02.2014
Sergey Bochkanov
*************************************************************************/
void spdmatrixcholeskyupdateadd1(const real_2d_array &a, const ae_int_t n, const bool isupper, const real_1d_array &u);
/*************************************************************************
Update of Cholesky decomposition: "fixing" some variables.
This function uses internally allocated buffer which is not saved between
subsequent calls. So, if you perform a lot of subsequent updates,
we recommend you to use "buffered" version of this function:
SPDMatrixCholeskyUpdateFixBuf().
"FIXING" EXPLAINED:
Suppose we have N*N positive definite matrix A. "Fixing" some variable
means filling corresponding row/column of A by zeros, and setting
diagonal element to 1.
For example, if we fix 2nd variable in 4*4 matrix A, it becomes Af:
( A00 A01 A02 A03 ) ( Af00 0 Af02 Af03 )
( A10 A11 A12 A13 ) ( 0 1 0 0 )
( A20 A21 A22 A23 ) => ( Af20 0 Af22 Af23 )
( A30 A31 A32 A33 ) ( Af30 0 Af32 Af33 )
If we have Cholesky decomposition of A, it must be recalculated after
variables were fixed. However, it is possible to use efficient
algorithm, which needs O(K*N^2) time to "fix" K variables, given
Cholesky decomposition of original, "unfixed" A.
INPUT PARAMETERS:
A - upper or lower Cholesky factor.
array with elements [0..N-1, 0..N-1].
Exception is thrown if array size is too small.
N - size of matrix A, N>0
IsUpper - if IsUpper=True, then A contains upper Cholesky factor;
otherwise A contains a lower one.
Fix - array[N], I-th element is True if I-th variable must be
fixed. Exception is thrown if array size is too small.
BufR - possibly preallocated buffer; automatically resized if
needed. It is recommended to reuse this buffer if you
perform a lot of subsequent decompositions.
OUTPUT PARAMETERS:
A - updated factorization. If IsUpper=True, then the upper
triangle contains matrix U, and the elements below the main
diagonal are not modified. Similarly, if IsUpper = False.
NOTE: this function always succeeds, so it does not return completion code
NOTE: this function checks sizes of input arrays, but it does NOT checks
for presence of infinities or NAN's.
NOTE: this function is efficient only for moderate amount of updated
variables - say, 0.1*N or 0.3*N. For larger amount of variables it
will still work, but you may get better performance with
straightforward Cholesky.
-- ALGLIB --
03.02.2014
Sergey Bochkanov
*************************************************************************/
void spdmatrixcholeskyupdatefix(const real_2d_array &a, const ae_int_t n, const bool isupper, const boolean_1d_array &fix);
/*************************************************************************
Update of Cholesky decomposition: rank-1 update to original A. "Buffered"
version which uses preallocated buffer which is saved between subsequent
function calls.
See comments for SPDMatrixCholeskyUpdateAdd1() for more information.
INPUT PARAMETERS:
A - upper or lower Cholesky factor.
array with elements [0..N-1, 0..N-1].
Exception is thrown if array size is too small.
N - size of matrix A, N>0
IsUpper - if IsUpper=True, then A contains upper Cholesky factor;
otherwise A contains a lower one.
U - array[N], rank-1 update to A: A_mod = A + u*u'
Exception is thrown if array size is too small.
BufR - possibly preallocated buffer; automatically resized if
needed. It is recommended to reuse this buffer if you
perform a lot of subsequent decompositions.
OUTPUT PARAMETERS:
A - updated factorization. If IsUpper=True, then the upper
triangle contains matrix U, and the elements below the main
diagonal are not modified. Similarly, if IsUpper = False.
-- ALGLIB --
03.02.2014
Sergey Bochkanov
*************************************************************************/
void spdmatrixcholeskyupdateadd1buf(const real_2d_array &a, const ae_int_t n, const bool isupper, const real_1d_array &u, real_1d_array &bufr);
/*************************************************************************
Update of Cholesky decomposition: "fixing" some variables. "Buffered"
version which uses preallocated buffer which is saved between subsequent
function calls.
See comments for SPDMatrixCholeskyUpdateFix() for more information.
INPUT PARAMETERS:
A - upper or lower Cholesky factor.
array with elements [0..N-1, 0..N-1].
Exception is thrown if array size is too small.
N - size of matrix A, N>0
IsUpper - if IsUpper=True, then A contains upper Cholesky factor;
otherwise A contains a lower one.
Fix - array[N], I-th element is True if I-th variable must be
fixed. Exception is thrown if array size is too small.
BufR - possibly preallocated buffer; automatically resized if
needed. It is recommended to reuse this buffer if you
perform a lot of subsequent decompositions.
OUTPUT PARAMETERS:
A - updated factorization. If IsUpper=True, then the upper
triangle contains matrix U, and the elements below the main
diagonal are not modified. Similarly, if IsUpper = False.
-- ALGLIB --
03.02.2014
Sergey Bochkanov
*************************************************************************/
void spdmatrixcholeskyupdatefixbuf(const real_2d_array &a, const ae_int_t n, const bool isupper, const boolean_1d_array &fix, real_1d_array &bufr);
/*************************************************************************
Sparse Cholesky decomposition for skyline matrixm using in-place algorithm
without allocating additional storage.
The algorithm computes Cholesky decomposition of a symmetric positive-
definite sparse matrix. The result of an algorithm is a representation of
A as A=U^T*U or A=L*L^T
This function is a more efficient alternative to general, but slower
SparseCholeskyX(), because it does not create temporary copies of the
target. It performs factorization in-place, which gives best performance
on low-profile matrices. Its drawback, however, is that it can not perform
profile-reducing permutation of input matrix.
INPUT PARAMETERS:
A - sparse matrix in skyline storage (SKS) format.
N - size of matrix A (can be smaller than actual size of A)
IsUpper - if IsUpper=True, then factorization is performed on upper
triangle. Another triangle is ignored (it may contant some
data, but it is not changed).
OUTPUT PARAMETERS:
A - the result of factorization, stored in SKS. If IsUpper=True,
then the upper triangle contains matrix U, such that
A = U^T*U. Lower triangle is not changed.
Similarly, if IsUpper = False. In this case L is returned,
and we have A = L*(L^T).
Note that THIS function does not perform permutation of
rows to reduce bandwidth.
RESULT:
If the matrix is positive-definite, the function returns True.
Otherwise, the function returns False. Contents of A is not determined
in such case.
NOTE: for performance reasons this function does NOT check that input
matrix includes only finite values. It is your responsibility to
make sure that there are no infinite or NAN values in the matrix.
-- ALGLIB routine --
16.01.2014
Bochkanov Sergey
*************************************************************************/
bool sparsecholeskyskyline(const sparsematrix &a, const ae_int_t n, const bool isupper);
/*************************************************************************
Estimate of a matrix condition number (1-norm)
The algorithm calculates a lower bound of the condition number. In this case,
the algorithm does not return a lower bound of the condition number, but an
inverse number (to avoid an overflow in case of a singular matrix).
Input parameters:
A - matrix. Array whose indexes range within [0..N-1, 0..N-1].
N - size of matrix A.
Result: 1/LowerBound(cond(A))
NOTE:
if k(A) is very large, then matrix is assumed degenerate, k(A)=INF,
0.0 is returned in such cases.
*************************************************************************/
double rmatrixrcond1(const real_2d_array &a, const ae_int_t n);
/*************************************************************************
Estimate of a matrix condition number (infinity-norm).
The algorithm calculates a lower bound of the condition number. In this case,
the algorithm does not return a lower bound of the condition number, but an
inverse number (to avoid an overflow in case of a singular matrix).
Input parameters:
A - matrix. Array whose indexes range within [0..N-1, 0..N-1].
N - size of matrix A.
Result: 1/LowerBound(cond(A))
NOTE:
if k(A) is very large, then matrix is assumed degenerate, k(A)=INF,
0.0 is returned in such cases.
*************************************************************************/
double rmatrixrcondinf(const real_2d_array &a, const ae_int_t n);
/*************************************************************************
Condition number estimate of a symmetric positive definite matrix.
The algorithm calculates a lower bound of the condition number. In this case,
the algorithm does not return a lower bound of the condition number, but an
inverse number (to avoid an overflow in case of a singular matrix).
It should be noted that 1-norm and inf-norm of condition numbers of symmetric
matrices are equal, so the algorithm doesn't take into account the
differences between these types of norms.
Input parameters:
A - symmetric positive definite matrix which is given by its
upper or lower triangle depending on the value of
IsUpper. Array with elements [0..N-1, 0..N-1].
N - size of matrix A.
IsUpper - storage format.
Result:
1/LowerBound(cond(A)), if matrix A is positive definite,
-1, if matrix A is not positive definite, and its condition number
could not be found by this algorithm.
NOTE:
if k(A) is very large, then matrix is assumed degenerate, k(A)=INF,
0.0 is returned in such cases.
*************************************************************************/
double spdmatrixrcond(const real_2d_array &a, const ae_int_t n, const bool isupper);
/*************************************************************************
Triangular matrix: estimate of a condition number (1-norm)
The algorithm calculates a lower bound of the condition number. In this case,
the algorithm does not return a lower bound of the condition number, but an
inverse number (to avoid an overflow in case of a singular matrix).
Input parameters:
A - matrix. Array[0..N-1, 0..N-1].
N - size of A.
IsUpper - True, if the matrix is upper triangular.
IsUnit - True, if the matrix has a unit diagonal.
Result: 1/LowerBound(cond(A))
NOTE:
if k(A) is very large, then matrix is assumed degenerate, k(A)=INF,
0.0 is returned in such cases.
*************************************************************************/
double rmatrixtrrcond1(const real_2d_array &a, const ae_int_t n, const bool isupper, const bool isunit);
/*************************************************************************
Triangular matrix: estimate of a matrix condition number (infinity-norm).
The algorithm calculates a lower bound of the condition number. In this case,
the algorithm does not return a lower bound of the condition number, but an
inverse number (to avoid an overflow in case of a singular matrix).
Input parameters:
A - matrix. Array whose indexes range within [0..N-1, 0..N-1].
N - size of matrix A.
IsUpper - True, if the matrix is upper triangular.
IsUnit - True, if the matrix has a unit diagonal.
Result: 1/LowerBound(cond(A))
NOTE:
if k(A) is very large, then matrix is assumed degenerate, k(A)=INF,
0.0 is returned in such cases.
*************************************************************************/
double rmatrixtrrcondinf(const real_2d_array &a, const ae_int_t n, const bool isupper, const bool isunit);
/*************************************************************************
Condition number estimate of a Hermitian positive definite matrix.
The algorithm calculates a lower bound of the condition number. In this case,
the algorithm does not return a lower bound of the condition number, but an
inverse number (to avoid an overflow in case of a singular matrix).
It should be noted that 1-norm and inf-norm of condition numbers of symmetric
matrices are equal, so the algorithm doesn't take into account the
differences between these types of norms.
Input parameters:
A - Hermitian positive definite matrix which is given by its
upper or lower triangle depending on the value of
IsUpper. Array with elements [0..N-1, 0..N-1].
N - size of matrix A.
IsUpper - storage format.
Result:
1/LowerBound(cond(A)), if matrix A is positive definite,
-1, if matrix A is not positive definite, and its condition number
could not be found by this algorithm.
NOTE:
if k(A) is very large, then matrix is assumed degenerate, k(A)=INF,
0.0 is returned in such cases.
*************************************************************************/
double hpdmatrixrcond(const complex_2d_array &a, const ae_int_t n, const bool isupper);
/*************************************************************************
Estimate of a matrix condition number (1-norm)
The algorithm calculates a lower bound of the condition number. In this case,
the algorithm does not return a lower bound of the condition number, but an
inverse number (to avoid an overflow in case of a singular matrix).
Input parameters:
A - matrix. Array whose indexes range within [0..N-1, 0..N-1].
N - size of matrix A.
Result: 1/LowerBound(cond(A))
NOTE:
if k(A) is very large, then matrix is assumed degenerate, k(A)=INF,
0.0 is returned in such cases.
