This file is indexed.

/usr/include/libalglib/linalg.h is in libalglib-dev 3.10.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
/*************************************************************************
ALGLIB 3.10.0 (source code generated 2015-08-19)
Copyright (c) Sergey Bochkanov (ALGLIB project).

>>> SOURCE LICENSE >>>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation (www.fsf.org); either version 2 of the 
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

A copy of the GNU General Public License is available at
http://www.fsf.org/licensing/licenses
>>> END OF LICENSE >>>
*************************************************************************/
#ifndef _linalg_pkg_h
#define _linalg_pkg_h
#include "ap.h"
#include "alglibinternal.h"
#include "alglibmisc.h"

/////////////////////////////////////////////////////////////////////////
//
// THIS SECTION CONTAINS COMPUTATIONAL CORE DECLARATIONS (DATATYPES)
//
/////////////////////////////////////////////////////////////////////////
namespace alglib_impl
{
typedef struct
{
    ae_vector vals;
    ae_vector idx;
    ae_vector ridx;
    ae_vector didx;
    ae_vector uidx;
    ae_int_t matrixtype;
    ae_int_t m;
    ae_int_t n;
    ae_int_t nfree;
    ae_int_t ninitialized;
    ae_int_t tablesize;
} sparsematrix;
typedef struct
{
    ae_vector d;
    ae_vector u;
    sparsematrix s;
} sparsebuffers;
typedef struct
{
    double r1;
    double rinf;
} matinvreport;
typedef struct
{
    double e1;
    double e2;
    ae_vector x;
    ae_vector ax;
    double xax;
    ae_int_t n;
    ae_vector rk;
    ae_vector rk1;
    ae_vector xk;
    ae_vector xk1;
    ae_vector pk;
    ae_vector pk1;
    ae_vector b;
    rcommstate rstate;
    ae_vector tmp2;
} fblslincgstate;
typedef struct
{
    ae_int_t n;
    ae_int_t m;
    ae_int_t nstart;
    ae_int_t nits;
    ae_int_t seedval;
    ae_vector x0;
    ae_vector x1;
    ae_vector t;
    ae_vector xbest;
    hqrndstate r;
    ae_vector x;
    ae_vector mv;
    ae_vector mtv;
    ae_bool needmv;
    ae_bool needmtv;
    double repnorm;
    rcommstate rstate;
} normestimatorstate;

}

/////////////////////////////////////////////////////////////////////////
//
// THIS SECTION CONTAINS C++ INTERFACE
//
/////////////////////////////////////////////////////////////////////////
namespace alglib
{













/*************************************************************************
Sparse matrix structure.

You should use ALGLIB functions to work with sparse matrix. Never  try  to
access its fields directly!

NOTES ON THE SPARSE STORAGE FORMATS

Sparse matrices can be stored using several formats:
* Hash-Table representation
* Compressed Row Storage (CRS)
* Skyline matrix storage (SKS)

Each of the formats has benefits and drawbacks:
* Hash-table is good for dynamic operations (insertion of new elements),
  but does not support linear algebra operations
* CRS is good for operations like matrix-vector or matrix-matrix products,
  but its initialization is less convenient - you have to tell row   sizes
  at the initialization, and you have to fill  matrix  only  row  by  row,
  from left to right.
* SKS is a special format which is used to store triangular  factors  from
  Cholesky factorization. It does not support  dynamic  modification,  and
  support for linear algebra operations is very limited.

Tables below outline information about these two formats:

    OPERATIONS WITH MATRIX      HASH        CRS         SKS
    creation                    +           +           +
    SparseGet                   +           +           +
    SparseRewriteExisting       +           +           +
    SparseSet                   +
    SparseAdd                   +
    SparseGetRow                            +           +
    SparseGetCompressedRow                  +           +
    sparse-dense linear algebra             +           +
*************************************************************************/
class _sparsematrix_owner
{
public:
    _sparsematrix_owner();
    _sparsematrix_owner(const _sparsematrix_owner &rhs);
    _sparsematrix_owner& operator=(const _sparsematrix_owner &rhs);
    virtual ~_sparsematrix_owner();
    alglib_impl::sparsematrix* c_ptr();
    alglib_impl::sparsematrix* c_ptr() const;
protected:
    alglib_impl::sparsematrix *p_struct;
};
class sparsematrix : public _sparsematrix_owner
{
public:
    sparsematrix();
    sparsematrix(const sparsematrix &rhs);
    sparsematrix& operator=(const sparsematrix &rhs);
    virtual ~sparsematrix();

};


/*************************************************************************
Temporary buffers for sparse matrix operations.