*************************************************************************/
double cmatrixrcond1(const complex_2d_array &a, const ae_int_t n);
/*************************************************************************
Estimate of a matrix condition number (infinity-norm).
The algorithm calculates a lower bound of the condition number. In this case,
the algorithm does not return a lower bound of the condition number, but an
inverse number (to avoid an overflow in case of a singular matrix).
Input parameters:
A - matrix. Array whose indexes range within [0..N-1, 0..N-1].
N - size of matrix A.
Result: 1/LowerBound(cond(A))
NOTE:
if k(A) is very large, then matrix is assumed degenerate, k(A)=INF,
0.0 is returned in such cases.
*************************************************************************/
double cmatrixrcondinf(const complex_2d_array &a, const ae_int_t n);
/*************************************************************************
Estimate of the condition number of a matrix given by its LU decomposition (1-norm)
The algorithm calculates a lower bound of the condition number. In this case,
the algorithm does not return a lower bound of the condition number, but an
inverse number (to avoid an overflow in case of a singular matrix).
Input parameters:
LUA - LU decomposition of a matrix in compact form. Output of
the RMatrixLU subroutine.
N - size of matrix A.
Result: 1/LowerBound(cond(A))
NOTE:
if k(A) is very large, then matrix is assumed degenerate, k(A)=INF,
0.0 is returned in such cases.
*************************************************************************/
double rmatrixlurcond1(const real_2d_array &lua, const ae_int_t n);
/*************************************************************************
Estimate of the condition number of a matrix given by its LU decomposition
(infinity norm).
The algorithm calculates a lower bound of the condition number. In this case,
the algorithm does not return a lower bound of the condition number, but an
inverse number (to avoid an overflow in case of a singular matrix).
Input parameters:
LUA - LU decomposition of a matrix in compact form. Output of
the RMatrixLU subroutine.
N - size of matrix A.
Result: 1/LowerBound(cond(A))
NOTE:
if k(A) is very large, then matrix is assumed degenerate, k(A)=INF,
0.0 is returned in such cases.
*************************************************************************/
double rmatrixlurcondinf(const real_2d_array &lua, const ae_int_t n);
/*************************************************************************
Condition number estimate of a symmetric positive definite matrix given by
Cholesky decomposition.
The algorithm calculates a lower bound of the condition number. In this
case, the algorithm does not return a lower bound of the condition number,
but an inverse number (to avoid an overflow in case of a singular matrix).
It should be noted that 1-norm and inf-norm condition numbers of symmetric
matrices are equal, so the algorithm doesn't take into account the
differences between these types of norms.
Input parameters:
CD - Cholesky decomposition of matrix A,
output of SMatrixCholesky subroutine.
N - size of matrix A.
Result: 1/LowerBound(cond(A))
NOTE:
if k(A) is very large, then matrix is assumed degenerate, k(A)=INF,
0.0 is returned in such cases.
*************************************************************************/
double spdmatrixcholeskyrcond(const real_2d_array &a, const ae_int_t n, const bool isupper);
/*************************************************************************
Condition number estimate of a Hermitian positive definite matrix given by
Cholesky decomposition.
The algorithm calculates a lower bound of the condition number. In this
case, the algorithm does not return a lower bound of the condition number,
but an inverse number (to avoid an overflow in case of a singular matrix).
It should be noted that 1-norm and inf-norm condition numbers of symmetric
matrices are equal, so the algorithm doesn't take into account the
differences between these types of norms.
Input parameters:
CD - Cholesky decomposition of matrix A,
output of SMatrixCholesky subroutine.
N - size of matrix A.
Result: 1/LowerBound(cond(A))
NOTE:
if k(A) is very large, then matrix is assumed degenerate, k(A)=INF,
0.0 is returned in such cases.
*************************************************************************/
double hpdmatrixcholeskyrcond(const complex_2d_array &a, const ae_int_t n, const bool isupper);
/*************************************************************************
Estimate of the condition number of a matrix given by its LU decomposition (1-norm)
The algorithm calculates a lower bound of the condition number. In this case,
the algorithm does not return a lower bound of the condition number, but an
inverse number (to avoid an overflow in case of a singular matrix).
Input parameters:
LUA - LU decomposition of a matrix in compact form. Output of
the CMatrixLU subroutine.
N - size of matrix A.
Result: 1/LowerBound(cond(A))
NOTE:
if k(A) is very large, then matrix is assumed degenerate, k(A)=INF,
0.0 is returned in such cases.
*************************************************************************/
double cmatrixlurcond1(const complex_2d_array &lua, const ae_int_t n);
/*************************************************************************
Estimate of the condition number of a matrix given by its LU decomposition
(infinity norm).
The algorithm calculates a lower bound of the condition number. In this case,
the algorithm does not return a lower bound of the condition number, but an
inverse number (to avoid an overflow in case of a singular matrix).
Input parameters:
LUA - LU decomposition of a matrix in compact form. Output of
the CMatrixLU subroutine.
N - size of matrix A.
Result: 1/LowerBound(cond(A))
NOTE:
if k(A) is very large, then matrix is assumed degenerate, k(A)=INF,
0.0 is returned in such cases.
*************************************************************************/
double cmatrixlurcondinf(const complex_2d_array &lua, const ae_int_t n);
/*************************************************************************
Triangular matrix: estimate of a condition number (1-norm)
The algorithm calculates a lower bound of the condition number. In this case,
the algorithm does not return a lower bound of the condition number, but an
inverse number (to avoid an overflow in case of a singular matrix).
Input parameters:
A - matrix. Array[0..N-1, 0..N-1].
N - size of A.
IsUpper - True, if the matrix is upper triangular.
IsUnit - True, if the matrix has a unit diagonal.
Result: 1/LowerBound(cond(A))
NOTE:
if k(A) is very large, then matrix is assumed degenerate, k(A)=INF,
0.0 is returned in such cases.
*************************************************************************/
double cmatrixtrrcond1(const complex_2d_array &a, const ae_int_t n, const bool isupper, const bool isunit);
/*************************************************************************
Triangular matrix: estimate of a matrix condition number (infinity-norm).
The algorithm calculates a lower bound of the condition number. In this case,
the algorithm does not return a lower bound of the condition number, but an
inverse number (to avoid an overflow in case of a singular matrix).
Input parameters:
A - matrix. Array whose indexes range within [0..N-1, 0..N-1].
N - size of matrix A.
IsUpper - True, if the matrix is upper triangular.
IsUnit - True, if the matrix has a unit diagonal.
Result: 1/LowerBound(cond(A))
NOTE:
if k(A) is very large, then matrix is assumed degenerate, k(A)=INF,
0.0 is returned in such cases.
*************************************************************************/
double cmatrixtrrcondinf(const complex_2d_array &a, const ae_int_t n, const bool isupper, const bool isunit);
/*************************************************************************
Inversion of a matrix given by its LU decomposition.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions. Generally, MKL accelerates any
! problem whose size is at least 128, with best efficiency achieved for
! N's larger than 512.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. We should note that matrix inversion is harder to
! parallelize than, say, matrix-matrix product - this algorithm has
! many internal synchronization points which can not be avoided. However
! parallelism starts to be profitable starting from N=1024, achieving
! near-linear speedup for N=4096 or higher.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
INPUT PARAMETERS:
A - LU decomposition of the matrix
(output of RMatrixLU subroutine).
Pivots - table of permutations
(the output of RMatrixLU subroutine).
N - size of matrix A (optional) :
* if given, only principal NxN submatrix is processed and
overwritten. other elements are unchanged.
* if not given, size is automatically determined from
matrix size (A must be square matrix)
OUTPUT PARAMETERS:
Info - return code:
* -3 A is singular, or VERY close to singular.
it is filled by zeros in such cases.
* 1 task is solved (but matrix A may be ill-conditioned,
check R1/RInf parameters for condition numbers).
Rep - solver report, see below for more info
A - inverse of matrix A.
Array whose indexes range within [0..N-1, 0..N-1].
SOLVER REPORT
Subroutine sets following fields of the Rep structure:
* R1 reciprocal of condition number: 1/cond(A), 1-norm.
* RInf reciprocal of condition number: 1/cond(A), inf-norm.
-- ALGLIB routine --
05.02.2010
Bochkanov Sergey
*************************************************************************/
void rmatrixluinverse(real_2d_array &a, const integer_1d_array &pivots, const ae_int_t n, ae_int_t &info, matinvreport &rep);
void smp_rmatrixluinverse(real_2d_array &a, const integer_1d_array &pivots, const ae_int_t n, ae_int_t &info, matinvreport &rep);
void rmatrixluinverse(real_2d_array &a, const integer_1d_array &pivots, ae_int_t &info, matinvreport &rep);
void smp_rmatrixluinverse(real_2d_array &a, const integer_1d_array &pivots, ae_int_t &info, matinvreport &rep);
/*************************************************************************
Inversion of a general matrix.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions. Generally, MKL accelerates any
! problem whose size is at least 128, with best efficiency achieved for
! N's larger than 512.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. We should note that matrix inversion is harder to
! parallelize than, say, matrix-matrix product - this algorithm has
! many internal synchronization points which can not be avoided. However
! parallelism starts to be profitable starting from N=1024, achieving
! near-linear speedup for N=4096 or higher.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
Input parameters:
A - matrix.
N - size of matrix A (optional) :
* if given, only principal NxN submatrix is processed and
overwritten. other elements are unchanged.
* if not given, size is automatically determined from
matrix size (A must be square matrix)
Output parameters:
Info - return code, same as in RMatrixLUInverse
Rep - solver report, same as in RMatrixLUInverse
A - inverse of matrix A, same as in RMatrixLUInverse
Result:
True, if the matrix is not singular.
False, if the matrix is singular.
-- ALGLIB --
Copyright 2005-2010 by Bochkanov Sergey
*************************************************************************/
void rmatrixinverse(real_2d_array &a, const ae_int_t n, ae_int_t &info, matinvreport &rep);
void smp_rmatrixinverse(real_2d_array &a, const ae_int_t n, ae_int_t &info, matinvreport &rep);
void rmatrixinverse(real_2d_array &a, ae_int_t &info, matinvreport &rep);
void smp_rmatrixinverse(real_2d_array &a, ae_int_t &info, matinvreport &rep);
/*************************************************************************
Inversion of a matrix given by its LU decomposition.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions. Generally, MKL accelerates any
! problem whose size is at least 128, with best efficiency achieved for
! N's larger than 512.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. We should note that matrix inversion is harder to
! parallelize than, say, matrix-matrix product - this algorithm has
! many internal synchronization points which can not be avoided. However
! parallelism starts to be profitable starting from N=1024, achieving
! near-linear speedup for N=4096 or higher.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
INPUT PARAMETERS:
A - LU decomposition of the matrix
(output of CMatrixLU subroutine).
Pivots - table of permutations
(the output of CMatrixLU subroutine).
N - size of matrix A (optional) :
* if given, only principal NxN submatrix is processed and
overwritten. other elements are unchanged.
* if not given, size is automatically determined from
matrix size (A must be square matrix)
OUTPUT PARAMETERS:
Info - return code, same as in RMatrixLUInverse
Rep - solver report, same as in RMatrixLUInverse
A - inverse of matrix A, same as in RMatrixLUInverse
-- ALGLIB routine --
05.02.2010
Bochkanov Sergey
*************************************************************************/
void cmatrixluinverse(complex_2d_array &a, const integer_1d_array &pivots, const ae_int_t n, ae_int_t &info, matinvreport &rep);
void smp_cmatrixluinverse(complex_2d_array &a, const integer_1d_array &pivots, const ae_int_t n, ae_int_t &info, matinvreport &rep);
void cmatrixluinverse(complex_2d_array &a, const integer_1d_array &pivots, ae_int_t &info, matinvreport &rep);
void smp_cmatrixluinverse(complex_2d_array &a, const integer_1d_array &pivots, ae_int_t &info, matinvreport &rep);
/*************************************************************************
Inversion of a general matrix.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions. Generally, MKL accelerates any
! problem whose size is at least 128, with best efficiency achieved for
! N's larger than 512.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. We should note that matrix inversion is harder to
! parallelize than, say, matrix-matrix product - this algorithm has
! many internal synchronization points which can not be avoided. However
! parallelism starts to be profitable starting from N=1024, achieving
! near-linear speedup for N=4096 or higher.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
Input parameters:
A - matrix
N - size of matrix A (optional) :
* if given, only principal NxN submatrix is processed and
overwritten. other elements are unchanged.
* if not given, size is automatically determined from
matrix size (A must be square matrix)
Output parameters:
Info - return code, same as in RMatrixLUInverse
Rep - solver report, same as in RMatrixLUInverse
A - inverse of matrix A, same as in RMatrixLUInverse
-- ALGLIB --
Copyright 2005 by Bochkanov Sergey
*************************************************************************/
void cmatrixinverse(complex_2d_array &a, const ae_int_t n, ae_int_t &info, matinvreport &rep);
void smp_cmatrixinverse(complex_2d_array &a, const ae_int_t n, ae_int_t &info, matinvreport &rep);
void cmatrixinverse(complex_2d_array &a, ae_int_t &info, matinvreport &rep);
void smp_cmatrixinverse(complex_2d_array &a, ae_int_t &info, matinvreport &rep);
/*************************************************************************
Inversion of a symmetric positive definite matrix which is given
by Cholesky decomposition.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions. Generally, MKL accelerates any
! problem whose size is at least 128, with best efficiency achieved for
! N's larger than 512.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. However, Cholesky inversion is a "difficult"
! algorithm - it has lots of internal synchronization points which
! prevents efficient parallelization of algorithm. Only very large
! problems (N=thousands) can be efficiently parallelized.
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
Input parameters:
A - Cholesky decomposition of the matrix to be inverted:
A=U�*U or A = L*L'.
Output of SPDMatrixCholesky subroutine.
N - size of matrix A (optional) :
* if given, only principal NxN submatrix is processed and
overwritten. other elements are unchanged.
* if not given, size is automatically determined from
matrix size (A must be square matrix)
IsUpper - storage type (optional):
* if True, symmetric matrix A is given by its upper
triangle, and the lower triangle isn�t used/changed by
function
* if False, symmetric matrix A is given by its lower
triangle, and the upper triangle isn�t used/changed by
function
* if not given, lower half is used.
Output parameters:
Info - return code, same as in RMatrixLUInverse
Rep - solver report, same as in RMatrixLUInverse
A - inverse of matrix A, same as in RMatrixLUInverse
-- ALGLIB routine --
10.02.2010
Bochkanov Sergey
*************************************************************************/
void spdmatrixcholeskyinverse(real_2d_array &a, const ae_int_t n, const bool isupper, ae_int_t &info, matinvreport &rep);
void smp_spdmatrixcholeskyinverse(real_2d_array &a, const ae_int_t n, const bool isupper, ae_int_t &info, matinvreport &rep);
void spdmatrixcholeskyinverse(real_2d_array &a, ae_int_t &info, matinvreport &rep);
void smp_spdmatrixcholeskyinverse(real_2d_array &a, ae_int_t &info, matinvreport &rep);
/*************************************************************************
Inversion of a symmetric positive definite matrix.
Given an upper or lower triangle of a symmetric positive definite matrix,
the algorithm generates matrix A^-1 and saves the upper or lower triangle
depending on the input.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions. Generally, MKL accelerates any
! problem whose size is at least 128, with best efficiency achieved for
! N's larger than 512.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. However, Cholesky inversion is a "difficult"
! algorithm - it has lots of internal synchronization points which
! prevents efficient parallelization of algorithm. Only very large
! problems (N=thousands) can be efficiently parallelized.
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
Input parameters:
A - matrix to be inverted (upper or lower triangle).
Array with elements [0..N-1,0..N-1].
N - size of matrix A (optional) :
* if given, only principal NxN submatrix is processed and
overwritten. other elements are unchanged.
* if not given, size is automatically determined from
matrix size (A must be square matrix)
IsUpper - storage type (optional):
* if True, symmetric matrix A is given by its upper
triangle, and the lower triangle isn�t used/changed by
function
* if False, symmetric matrix A is given by its lower
triangle, and the upper triangle isn�t used/changed by
function
* if not given, both lower and upper triangles must be
filled.
Output parameters:
Info - return code, same as in RMatrixLUInverse
Rep - solver report, same as in RMatrixLUInverse
A - inverse of matrix A, same as in RMatrixLUInverse
-- ALGLIB routine --
10.02.2010
Bochkanov Sergey
*************************************************************************/
void spdmatrixinverse(real_2d_array &a, const ae_int_t n, const bool isupper, ae_int_t &info, matinvreport &rep);
void smp_spdmatrixinverse(real_2d_array &a, const ae_int_t n, const bool isupper, ae_int_t &info, matinvreport &rep);
void spdmatrixinverse(real_2d_array &a, ae_int_t &info, matinvreport &rep);
void smp_spdmatrixinverse(real_2d_array &a, ae_int_t &info, matinvreport &rep);
/*************************************************************************
Inversion of a Hermitian positive definite matrix which is given
by Cholesky decomposition.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions. Generally, MKL accelerates any
! problem whose size is at least 128, with best efficiency achieved for
! N's larger than 512.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. However, Cholesky inversion is a "difficult"
! algorithm - it has lots of internal synchronization points which
! prevents efficient parallelization of algorithm. Only very large
! problems (N=thousands) can be efficiently parallelized.
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
Input parameters:
A - Cholesky decomposition of the matrix to be inverted:
A=U�*U or A = L*L'.
Output of HPDMatrixCholesky subroutine.
N - size of matrix A (optional) :
* if given, only principal NxN submatrix is processed and
overwritten. other elements are unchanged.
* if not given, size is automatically determined from
matrix size (A must be square matrix)
IsUpper - storage type (optional):
* if True, symmetric matrix A is given by its upper
triangle, and the lower triangle isn�t used/changed by
function
* if False, symmetric matrix A is given by its lower
triangle, and the upper triangle isn�t used/changed by
function
* if not given, lower half is used.
Output parameters:
Info - return code, same as in RMatrixLUInverse
Rep - solver report, same as in RMatrixLUInverse
A - inverse of matrix A, same as in RMatrixLUInverse
-- ALGLIB routine --
10.02.2010
Bochkanov Sergey
*************************************************************************/
void hpdmatrixcholeskyinverse(complex_2d_array &a, const ae_int_t n, const bool isupper, ae_int_t &info, matinvreport &rep);
void smp_hpdmatrixcholeskyinverse(complex_2d_array &a, const ae_int_t n, const bool isupper, ae_int_t &info, matinvreport &rep);
void hpdmatrixcholeskyinverse(complex_2d_array &a, ae_int_t &info, matinvreport &rep);
void smp_hpdmatrixcholeskyinverse(complex_2d_array &a, ae_int_t &info, matinvreport &rep);
/*************************************************************************
Inversion of a Hermitian positive definite matrix.
Given an upper or lower triangle of a Hermitian positive definite matrix,
the algorithm generates matrix A^-1 and saves the upper or lower triangle
depending on the input.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions. Generally, MKL accelerates any
! problem whose size is at least 128, with best efficiency achieved for
! N's larger than 512.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. However, Cholesky inversion is a "difficult"
! algorithm - it has lots of internal synchronization points which
! prevents efficient parallelization of algorithm. Only very large
! problems (N=thousands) can be efficiently parallelized.
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
Input parameters:
A - matrix to be inverted (upper or lower triangle).
Array with elements [0..N-1,0..N-1].
N - size of matrix A (optional) :
* if given, only principal NxN submatrix is processed and
overwritten. other elements are unchanged.
* if not given, size is automatically determined from
matrix size (A must be square matrix)
IsUpper - storage type (optional):
* if True, symmetric matrix A is given by its upper
triangle, and the lower triangle isn�t used/changed by
function
* if False, symmetric matrix A is given by its lower
triangle, and the upper triangle isn�t used/changed by
function
* if not given, both lower and upper triangles must be
filled.
Output parameters:
Info - return code, same as in RMatrixLUInverse
Rep - solver report, same as in RMatrixLUInverse
A - inverse of matrix A, same as in RMatrixLUInverse
-- ALGLIB routine --
10.02.2010
Bochkanov Sergey
*************************************************************************/
void hpdmatrixinverse(complex_2d_array &a, const ae_int_t n, const bool isupper, ae_int_t &info, matinvreport &rep);
void smp_hpdmatrixinverse(complex_2d_array &a, const ae_int_t n, const bool isupper, ae_int_t &info, matinvreport &rep);
void hpdmatrixinverse(complex_2d_array &a, ae_int_t &info, matinvreport &rep);
void smp_hpdmatrixinverse(complex_2d_array &a, ae_int_t &info, matinvreport &rep);
/*************************************************************************
Triangular matrix inverse (real)
The subroutine inverts the following types of matrices:
* upper triangular
* upper triangular with unit diagonal
* lower triangular
* lower triangular with unit diagonal
In case of an upper (lower) triangular matrix, the inverse matrix will
also be upper (lower) triangular, and after the end of the algorithm, the
inverse matrix replaces the source matrix. The elements below (above) the
main diagonal are not changed by the algorithm.
If the matrix has a unit diagonal, the inverse matrix also has a unit
diagonal, and the diagonal elements are not passed to the algorithm.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions. Generally, MKL accelerates any
! problem whose size is at least 128, with best efficiency achieved for
! N's larger than 512.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. We should note that triangular inverse is harder to
! parallelize than, say, matrix-matrix product - this algorithm has
! many internal synchronization points which can not be avoided. However
! parallelism starts to be profitable starting from N=1024, achieving
! near-linear speedup for N=4096 or higher.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
Input parameters:
A - matrix, array[0..N-1, 0..N-1].
N - size of matrix A (optional) :
* if given, only principal NxN submatrix is processed and
overwritten. other elements are unchanged.
* if not given, size is automatically determined from
matrix size (A must be square matrix)
IsUpper - True, if the matrix is upper triangular.
IsUnit - diagonal type (optional):
* if True, matrix has unit diagonal (a[i,i] are NOT used)
* if False, matrix diagonal is arbitrary
* if not given, False is assumed
Output parameters:
Info - same as for RMatrixLUInverse
Rep - same as for RMatrixLUInverse
A - same as for RMatrixLUInverse.
-- ALGLIB --
Copyright 05.02.2010 by Bochkanov Sergey
*************************************************************************/
void rmatrixtrinverse(real_2d_array &a, const ae_int_t n, const bool isupper, const bool isunit, ae_int_t &info, matinvreport &rep);
void smp_rmatrixtrinverse(real_2d_array &a, const ae_int_t n, const bool isupper, const bool isunit, ae_int_t &info, matinvreport &rep);
void rmatrixtrinverse(real_2d_array &a, const bool isupper, ae_int_t &info, matinvreport &rep);
void smp_rmatrixtrinverse(real_2d_array &a, const bool isupper, ae_int_t &info, matinvreport &rep);
/*************************************************************************
Triangular matrix inverse (complex)
The subroutine inverts the following types of matrices:
* upper triangular
* upper triangular with unit diagonal
* lower triangular
* lower triangular with unit diagonal
In case of an upper (lower) triangular matrix, the inverse matrix will
also be upper (lower) triangular, and after the end of the algorithm, the
inverse matrix replaces the source matrix. The elements below (above) the
main diagonal are not changed by the algorithm.
If the matrix has a unit diagonal, the inverse matrix also has a unit
diagonal, and the diagonal elements are not passed to the algorithm.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions. Generally, MKL accelerates any
! problem whose size is at least 128, with best efficiency achieved for
! N's larger than 512.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. We should note that triangular inverse is harder to
! parallelize than, say, matrix-matrix product - this algorithm has
! many internal synchronization points which can not be avoided. However
! parallelism starts to be profitable starting from N=1024, achieving
! near-linear speedup for N=4096 or higher.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
Input parameters:
A - matrix, array[0..N-1, 0..N-1].
N - size of matrix A (optional) :
* if given, only principal NxN submatrix is processed and
overwritten. other elements are unchanged.
* if not given, size is automatically determined from
matrix size (A must be square matrix)
IsUpper - True, if the matrix is upper triangular.
IsUnit - diagonal type (optional):
* if True, matrix has unit diagonal (a[i,i] are NOT used)
* if False, matrix diagonal is arbitrary
* if not given, False is assumed
Output parameters:
Info - same as for RMatrixLUInverse
Rep - same as for RMatrixLUInverse
A - same as for RMatrixLUInverse.
-- ALGLIB --
Copyright 05.02.2010 by Bochkanov Sergey
*************************************************************************/
void cmatrixtrinverse(complex_2d_array &a, const ae_int_t n, const bool isupper, const bool isunit, ae_int_t &info, matinvreport &rep);
void smp_cmatrixtrinverse(complex_2d_array &a, const ae_int_t n, const bool isupper, const bool isunit, ae_int_t &info, matinvreport &rep);
void cmatrixtrinverse(complex_2d_array &a, const bool isupper, ae_int_t &info, matinvreport &rep);
void smp_cmatrixtrinverse(complex_2d_array &a, const bool isupper, ae_int_t &info, matinvreport &rep);
/*************************************************************************
This procedure initializes matrix norm estimator.
USAGE:
1. User initializes algorithm state with NormEstimatorCreate() call
2. User calls NormEstimatorEstimateSparse() (or NormEstimatorIteration())
3. User calls NormEstimatorResults() to get solution.
INPUT PARAMETERS:
M - number of rows in the matrix being estimated, M>0
N - number of columns in the matrix being estimated, N>0
NStart - number of random starting vectors
recommended value - at least 5.
NIts - number of iterations to do with best starting vector
recommended value - at least 5.
OUTPUT PARAMETERS:
State - structure which stores algorithm state
NOTE: this algorithm is effectively deterministic, i.e. it always returns
same result when repeatedly called for the same matrix. In fact, algorithm
uses randomized starting vectors, but internal random numbers generator
always generates same sequence of the random values (it is a feature, not
bug).
Algorithm can be made non-deterministic with NormEstimatorSetSeed(0) call.
-- ALGLIB --
Copyright 06.12.2011 by Bochkanov Sergey
*************************************************************************/
void normestimatorcreate(const ae_int_t m, const ae_int_t n, const ae_int_t nstart, const ae_int_t nits, normestimatorstate &state);
/*************************************************************************
This function changes seed value used by algorithm. In some cases we need
deterministic processing, i.e. subsequent calls must return equal results,
in other cases we need non-deterministic algorithm which returns different
results for the same matrix on every pass.
Setting zero seed will lead to non-deterministic algorithm, while non-zero
value will make our algorithm deterministic.
INPUT PARAMETERS:
State - norm estimator state, must be initialized with a call
to NormEstimatorCreate()
SeedVal - seed value, >=0. Zero value = non-deterministic algo.
-- ALGLIB --
Copyright 06.12.2011 by Bochkanov Sergey
*************************************************************************/
void normestimatorsetseed(const normestimatorstate &state, const ae_int_t seedval);
/*************************************************************************
This function estimates norm of the sparse M*N matrix A.
INPUT PARAMETERS:
State - norm estimator state, must be initialized with a call
to NormEstimatorCreate()
A - sparse M*N matrix, must be converted to CRS format
prior to calling this function.
After this function is over you can call NormEstimatorResults() to get
estimate of the norm(A).
-- ALGLIB --
Copyright 06.12.2011 by Bochkanov Sergey
*************************************************************************/
void normestimatorestimatesparse(const normestimatorstate &state, const sparsematrix &a);
/*************************************************************************
Matrix norm estimation results
INPUT PARAMETERS:
State - algorithm state
OUTPUT PARAMETERS:
Nrm - estimate of the matrix norm, Nrm>=0
-- ALGLIB --
Copyright 06.12.2011 by Bochkanov Sergey
*************************************************************************/
void normestimatorresults(const normestimatorstate &state, double &nrm);
/*************************************************************************
Determinant calculation of the matrix given by its LU decomposition.
Input parameters:
A - LU decomposition of the matrix (output of
RMatrixLU subroutine).
Pivots - table of permutations which were made during
the LU decomposition.
Output of RMatrixLU subroutine.
N - (optional) size of matrix A:
* if given, only principal NxN submatrix is processed and
overwritten. other elements are unchanged.
* if not given, automatically determined from matrix size
(A must be square matrix)
Result: matrix determinant.
-- ALGLIB --
Copyright 2005 by Bochkanov Sergey
*************************************************************************/
double rmatrixludet(const real_2d_array &a, const integer_1d_array &pivots, const ae_int_t n);
double rmatrixludet(const real_2d_array &a, const integer_1d_array &pivots);
/*************************************************************************
Calculation of the determinant of a general matrix
Input parameters:
A - matrix, array[0..N-1, 0..N-1]
N - (optional) size of matrix A:
* if given, only principal NxN submatrix is processed and
overwritten. other elements are unchanged.
* if not given, automatically determined from matrix size
(A must be square matrix)
Result: determinant of matrix A.
-- ALGLIB --
Copyright 2005 by Bochkanov Sergey
*************************************************************************/
double rmatrixdet(const real_2d_array &a, const ae_int_t n);
double rmatrixdet(const real_2d_array &a);
/*************************************************************************
Determinant calculation of the matrix given by its LU decomposition.
Input parameters:
A - LU decomposition of the matrix (output of
RMatrixLU subroutine).
Pivots - table of permutations which were made during
the LU decomposition.
Output of RMatrixLU subroutine.
N - (optional) size of matrix A:
* if given, only principal NxN submatrix is processed and
overwritten. other elements are unchanged.
* if not given, automatically determined from matrix size
(A must be square matrix)
Result: matrix determinant.
-- ALGLIB --
Copyright 2005 by Bochkanov Sergey
*************************************************************************/
alglib::complex cmatrixludet(const complex_2d_array &a, const integer_1d_array &pivots, const ae_int_t n);
alglib::complex cmatrixludet(const complex_2d_array &a, const integer_1d_array &pivots);
/*************************************************************************
Calculation of the determinant of a general matrix
Input parameters:
A - matrix, array[0..N-1, 0..N-1]
N - (optional) size of matrix A:
* if given, only principal NxN submatrix is processed and
overwritten. other elements are unchanged.
* if not given, automatically determined from matrix size
(A must be square matrix)
Result: determinant of matrix A.
-- ALGLIB --
Copyright 2005 by Bochkanov Sergey
*************************************************************************/
alglib::complex cmatrixdet(const complex_2d_array &a, const ae_int_t n);
alglib::complex cmatrixdet(const complex_2d_array &a);
/*************************************************************************
Determinant calculation of the matrix given by the Cholesky decomposition.
Input parameters:
A - Cholesky decomposition,
output of SMatrixCholesky subroutine.
N - (optional) size of matrix A:
* if given, only principal NxN submatrix is processed and
overwritten. other elements are unchanged.
* if not given, automatically determined from matrix size
(A must be square matrix)
As the determinant is equal to the product of squares of diagonal elements,
it�s not necessary to specify which triangle - lower or upper - the matrix
is stored in.
Result:
matrix determinant.
-- ALGLIB --
Copyright 2005-2008 by Bochkanov Sergey
*************************************************************************/
double spdmatrixcholeskydet(const real_2d_array &a, const ae_int_t n);
double spdmatrixcholeskydet(const real_2d_array &a);
/*************************************************************************
Determinant calculation of the symmetric positive definite matrix.
Input parameters:
A - matrix. Array with elements [0..N-1, 0..N-1].
N - (optional) size of matrix A:
* if given, only principal NxN submatrix is processed and
overwritten. other elements are unchanged.
* if not given, automatically determined from matrix size
(A must be square matrix)
IsUpper - (optional) storage type:
* if True, symmetric matrix A is given by its upper
triangle, and the lower triangle isn�t used/changed by
function
* if False, symmetric matrix A is given by its lower
triangle, and the upper triangle isn�t used/changed by
function
* if not given, both lower and upper triangles must be
filled.
Result:
determinant of matrix A.
If matrix A is not positive definite, exception is thrown.
-- ALGLIB --
Copyright 2005-2008 by Bochkanov Sergey
*************************************************************************/
double spdmatrixdet(const real_2d_array &a, const ae_int_t n, const bool isupper);
double spdmatrixdet(const real_2d_array &a);
/*************************************************************************
Algorithm for solving the following generalized symmetric positive-definite
eigenproblem:
A*x = lambda*B*x (1) or
A*B*x = lambda*x (2) or
B*A*x = lambda*x (3).
where A is a symmetric matrix, B - symmetric positive-definite matrix.
The problem is solved by reducing it to an ordinary symmetric eigenvalue
problem.
Input parameters:
A - symmetric matrix which is given by its upper or lower
triangular part.
Array whose indexes range within [0..N-1, 0..N-1].
N - size of matrices A and B.
IsUpperA - storage format of matrix A.
B - symmetric positive-definite matrix which is given by
its upper or lower triangular part.
Array whose indexes range within [0..N-1, 0..N-1].
IsUpperB - storage format of matrix B.
ZNeeded - if ZNeeded is equal to:
* 0, the eigenvectors are not returned;
* 1, the eigenvectors are returned.
ProblemType - if ProblemType is equal to:
* 1, the following problem is solved: A*x = lambda*B*x;
* 2, the following problem is solved: A*B*x = lambda*x;
* 3, the following problem is solved: B*A*x = lambda*x.
Output parameters:
D - eigenvalues in ascending order.
Array whose index ranges within [0..N-1].
Z - if ZNeeded is equal to:
* 0, Z hasn�t changed;
* 1, Z contains eigenvectors.
Array whose indexes range within [0..N-1, 0..N-1].
The eigenvectors are stored in matrix columns. It should
be noted that the eigenvectors in such problems do not
form an orthogonal system.
Result:
True, if the problem was solved successfully.
False, if the error occurred during the Cholesky decomposition of matrix
B (the matrix isn�t positive-definite) or during the work of the iterative
algorithm for solving the symmetric eigenproblem.
See also the GeneralizedSymmetricDefiniteEVDReduce subroutine.
-- ALGLIB --
Copyright 1.28.2006 by Bochkanov Sergey
*************************************************************************/
bool smatrixgevd(const real_2d_array &a, const ae_int_t n, const bool isuppera, const real_2d_array &b, const bool isupperb, const ae_int_t zneeded, const ae_int_t problemtype, real_1d_array &d, real_2d_array &z);
/*************************************************************************
Algorithm for reduction of the following generalized symmetric positive-
definite eigenvalue problem:
A*x = lambda*B*x (1) or
A*B*x = lambda*x (2) or
B*A*x = lambda*x (3)
to the symmetric eigenvalues problem C*y = lambda*y (eigenvalues of this and
the given problems are the same, and the eigenvectors of the given problem
could be obtained by multiplying the obtained eigenvectors by the
transformation matrix x = R*y).
Here A is a symmetric matrix, B - symmetric positive-definite matrix.
Input parameters:
A - symmetric matrix which is given by its upper or lower
triangular part.
Array whose indexes range within [0..N-1, 0..N-1].
N - size of matrices A and B.
IsUpperA - storage format of matrix A.
B - symmetric positive-definite matrix which is given by
its upper or lower triangular part.
Array whose indexes range within [0..N-1, 0..N-1].
IsUpperB - storage format of matrix B.
ProblemType - if ProblemType is equal to:
* 1, the following problem is solved: A*x = lambda*B*x;
* 2, the following problem is solved: A*B*x = lambda*x;
* 3, the following problem is solved: B*A*x = lambda*x.
Output parameters:
A - symmetric matrix which is given by its upper or lower
triangle depending on IsUpperA. Contains matrix C.
Array whose indexes range within [0..N-1, 0..N-1].
R - upper triangular or low triangular transformation matrix
which is used to obtain the eigenvectors of a given problem
as the product of eigenvectors of C (from the right) and
matrix R (from the left). If the matrix is upper
triangular, the elements below the main diagonal
are equal to 0 (and vice versa). Thus, we can perform
the multiplication without taking into account the
internal structure (which is an easier though less
effective way).
Array whose indexes range within [0..N-1, 0..N-1].
IsUpperR - type of matrix R (upper or lower triangular).
Result:
True, if the problem was reduced successfully.
False, if the error occurred during the Cholesky decomposition of
matrix B (the matrix is not positive-definite).
-- ALGLIB --
Copyright 1.28.2006 by Bochkanov Sergey
*************************************************************************/
bool smatrixgevdreduce(real_2d_array &a, const ae_int_t n, const bool isuppera, const real_2d_array &b, const bool isupperb, const ae_int_t problemtype, real_2d_array &r, bool &isupperr);
/*************************************************************************
Inverse matrix update by the Sherman-Morrison formula
The algorithm updates matrix A^-1 when adding a number to an element
of matrix A.
Input parameters:
InvA - inverse of matrix A.
Array whose indexes range within [0..N-1, 0..N-1].
N - size of matrix A.
UpdRow - row where the element to be updated is stored.
UpdColumn - column where the element to be updated is stored.
UpdVal - a number to be added to the element.
Output parameters:
InvA - inverse of modified matrix A.
-- ALGLIB --
Copyright 2005 by Bochkanov Sergey
*************************************************************************/
void rmatrixinvupdatesimple(real_2d_array &inva, const ae_int_t n, const ae_int_t updrow, const ae_int_t updcolumn, const double updval);
/*************************************************************************
Inverse matrix update by the Sherman-Morrison formula
The algorithm updates matrix A^-1 when adding a vector to a row
of matrix A.
Input parameters:
InvA - inverse of matrix A.
Array whose indexes range within [0..N-1, 0..N-1].
N - size of matrix A.
UpdRow - the row of A whose vector V was added.
0 <= Row <= N-1
V - the vector to be added to a row.
Array whose index ranges within [0..N-1].
Output parameters:
InvA - inverse of modified matrix A.
-- ALGLIB --
Copyright 2005 by Bochkanov Sergey
*************************************************************************/
void rmatrixinvupdaterow(real_2d_array &inva, const ae_int_t n, const ae_int_t updrow, const real_1d_array &v);
/*************************************************************************
Inverse matrix update by the Sherman-Morrison formula
The algorithm updates matrix A^-1 when adding a vector to a column
of matrix A.
Input parameters:
InvA - inverse of matrix A.
Array whose indexes range within [0..N-1, 0..N-1].
N - size of matrix A.
UpdColumn - the column of A whose vector U was added.
0 <= UpdColumn <= N-1
U - the vector to be added to a column.
Array whose index ranges within [0..N-1].
Output parameters:
InvA - inverse of modified matrix A.
-- ALGLIB --
Copyright 2005 by Bochkanov Sergey
*************************************************************************/
void rmatrixinvupdatecolumn(real_2d_array &inva, const ae_int_t n, const ae_int_t updcolumn, const real_1d_array &u);
/*************************************************************************
Inverse matrix update by the Sherman-Morrison formula
The algorithm computes the inverse of matrix A+u*v� by using the given matrix
A^-1 and the vectors u and v.
Input parameters:
InvA - inverse of matrix A.
Array whose indexes range within [0..N-1, 0..N-1].
N - size of matrix A.
U - the vector modifying the matrix.
Array whose index ranges within [0..N-1].
V - the vector modifying the matrix.
Array whose index ranges within [0..N-1].
Output parameters:
InvA - inverse of matrix A + u*v'.
-- ALGLIB --
Copyright 2005 by Bochkanov Sergey
*************************************************************************/
void rmatrixinvupdateuv(real_2d_array &inva, const ae_int_t n, const real_1d_array &u, const real_1d_array &v);
/*************************************************************************
Subroutine performing the Schur decomposition of a general matrix by using
the QR algorithm with multiple shifts.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes one important improvement of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Multithreaded acceleration is NOT supported for this function.
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
The source matrix A is represented as S'*A*S = T, where S is an orthogonal
matrix (Schur vectors), T - upper quasi-triangular matrix (with blocks of
sizes 1x1 and 2x2 on the main diagonal).
Input parameters:
A - matrix to be decomposed.
Array whose indexes range within [0..N-1, 0..N-1].
N - size of A, N>=0.
Output parameters:
A - contains matrix T.
Array whose indexes range within [0..N-1, 0..N-1].
S - contains Schur vectors.
Array whose indexes range within [0..N-1, 0..N-1].
Note 1:
The block structure of matrix T can be easily recognized: since all
the elements below the blocks are zeros, the elements a[i+1,i] which
are equal to 0 show the block border.
Note 2:
The algorithm performance depends on the value of the internal parameter
NS of the InternalSchurDecomposition subroutine which defines the number
of shifts in the QR algorithm (similarly to the block width in block-matrix
algorithms in linear algebra). If you require maximum performance on
your machine, it is recommended to adjust this parameter manually.
Result:
True,
if the algorithm has converged and parameters A and S contain the result.
False,
if the algorithm has not converged.
Algorithm implemented on the basis of the DHSEQR subroutine (LAPACK 3.0 library).
*************************************************************************/
bool rmatrixschur(real_2d_array &a, const ae_int_t n, real_2d_array &s);
}
/////////////////////////////////////////////////////////////////////////
//
// THIS SECTION CONTAINS COMPUTATIONAL CORE DECLARATIONS (FUNCTIONS)
//
/////////////////////////////////////////////////////////////////////////
namespace alglib_impl
{
void ablassplitlength(/* Real */ ae_matrix* a,
ae_int_t n,
ae_int_t* n1,
ae_int_t* n2,
ae_state *_state);
void ablascomplexsplitlength(/* Complex */ ae_matrix* a,
ae_int_t n,
ae_int_t* n1,
ae_int_t* n2,
ae_state *_state);
ae_int_t ablasblocksize(/* Real */ ae_matrix* a, ae_state *_state);
ae_int_t ablascomplexblocksize(/* Complex */ ae_matrix* a,
ae_state *_state);
ae_int_t ablasmicroblocksize(ae_state *_state);
void cmatrixtranspose(ae_int_t m,
ae_int_t n,
/* Complex */ ae_matrix* a,
ae_int_t ia,
ae_int_t ja,
/* Complex */ ae_matrix* b,
ae_int_t ib,
ae_int_t jb,
ae_state *_state);
void rmatrixtranspose(ae_int_t m,
ae_int_t n,
/* Real */ ae_matrix* a,
ae_int_t ia,
ae_int_t ja,
/* Real */ ae_matrix* b,
ae_int_t ib,
ae_int_t jb,
ae_state *_state);
void rmatrixenforcesymmetricity(/* Real */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
ae_state *_state);
void cmatrixcopy(ae_int_t m,
ae_int_t n,
/* Complex */ ae_matrix* a,
ae_int_t ia,
ae_int_t ja,
/* Complex */ ae_matrix* b,
ae_int_t ib,
ae_int_t jb,
ae_state *_state);
void rmatrixcopy(ae_int_t m,
ae_int_t n,
/* Real */ ae_matrix* a,
ae_int_t ia,
ae_int_t ja,
/* Real */ ae_matrix* b,
ae_int_t ib,
ae_int_t jb,
ae_state *_state);
void cmatrixrank1(ae_int_t m,
ae_int_t n,
/* Complex */ ae_matrix* a,
ae_int_t ia,
ae_int_t ja,
/* Complex */ ae_vector* u,
ae_int_t iu,
/* Complex */ ae_vector* v,
ae_int_t iv,
ae_state *_state);
void rmatrixrank1(ae_int_t m,
ae_int_t n,
/* Real */ ae_matrix* a,
ae_int_t ia,
ae_int_t ja,
/* Real */ ae_vector* u,
ae_int_t iu,
/* Real */ ae_vector* v,
ae_int_t iv,
ae_state *_state);
void cmatrixmv(ae_int_t m,
ae_int_t n,
/* Complex */ ae_matrix* a,
ae_int_t ia,
ae_int_t ja,
ae_int_t opa,
/* Complex */ ae_vector* x,
ae_int_t ix,
/* Complex */ ae_vector* y,
ae_int_t iy,
ae_state *_state);
void rmatrixmv(ae_int_t m,
ae_int_t n,
/* Real */ ae_matrix* a,
ae_int_t ia,
ae_int_t ja,
ae_int_t opa,
/* Real */ ae_vector* x,
ae_int_t ix,
/* Real */ ae_vector* y,
ae_int_t iy,
ae_state *_state);
void cmatrixrighttrsm(ae_int_t m,
ae_int_t n,
/* Complex */ ae_matrix* a,
ae_int_t i1,
ae_int_t j1,
ae_bool isupper,
ae_bool isunit,
ae_int_t optype,
/* Complex */ ae_matrix* x,
ae_int_t i2,
ae_int_t j2,
ae_state *_state);
void _pexec_cmatrixrighttrsm(ae_int_t m,
ae_int_t n,
/* Complex */ ae_matrix* a,
ae_int_t i1,
ae_int_t j1,
ae_bool isupper,
ae_bool isunit,
ae_int_t optype,
/* Complex */ ae_matrix* x,
ae_int_t i2,
ae_int_t j2, ae_state *_state);
void cmatrixlefttrsm(ae_int_t m,
ae_int_t n,
/* Complex */ ae_matrix* a,
ae_int_t i1,
ae_int_t j1,
ae_bool isupper,
ae_bool isunit,
ae_int_t optype,
/* Complex */ ae_matrix* x,
ae_int_t i2,
ae_int_t j2,
ae_state *_state);
void _pexec_cmatrixlefttrsm(ae_int_t m,
ae_int_t n,
/* Complex */ ae_matrix* a,
ae_int_t i1,
ae_int_t j1,
ae_bool isupper,
ae_bool isunit,
ae_int_t optype,
/* Complex */ ae_matrix* x,
ae_int_t i2,
ae_int_t j2, ae_state *_state);
void rmatrixrighttrsm(ae_int_t m,
ae_int_t n,
/* Real */ ae_matrix* a,
ae_int_t i1,
ae_int_t j1,
ae_bool isupper,
ae_bool isunit,
ae_int_t optype,
/* Real */ ae_matrix* x,
ae_int_t i2,
ae_int_t j2,
ae_state *_state);
void _pexec_rmatrixrighttrsm(ae_int_t m,
ae_int_t n,
/* Real */ ae_matrix* a,
ae_int_t i1,
ae_int_t j1,
ae_bool isupper,
ae_bool isunit,
ae_int_t optype,
/* Real */ ae_matrix* x,
ae_int_t i2,
ae_int_t j2, ae_state *_state);
void rmatrixlefttrsm(ae_int_t m,
ae_int_t n,
/* Real */ ae_matrix* a,
ae_int_t i1,
ae_int_t j1,
ae_bool isupper,
ae_bool isunit,
ae_int_t optype,
/* Real */ ae_matrix* x,
ae_int_t i2,
ae_int_t j2,
ae_state *_state);
void _pexec_rmatrixlefttrsm(ae_int_t m,
ae_int_t n,
/* Real */ ae_matrix* a,
ae_int_t i1,
ae_int_t j1,
ae_bool isupper,
ae_bool isunit,
ae_int_t optype,
/* Real */ ae_matrix* x,
ae_int_t i2,
ae_int_t j2, ae_state *_state);
void cmatrixherk(ae_int_t n,
ae_int_t k,
double alpha,
/* Complex */ ae_matrix* a,
ae_int_t ia,
ae_int_t ja,
ae_int_t optypea,
double beta,
/* Complex */ ae_matrix* c,
ae_int_t ic,
ae_int_t jc,
ae_bool isupper,
ae_state *_state);
void _pexec_cmatrixherk(ae_int_t n,
ae_int_t k,
double alpha,
/* Complex */ ae_matrix* a,
ae_int_t ia,
ae_int_t ja,
ae_int_t optypea,
double beta,
/* Complex */ ae_matrix* c,
ae_int_t ic,
ae_int_t jc,
ae_bool isupper, ae_state *_state);
void rmatrixsyrk(ae_int_t n,
ae_int_t k,
double alpha,
/* Real */ ae_matrix* a,
ae_int_t ia,
ae_int_t ja,
ae_int_t optypea,
double beta,
/* Real */ ae_matrix* c,
ae_int_t ic,
ae_int_t jc,
ae_bool isupper,
ae_state *_state);
void _pexec_rmatrixsyrk(ae_int_t n,
ae_int_t k,
double alpha,
/* Real */ ae_matrix* a,
ae_int_t ia,
ae_int_t ja,
ae_int_t optypea,
double beta,
/* Real */ ae_matrix* c,
ae_int_t ic,
ae_int_t jc,
ae_bool isupper, ae_state *_state);
void cmatrixgemm(ae_int_t m,
ae_int_t n,
ae_int_t k,
ae_complex alpha,
/* Complex */ ae_matrix* a,
ae_int_t ia,
ae_int_t ja,
ae_int_t optypea,
/* Complex */ ae_matrix* b,
ae_int_t ib,
ae_int_t jb,
ae_int_t optypeb,
ae_complex beta,
/* Complex */ ae_matrix* c,
ae_int_t ic,
ae_int_t jc,
ae_state *_state);
void _pexec_cmatrixgemm(ae_int_t m,
ae_int_t n,
ae_int_t k,
ae_complex alpha,
/* Complex */ ae_matrix* a,
ae_int_t ia,
ae_int_t ja,
ae_int_t optypea,
/* Complex */ ae_matrix* b,
ae_int_t ib,
ae_int_t jb,
ae_int_t optypeb,
ae_complex beta,
/* Complex */ ae_matrix* c,
ae_int_t ic,
ae_int_t jc, ae_state *_state);
void rmatrixgemm(ae_int_t m,
ae_int_t n,
ae_int_t k,
double alpha,
/* Real */ ae_matrix* a,
ae_int_t ia,
ae_int_t ja,
ae_int_t optypea,
/* Real */ ae_matrix* b,
ae_int_t ib,
ae_int_t jb,
ae_int_t optypeb,
double beta,
/* Real */ ae_matrix* c,
ae_int_t ic,
ae_int_t jc,
ae_state *_state);
void _pexec_rmatrixgemm(ae_int_t m,
ae_int_t n,
ae_int_t k,
double alpha,
/* Real */ ae_matrix* a,
ae_int_t ia,
ae_int_t ja,
ae_int_t optypea,
/* Real */ ae_matrix* b,
ae_int_t ib,
ae_int_t jb,
ae_int_t optypeb,
double beta,
/* Real */ ae_matrix* c,
ae_int_t ic,
ae_int_t jc, ae_state *_state);
void cmatrixsyrk(ae_int_t n,
ae_int_t k,
double alpha,
/* Complex */ ae_matrix* a,
ae_int_t ia,
ae_int_t ja,
ae_int_t optypea,
double beta,
/* Complex */ ae_matrix* c,
ae_int_t ic,
ae_int_t jc,
ae_bool isupper,
ae_state *_state);
void _pexec_cmatrixsyrk(ae_int_t n,
ae_int_t k,
double alpha,
/* Complex */ ae_matrix* a,
ae_int_t ia,
ae_int_t ja,
ae_int_t optypea,
double beta,
/* Complex */ ae_matrix* c,
ae_int_t ic,
ae_int_t jc,
ae_bool isupper, ae_state *_state);
void rmatrixqr(/* Real */ ae_matrix* a,
ae_int_t m,
ae_int_t n,
/* Real */ ae_vector* tau,
ae_state *_state);
void _pexec_rmatrixqr(/* Real */ ae_matrix* a,
ae_int_t m,
ae_int_t n,
/* Real */ ae_vector* tau, ae_state *_state);
void rmatrixlq(/* Real */ ae_matrix* a,
ae_int_t m,
ae_int_t n,
/* Real */ ae_vector* tau,
ae_state *_state);
void _pexec_rmatrixlq(/* Real */ ae_matrix* a,
ae_int_t m,
ae_int_t n,
/* Real */ ae_vector* tau, ae_state *_state);
void cmatrixqr(/* Complex */ ae_matrix* a,
ae_int_t m,
ae_int_t n,
/* Complex */ ae_vector* tau,
ae_state *_state);
void _pexec_cmatrixqr(/* Complex */ ae_matrix* a,
ae_int_t m,
ae_int_t n,
/* Complex */ ae_vector* tau, ae_state *_state);
void cmatrixlq(/* Complex */ ae_matrix* a,
ae_int_t m,
ae_int_t n,
/* Complex */ ae_vector* tau,
ae_state *_state);
void _pexec_cmatrixlq(/* Complex */ ae_matrix* a,
ae_int_t m,
ae_int_t n,
/* Complex */ ae_vector* tau, ae_state *_state);
void rmatrixqrunpackq(/* Real */ ae_matrix* a,
ae_int_t m,
ae_int_t n,
/* Real */ ae_vector* tau,
ae_int_t qcolumns,
/* Real */ ae_matrix* q,
ae_state *_state);
void _pexec_rmatrixqrunpackq(/* Real */ ae_matrix* a,
ae_int_t m,
ae_int_t n,
/* Real */ ae_vector* tau,
ae_int_t qcolumns,
/* Real */ ae_matrix* q, ae_state *_state);
void rmatrixqrunpackr(/* Real */ ae_matrix* a,
ae_int_t m,
ae_int_t n,
/* Real */ ae_matrix* r,
ae_state *_state);
void rmatrixlqunpackq(/* Real */ ae_matrix* a,
ae_int_t m,
ae_int_t n,
/* Real */ ae_vector* tau,
ae_int_t qrows,
/* Real */ ae_matrix* q,
ae_state *_state);
void _pexec_rmatrixlqunpackq(/* Real */ ae_matrix* a,
ae_int_t m,
ae_int_t n,
/* Real */ ae_vector* tau,
ae_int_t qrows,
/* Real */ ae_matrix* q, ae_state *_state);
void rmatrixlqunpackl(/* Real */ ae_matrix* a,
ae_int_t m,
ae_int_t n,
/* Real */ ae_matrix* l,
ae_state *_state);
void cmatrixqrunpackq(/* Complex */ ae_matrix* a,
ae_int_t m,
ae_int_t n,
/* Complex */ ae_vector* tau,
ae_int_t qcolumns,
/* Complex */ ae_matrix* q,
ae_state *_state);
void _pexec_cmatrixqrunpackq(/* Complex */ ae_matrix* a,
ae_int_t m,
ae_int_t n,
/* Complex */ ae_vector* tau,
ae_int_t qcolumns,
/* Complex */ ae_matrix* q, ae_state *_state);
void cmatrixqrunpackr(/* Complex */ ae_matrix* a,
ae_int_t m,
ae_int_t n,
/* Complex */ ae_matrix* r,
ae_state *_state);
void cmatrixlqunpackq(/* Complex */ ae_matrix* a,
ae_int_t m,
ae_int_t n,
/* Complex */ ae_vector* tau,
ae_int_t qrows,
/* Complex */ ae_matrix* q,
ae_state *_state);
void _pexec_cmatrixlqunpackq(/* Complex */ ae_matrix* a,
ae_int_t m,
ae_int_t n,
/* Complex */ ae_vector* tau,
ae_int_t qrows,
/* Complex */ ae_matrix* q, ae_state *_state);
void cmatrixlqunpackl(/* Complex */ ae_matrix* a,
ae_int_t m,
ae_int_t n,
/* Complex */ ae_matrix* l,
ae_state *_state);
void rmatrixqrbasecase(/* Real */ ae_matrix* a,
ae_int_t m,
ae_int_t n,
/* Real */ ae_vector* work,
/* Real */ ae_vector* t,
/* Real */ ae_vector* tau,
ae_state *_state);
void rmatrixlqbasecase(/* Real */ ae_matrix* a,
ae_int_t m,
ae_int_t n,
/* Real */ ae_vector* work,
/* Real */ ae_vector* t,
/* Real */ ae_vector* tau,
ae_state *_state);
void rmatrixbd(/* Real */ ae_matrix* a,
ae_int_t m,
ae_int_t n,
/* Real */ ae_vector* tauq,
/* Real */ ae_vector* taup,
ae_state *_state);
void rmatrixbdunpackq(/* Real */ ae_matrix* qp,
ae_int_t m,
ae_int_t n,
/* Real */ ae_vector* tauq,
ae_int_t qcolumns,
/* Real */ ae_matrix* q,
ae_state *_state);
void rmatrixbdmultiplybyq(/* Real */ ae_matrix* qp,
ae_int_t m,
ae_int_t n,
/* Real */ ae_vector* tauq,
/* Real */ ae_matrix* z,
ae_int_t zrows,
ae_int_t zcolumns,
ae_bool fromtheright,
ae_bool dotranspose,
ae_state *_state);
void rmatrixbdunpackpt(/* Real */ ae_matrix* qp,
ae_int_t m,
ae_int_t n,
/* Real */ ae_vector* taup,
ae_int_t ptrows,
/* Real */ ae_matrix* pt,
ae_state *_state);
void rmatrixbdmultiplybyp(/* Real */ ae_matrix* qp,
ae_int_t m,
ae_int_t n,
/* Real */ ae_vector* taup,
/* Real */ ae_matrix* z,
ae_int_t zrows,
ae_int_t zcolumns,
ae_bool fromtheright,
ae_bool dotranspose,
ae_state *_state);
void rmatrixbdunpackdiagonals(/* Real */ ae_matrix* b,
ae_int_t m,
ae_int_t n,
ae_bool* isupper,
/* Real */ ae_vector* d,
/* Real */ ae_vector* e,
ae_state *_state);
void rmatrixhessenberg(/* Real */ ae_matrix* a,
ae_int_t n,
/* Real */ ae_vector* tau,
ae_state *_state);
void rmatrixhessenbergunpackq(/* Real */ ae_matrix* a,
ae_int_t n,
/* Real */ ae_vector* tau,
/* Real */ ae_matrix* q,
ae_state *_state);
void rmatrixhessenbergunpackh(/* Real */ ae_matrix* a,
ae_int_t n,
/* Real */ ae_matrix* h,
ae_state *_state);
void smatrixtd(/* Real */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
/* Real */ ae_vector* tau,
/* Real */ ae_vector* d,
/* Real */ ae_vector* e,
ae_state *_state);
void smatrixtdunpackq(/* Real */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
/* Real */ ae_vector* tau,
/* Real */ ae_matrix* q,
ae_state *_state);
void hmatrixtd(/* Complex */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
/* Complex */ ae_vector* tau,
/* Real */ ae_vector* d,
/* Real */ ae_vector* e,
ae_state *_state);
void hmatrixtdunpackq(/* Complex */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
/* Complex */ ae_vector* tau,
/* Complex */ ae_matrix* q,
ae_state *_state);
ae_bool rmatrixbdsvd(/* Real */ ae_vector* d,
/* Real */ ae_vector* e,
ae_int_t n,
ae_bool isupper,
ae_bool isfractionalaccuracyrequired,
/* Real */ ae_matrix* u,
ae_int_t nru,
/* Real */ ae_matrix* c,
ae_int_t ncc,
/* Real */ ae_matrix* vt,
ae_int_t ncvt,
ae_state *_state);
ae_bool bidiagonalsvddecomposition(/* Real */ ae_vector* d,
/* Real */ ae_vector* e,
ae_int_t n,
ae_bool isupper,
ae_bool isfractionalaccuracyrequired,
/* Real */ ae_matrix* u,
ae_int_t nru,
/* Real */ ae_matrix* c,
ae_int_t ncc,
/* Real */ ae_matrix* vt,
ae_int_t ncvt,
ae_state *_state);
ae_bool rmatrixsvd(/* Real */ ae_matrix* a,
ae_int_t m,
ae_int_t n,
ae_int_t uneeded,
ae_int_t vtneeded,
ae_int_t additionalmemory,
/* Real */ ae_vector* w,
/* Real */ ae_matrix* u,
/* Real */ ae_matrix* vt,
ae_state *_state);
ae_bool _pexec_rmatrixsvd(/* Real */ ae_matrix* a,
ae_int_t m,
ae_int_t n,
ae_int_t uneeded,
ae_int_t vtneeded,
ae_int_t additionalmemory,
/* Real */ ae_vector* w,
/* Real */ ae_matrix* u,
/* Real */ ae_matrix* vt, ae_state *_state);
ae_bool smatrixevd(/* Real */ ae_matrix* a,
ae_int_t n,
ae_int_t zneeded,
ae_bool isupper,
/* Real */ ae_vector* d,
/* Real */ ae_matrix* z,
ae_state *_state);
ae_bool smatrixevdr(/* Real */ ae_matrix* a,
ae_int_t n,
ae_int_t zneeded,
ae_bool isupper,
double b1,
double b2,
ae_int_t* m,
/* Real */ ae_vector* w,
/* Real */ ae_matrix* z,
ae_state *_state);
ae_bool smatrixevdi(/* Real */ ae_matrix* a,
ae_int_t n,
ae_int_t zneeded,
ae_bool isupper,
ae_int_t i1,
ae_int_t i2,
/* Real */ ae_vector* w,
/* Real */ ae_matrix* z,
ae_state *_state);
ae_bool hmatrixevd(/* Complex */ ae_matrix* a,
ae_int_t n,
ae_int_t zneeded,
ae_bool isupper,
/* Real */ ae_vector* d,
/* Complex */ ae_matrix* z,
ae_state *_state);
ae_bool hmatrixevdr(/* Complex */ ae_matrix* a,
ae_int_t n,
ae_int_t zneeded,
ae_bool isupper,
double b1,
double b2,
ae_int_t* m,
/* Real */ ae_vector* w,
/* Complex */ ae_matrix* z,
ae_state *_state);
ae_bool hmatrixevdi(/* Complex */ ae_matrix* a,
ae_int_t n,
ae_int_t zneeded,
ae_bool isupper,
ae_int_t i1,
ae_int_t i2,
/* Real */ ae_vector* w,
/* Complex */ ae_matrix* z,
ae_state *_state);
ae_bool smatrixtdevd(/* Real */ ae_vector* d,
/* Real */ ae_vector* e,
ae_int_t n,
ae_int_t zneeded,
/* Real */ ae_matrix* z,
ae_state *_state);
ae_bool smatrixtdevdr(/* Real */ ae_vector* d,
/* Real */ ae_vector* e,
ae_int_t n,
ae_int_t zneeded,
double a,
double b,
ae_int_t* m,
/* Real */ ae_matrix* z,
ae_state *_state);
ae_bool smatrixtdevdi(/* Real */ ae_vector* d,
/* Real */ ae_vector* e,
ae_int_t n,
ae_int_t zneeded,
ae_int_t i1,
ae_int_t i2,
/* Real */ ae_matrix* z,
ae_state *_state);
ae_bool rmatrixevd(/* Real */ ae_matrix* a,
ae_int_t n,
ae_int_t vneeded,
/* Real */ ae_vector* wr,
/* Real */ ae_vector* wi,
/* Real */ ae_matrix* vl,
/* Real */ ae_matrix* vr,
ae_state *_state);
void rmatrixrndorthogonal(ae_int_t n,
/* Real */ ae_matrix* a,
ae_state *_state);
void rmatrixrndcond(ae_int_t n,
double c,
/* Real */ ae_matrix* a,
ae_state *_state);
void cmatrixrndorthogonal(ae_int_t n,
/* Complex */ ae_matrix* a,
ae_state *_state);
void cmatrixrndcond(ae_int_t n,
double c,
/* Complex */ ae_matrix* a,
ae_state *_state);
void smatrixrndcond(ae_int_t n,
double c,
/* Real */ ae_matrix* a,
ae_state *_state);
void spdmatrixrndcond(ae_int_t n,
double c,
/* Real */ ae_matrix* a,
ae_state *_state);
void hmatrixrndcond(ae_int_t n,
double c,
/* Complex */ ae_matrix* a,
ae_state *_state);
void hpdmatrixrndcond(ae_int_t n,
double c,
/* Complex */ ae_matrix* a,
ae_state *_state);
void rmatrixrndorthogonalfromtheright(/* Real */ ae_matrix* a,
ae_int_t m,
ae_int_t n,
ae_state *_state);
void rmatrixrndorthogonalfromtheleft(/* Real */ ae_matrix* a,
ae_int_t m,
ae_int_t n,
ae_state *_state);
void cmatrixrndorthogonalfromtheright(/* Complex */ ae_matrix* a,
ae_int_t m,
ae_int_t n,
ae_state *_state);
void cmatrixrndorthogonalfromtheleft(/* Complex */ ae_matrix* a,
ae_int_t m,
ae_int_t n,
ae_state *_state);
void smatrixrndmultiply(/* Real */ ae_matrix* a,
ae_int_t n,
ae_state *_state);
void hmatrixrndmultiply(/* Complex */ ae_matrix* a,
ae_int_t n,
ae_state *_state);
void sparsecreate(ae_int_t m,
ae_int_t n,
ae_int_t k,
sparsematrix* s,
ae_state *_state);
void sparsecreatebuf(ae_int_t m,
ae_int_t n,
ae_int_t k,
sparsematrix* s,
ae_state *_state);
void sparsecreatecrs(ae_int_t m,
ae_int_t n,
/* Integer */ ae_vector* ner,
sparsematrix* s,
ae_state *_state);
void sparsecreatecrsbuf(ae_int_t m,
ae_int_t n,
/* Integer */ ae_vector* ner,
sparsematrix* s,
ae_state *_state);
void sparsecreatesks(ae_int_t m,
ae_int_t n,
/* Integer */ ae_vector* d,
/* Integer */ ae_vector* u,
sparsematrix* s,
ae_state *_state);
void sparsecreatesksbuf(ae_int_t m,
ae_int_t n,
/* Integer */ ae_vector* d,
/* Integer */ ae_vector* u,
sparsematrix* s,
ae_state *_state);
void sparsecopy(sparsematrix* s0, sparsematrix* s1, ae_state *_state);
void sparsecopybuf(sparsematrix* s0, sparsematrix* s1, ae_state *_state);
void sparseswap(sparsematrix* s0, sparsematrix* s1, ae_state *_state);
void sparseadd(sparsematrix* s,
ae_int_t i,
ae_int_t j,
double v,
ae_state *_state);
void sparseset(sparsematrix* s,
ae_int_t i,
ae_int_t j,
double v,
ae_state *_state);
double sparseget(sparsematrix* s,
ae_int_t i,
ae_int_t j,
ae_state *_state);
double sparsegetdiagonal(sparsematrix* s, ae_int_t i, ae_state *_state);
void sparsemv(sparsematrix* s,
/* Real */ ae_vector* x,
/* Real */ ae_vector* y,
ae_state *_state);
void sparsemtv(sparsematrix* s,
/* Real */ ae_vector* x,
/* Real */ ae_vector* y,
ae_state *_state);
void sparsemv2(sparsematrix* s,
/* Real */ ae_vector* x,
/* Real */ ae_vector* y0,
/* Real */ ae_vector* y1,
ae_state *_state);
void sparsesmv(sparsematrix* s,
ae_bool isupper,
/* Real */ ae_vector* x,
/* Real */ ae_vector* y,
ae_state *_state);
double sparsevsmv(sparsematrix* s,
ae_bool isupper,
/* Real */ ae_vector* x,
ae_state *_state);
void sparsemm(sparsematrix* s,
/* Real */ ae_matrix* a,
ae_int_t k,
/* Real */ ae_matrix* b,
ae_state *_state);
void sparsemtm(sparsematrix* s,
/* Real */ ae_matrix* a,
ae_int_t k,
/* Real */ ae_matrix* b,
ae_state *_state);
void sparsemm2(sparsematrix* s,
/* Real */ ae_matrix* a,
ae_int_t k,
/* Real */ ae_matrix* b0,
/* Real */ ae_matrix* b1,
ae_state *_state);
void sparsesmm(sparsematrix* s,
ae_bool isupper,
/* Real */ ae_matrix* a,
ae_int_t k,
/* Real */ ae_matrix* b,
ae_state *_state);
void sparsetrmv(sparsematrix* s,
ae_bool isupper,
ae_bool isunit,
ae_int_t optype,
/* Real */ ae_vector* x,
/* Real */ ae_vector* y,
ae_state *_state);
void sparsetrsv(sparsematrix* s,
ae_bool isupper,
ae_bool isunit,
ae_int_t optype,
/* Real */ ae_vector* x,
ae_state *_state);
void sparseresizematrix(sparsematrix* s, ae_state *_state);
double sparsegetaveragelengthofchain(sparsematrix* s, ae_state *_state);
ae_bool sparseenumerate(sparsematrix* s,
ae_int_t* t0,
ae_int_t* t1,
ae_int_t* i,
ae_int_t* j,
double* v,
ae_state *_state);
ae_bool sparserewriteexisting(sparsematrix* s,
ae_int_t i,
ae_int_t j,
double v,
ae_state *_state);
void sparsegetrow(sparsematrix* s,
ae_int_t i,
/* Real */ ae_vector* irow,
ae_state *_state);
void sparsegetcompressedrow(sparsematrix* s,
ae_int_t i,
/* Integer */ ae_vector* colidx,
/* Real */ ae_vector* vals,
ae_int_t* nzcnt,
ae_state *_state);
void sparsetransposesks(sparsematrix* s, ae_state *_state);
void sparseconvertto(sparsematrix* s0, ae_int_t fmt, ae_state *_state);
void sparsecopytobuf(sparsematrix* s0,
ae_int_t fmt,
sparsematrix* s1,
ae_state *_state);
void sparseconverttohash(sparsematrix* s, ae_state *_state);
void sparsecopytohash(sparsematrix* s0,
sparsematrix* s1,
ae_state *_state);
void sparsecopytohashbuf(sparsematrix* s0,
sparsematrix* s1,
ae_state *_state);
void sparseconverttocrs(sparsematrix* s, ae_state *_state);
void sparsecopytocrs(sparsematrix* s0, sparsematrix* s1, ae_state *_state);
void sparsecopytocrsbuf(sparsematrix* s0,
sparsematrix* s1,
ae_state *_state);
void sparseconverttosks(sparsematrix* s, ae_state *_state);
void sparsecopytosks(sparsematrix* s0, sparsematrix* s1, ae_state *_state);
void sparsecopytosksbuf(sparsematrix* s0,
sparsematrix* s1,
ae_state *_state);
ae_int_t sparsegetmatrixtype(sparsematrix* s, ae_state *_state);
ae_bool sparseishash(sparsematrix* s, ae_state *_state);
ae_bool sparseiscrs(sparsematrix* s, ae_state *_state);
ae_bool sparseissks(sparsematrix* s, ae_state *_state);
void sparsefree(sparsematrix* s, ae_state *_state);
ae_int_t sparsegetnrows(sparsematrix* s, ae_state *_state);
ae_int_t sparsegetncols(sparsematrix* s, ae_state *_state);
ae_int_t sparsegetuppercount(sparsematrix* s, ae_state *_state);
ae_int_t sparsegetlowercount(sparsematrix* s, ae_state *_state);
void _sparsematrix_init(void* _p, ae_state *_state);
void _sparsematrix_init_copy(void* _dst, void* _src, ae_state *_state);
void _sparsematrix_clear(void* _p);
void _sparsematrix_destroy(void* _p);
void _sparsebuffers_init(void* _p, ae_state *_state);
void _sparsebuffers_init_copy(void* _dst, void* _src, ae_state *_state);
void _sparsebuffers_clear(void* _p);
void _sparsebuffers_destroy(void* _p);
void rmatrixlu(/* Real */ ae_matrix* a,
ae_int_t m,
ae_int_t n,
/* Integer */ ae_vector* pivots,
ae_state *_state);
void _pexec_rmatrixlu(/* Real */ ae_matrix* a,
ae_int_t m,
ae_int_t n,
/* Integer */ ae_vector* pivots, ae_state *_state);
void cmatrixlu(/* Complex */ ae_matrix* a,
ae_int_t m,
ae_int_t n,
/* Integer */ ae_vector* pivots,
ae_state *_state);
void _pexec_cmatrixlu(/* Complex */ ae_matrix* a,
ae_int_t m,
ae_int_t n,
/* Integer */ ae_vector* pivots, ae_state *_state);
ae_bool hpdmatrixcholesky(/* Complex */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
ae_state *_state);
ae_bool _pexec_hpdmatrixcholesky(/* Complex */ ae_matrix* a,
ae_int_t n,
ae_bool isupper, ae_state *_state);
ae_bool spdmatrixcholesky(/* Real */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
ae_state *_state);
ae_bool _pexec_spdmatrixcholesky(/* Real */ ae_matrix* a,
ae_int_t n,
ae_bool isupper, ae_state *_state);
void spdmatrixcholeskyupdateadd1(/* Real */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
/* Real */ ae_vector* u,
ae_state *_state);
void spdmatrixcholeskyupdatefix(/* Real */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
/* Boolean */ ae_vector* fix,
ae_state *_state);
void spdmatrixcholeskyupdateadd1buf(/* Real */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
/* Real */ ae_vector* u,
/* Real */ ae_vector* bufr,
ae_state *_state);
void spdmatrixcholeskyupdatefixbuf(/* Real */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
/* Boolean */ ae_vector* fix,
/* Real */ ae_vector* bufr,
ae_state *_state);
ae_bool sparsecholeskyskyline(sparsematrix* a,
ae_int_t n,
ae_bool isupper,
ae_state *_state);
ae_bool sparsecholeskyx(sparsematrix* a,
ae_int_t n,
ae_bool isupper,
/* Integer */ ae_vector* p0,
/* Integer */ ae_vector* p1,
ae_int_t ordering,
ae_int_t algo,
ae_int_t fmt,
sparsebuffers* buf,
sparsematrix* c,
ae_state *_state);
void rmatrixlup(/* Real */ ae_matrix* a,
ae_int_t m,
ae_int_t n,
/* Integer */ ae_vector* pivots,
ae_state *_state);
void cmatrixlup(/* Complex */ ae_matrix* a,
ae_int_t m,
ae_int_t n,
/* Integer */ ae_vector* pivots,
ae_state *_state);
void rmatrixplu(/* Real */ ae_matrix* a,
ae_int_t m,
ae_int_t n,
/* Integer */ ae_vector* pivots,
ae_state *_state);
void cmatrixplu(/* Complex */ ae_matrix* a,
ae_int_t m,
ae_int_t n,
/* Integer */ ae_vector* pivots,
ae_state *_state);
ae_bool spdmatrixcholeskyrec(/* Real */ ae_matrix* a,
ae_int_t offs,
ae_int_t n,
ae_bool isupper,
/* Real */ ae_vector* tmp,
ae_state *_state);
double rmatrixrcond1(/* Real */ ae_matrix* a,
ae_int_t n,
ae_state *_state);
double rmatrixrcondinf(/* Real */ ae_matrix* a,
ae_int_t n,
ae_state *_state);
double spdmatrixrcond(/* Real */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
ae_state *_state);
double rmatrixtrrcond1(/* Real */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
ae_bool isunit,
ae_state *_state);
double rmatrixtrrcondinf(/* Real */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
ae_bool isunit,
ae_state *_state);
double hpdmatrixrcond(/* Complex */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
ae_state *_state);
double cmatrixrcond1(/* Complex */ ae_matrix* a,
ae_int_t n,
ae_state *_state);
double cmatrixrcondinf(/* Complex */ ae_matrix* a,
ae_int_t n,
ae_state *_state);
double rmatrixlurcond1(/* Real */ ae_matrix* lua,
ae_int_t n,
ae_state *_state);
double rmatrixlurcondinf(/* Real */ ae_matrix* lua,
ae_int_t n,
ae_state *_state);
double spdmatrixcholeskyrcond(/* Real */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
ae_state *_state);
double hpdmatrixcholeskyrcond(/* Complex */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
ae_state *_state);
double cmatrixlurcond1(/* Complex */ ae_matrix* lua,
ae_int_t n,
ae_state *_state);
double cmatrixlurcondinf(/* Complex */ ae_matrix* lua,
ae_int_t n,
ae_state *_state);
double cmatrixtrrcond1(/* Complex */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
ae_bool isunit,
ae_state *_state);
double cmatrixtrrcondinf(/* Complex */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
ae_bool isunit,
ae_state *_state);
double rcondthreshold(ae_state *_state);
void rmatrixluinverse(/* Real */ ae_matrix* a,
/* Integer */ ae_vector* pivots,
ae_int_t n,
ae_int_t* info,
matinvreport* rep,
ae_state *_state);
void _pexec_rmatrixluinverse(/* Real */ ae_matrix* a,
/* Integer */ ae_vector* pivots,
ae_int_t n,
ae_int_t* info,
matinvreport* rep, ae_state *_state);
void rmatrixinverse(/* Real */ ae_matrix* a,
ae_int_t n,
ae_int_t* info,
matinvreport* rep,
ae_state *_state);
void _pexec_rmatrixinverse(/* Real */ ae_matrix* a,
ae_int_t n,
ae_int_t* info,
matinvreport* rep, ae_state *_state);
void cmatrixluinverse(/* Complex */ ae_matrix* a,
/* Integer */ ae_vector* pivots,
ae_int_t n,
ae_int_t* info,
matinvreport* rep,
ae_state *_state);
void _pexec_cmatrixluinverse(/* Complex */ ae_matrix* a,
/* Integer */ ae_vector* pivots,
ae_int_t n,
ae_int_t* info,
matinvreport* rep, ae_state *_state);
void cmatrixinverse(/* Complex */ ae_matrix* a,
ae_int_t n,
ae_int_t* info,
matinvreport* rep,
ae_state *_state);
void _pexec_cmatrixinverse(/* Complex */ ae_matrix* a,
ae_int_t n,
ae_int_t* info,
matinvreport* rep, ae_state *_state);
void spdmatrixcholeskyinverse(/* Real */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
ae_int_t* info,
matinvreport* rep,
ae_state *_state);
void _pexec_spdmatrixcholeskyinverse(/* Real */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
ae_int_t* info,
matinvreport* rep, ae_state *_state);
void spdmatrixinverse(/* Real */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
ae_int_t* info,
matinvreport* rep,
ae_state *_state);
void _pexec_spdmatrixinverse(/* Real */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
ae_int_t* info,
matinvreport* rep, ae_state *_state);
void hpdmatrixcholeskyinverse(/* Complex */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
ae_int_t* info,
matinvreport* rep,
ae_state *_state);
void _pexec_hpdmatrixcholeskyinverse(/* Complex */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
ae_int_t* info,
matinvreport* rep, ae_state *_state);
void hpdmatrixinverse(/* Complex */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
ae_int_t* info,
matinvreport* rep,
ae_state *_state);
void _pexec_hpdmatrixinverse(/* Complex */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
ae_int_t* info,
matinvreport* rep, ae_state *_state);
void rmatrixtrinverse(/* Real */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
ae_bool isunit,
ae_int_t* info,
matinvreport* rep,
ae_state *_state);
void _pexec_rmatrixtrinverse(/* Real */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
ae_bool isunit,
ae_int_t* info,
matinvreport* rep, ae_state *_state);
void cmatrixtrinverse(/* Complex */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
ae_bool isunit,
ae_int_t* info,
matinvreport* rep,
ae_state *_state);
void _pexec_cmatrixtrinverse(/* Complex */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
ae_bool isunit,
ae_int_t* info,
matinvreport* rep, ae_state *_state);
void spdmatrixcholeskyinverserec(/* Real */ ae_matrix* a,
ae_int_t offs,
ae_int_t n,
ae_bool isupper,
/* Real */ ae_vector* tmp,
ae_state *_state);
void _matinvreport_init(void* _p, ae_state *_state);
void _matinvreport_init_copy(void* _dst, void* _src, ae_state *_state);
void _matinvreport_clear(void* _p);
void _matinvreport_destroy(void* _p);
void fblscholeskysolve(/* Real */ ae_matrix* cha,
double sqrtscalea,
ae_int_t n,
ae_bool isupper,
/* Real */ ae_vector* xb,
/* Real */ ae_vector* tmp,
ae_state *_state);
void fblssolvecgx(/* Real */ ae_matrix* a,
ae_int_t m,
ae_int_t n,
double alpha,
/* Real */ ae_vector* b,
/* Real */ ae_vector* x,
/* Real */ ae_vector* buf,
ae_state *_state);
void fblscgcreate(/* Real */ ae_vector* x,
/* Real */ ae_vector* b,
ae_int_t n,
fblslincgstate* state,
ae_state *_state);
ae_bool fblscgiteration(fblslincgstate* state, ae_state *_state);
void fblssolvels(/* Real */ ae_matrix* a,
/* Real */ ae_vector* b,
ae_int_t m,
ae_int_t n,
/* Real */ ae_vector* tmp0,
/* Real */ ae_vector* tmp1,
/* Real */ ae_vector* tmp2,
ae_state *_state);
void _fblslincgstate_init(void* _p, ae_state *_state);
void _fblslincgstate_init_copy(void* _dst, void* _src, ae_state *_state);
void _fblslincgstate_clear(void* _p);
void _fblslincgstate_destroy(void* _p);
void normestimatorcreate(ae_int_t m,
ae_int_t n,
ae_int_t nstart,
ae_int_t nits,
normestimatorstate* state,
ae_state *_state);
void normestimatorsetseed(normestimatorstate* state,
ae_int_t seedval,
ae_state *_state);
ae_bool normestimatoriteration(normestimatorstate* state,
ae_state *_state);
void normestimatorestimatesparse(normestimatorstate* state,
sparsematrix* a,
ae_state *_state);
void normestimatorresults(normestimatorstate* state,
double* nrm,
ae_state *_state);
void normestimatorrestart(normestimatorstate* state, ae_state *_state);
void _normestimatorstate_init(void* _p, ae_state *_state);
void _normestimatorstate_init_copy(void* _dst, void* _src, ae_state *_state);
void _normestimatorstate_clear(void* _p);
void _normestimatorstate_destroy(void* _p);
double rmatrixludet(/* Real */ ae_matrix* a,
/* Integer */ ae_vector* pivots,
ae_int_t n,
ae_state *_state);
double rmatrixdet(/* Real */ ae_matrix* a,
ae_int_t n,
ae_state *_state);
ae_complex cmatrixludet(/* Complex */ ae_matrix* a,
/* Integer */ ae_vector* pivots,
ae_int_t n,
ae_state *_state);
ae_complex cmatrixdet(/* Complex */ ae_matrix* a,
ae_int_t n,
ae_state *_state);
double spdmatrixcholeskydet(/* Real */ ae_matrix* a,
ae_int_t n,
ae_state *_state);
double spdmatrixdet(/* Real */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
ae_state *_state);
ae_bool smatrixgevd(/* Real */ ae_matrix* a,
ae_int_t n,
ae_bool isuppera,
/* Real */ ae_matrix* b,
ae_bool isupperb,
ae_int_t zneeded,
ae_int_t problemtype,
/* Real */ ae_vector* d,
/* Real */ ae_matrix* z,
ae_state *_state);
ae_bool smatrixgevdreduce(/* Real */ ae_matrix* a,
ae_int_t n,
ae_bool isuppera,
/* Real */ ae_matrix* b,
ae_bool isupperb,
ae_int_t problemtype,
/* Real */ ae_matrix* r,
ae_bool* isupperr,
ae_state *_state);
void rmatrixinvupdatesimple(/* Real */ ae_matrix* inva,
ae_int_t n,
ae_int_t updrow,
ae_int_t updcolumn,
double updval,
ae_state *_state);
void rmatrixinvupdaterow(/* Real */ ae_matrix* inva,
ae_int_t n,
ae_int_t updrow,
/* Real */ ae_vector* v,
ae_state *_state);
void rmatrixinvupdatecolumn(/* Real */ ae_matrix* inva,
ae_int_t n,
ae_int_t updcolumn,
/* Real */ ae_vector* u,
ae_state *_state);
void rmatrixinvupdateuv(/* Real */ ae_matrix* inva,
ae_int_t n,
/* Real */ ae_vector* u,
/* Real */ ae_vector* v,
ae_state *_state);
ae_bool rmatrixschur(/* Real */ ae_matrix* a,
ae_int_t n,
/* Real */ ae_matrix* s,
ae_state *_state);
}
#endif
|