You should pass an instance of this structure to factorization  functions.
It allows to reuse memory during repeated sparse  factorizations.  You  do
not have to call some initialization function - simply passing an instance
to factorization function is enough.
*************************************************************************/
class _sparsebuffers_owner
{
public:
    _sparsebuffers_owner();
    _sparsebuffers_owner(const _sparsebuffers_owner &rhs);
    _sparsebuffers_owner& operator=(const _sparsebuffers_owner &rhs);
    virtual ~_sparsebuffers_owner();
    alglib_impl::sparsebuffers* c_ptr();
    alglib_impl::sparsebuffers* c_ptr() const;
protected:
    alglib_impl::sparsebuffers *p_struct;
};
class sparsebuffers : public _sparsebuffers_owner
{
public:
    sparsebuffers();
    sparsebuffers(const sparsebuffers &rhs);
    sparsebuffers& operator=(const sparsebuffers &rhs);
    virtual ~sparsebuffers();

};





/*************************************************************************
Matrix inverse report:
* R1    reciprocal of condition number in 1-norm
* RInf  reciprocal of condition number in inf-norm
*************************************************************************/
class _matinvreport_owner
{
public:
    _matinvreport_owner();
    _matinvreport_owner(const _matinvreport_owner &rhs);
    _matinvreport_owner& operator=(const _matinvreport_owner &rhs);
    virtual ~_matinvreport_owner();
    alglib_impl::matinvreport* c_ptr();
    alglib_impl::matinvreport* c_ptr() const;
protected:
    alglib_impl::matinvreport *p_struct;
};
class matinvreport : public _matinvreport_owner
{
public:
    matinvreport();
    matinvreport(const matinvreport &rhs);
    matinvreport& operator=(const matinvreport &rhs);
    virtual ~matinvreport();
    double &r1;
    double &rinf;

};



/*************************************************************************
This object stores state of the iterative norm estimation algorithm.

You should use ALGLIB functions to work with this object.
*************************************************************************/
class _normestimatorstate_owner
{
public:
    _normestimatorstate_owner();
    _normestimatorstate_owner(const _normestimatorstate_owner &rhs);
    _normestimatorstate_owner& operator=(const _normestimatorstate_owner &rhs);
    virtual ~_normestimatorstate_owner();
    alglib_impl::normestimatorstate* c_ptr();
    alglib_impl::normestimatorstate* c_ptr() const;
protected:
    alglib_impl::normestimatorstate *p_struct;
};
class normestimatorstate : public _normestimatorstate_owner
{
public:
    normestimatorstate();
    normestimatorstate(const normestimatorstate &rhs);
    normestimatorstate& operator=(const normestimatorstate &rhs);
    virtual ~normestimatorstate();

};

/*************************************************************************
Cache-oblivous complex "copy-and-transpose"

Input parameters:
    M   -   number of rows
    N   -   number of columns
    A   -   source matrix, MxN submatrix is copied and transposed
    IA  -   submatrix offset (row index)
    JA  -   submatrix offset (column index)
    B   -   destination matrix, must be large enough to store result
    IB  -   submatrix offset (row index)
    JB  -   submatrix offset (column index)
*************************************************************************/
void cmatrixtranspose(const ae_int_t m, const ae_int_t n, const complex_2d_array &a, const ae_int_t ia, const ae_int_t ja, complex_2d_array &b, const ae_int_t ib, const ae_int_t jb);


/*************************************************************************
Cache-oblivous real "copy-and-transpose"

Input parameters:
    M   -   number of rows
    N   -   number of columns
    A   -   source matrix, MxN submatrix is copied and transposed
    IA  -   submatrix offset (row index)
    JA  -   submatrix offset (column index)
    B   -   destination matrix, must be large enough to store result
    IB  -   submatrix offset (row index)
    JB  -   submatrix offset (column index)
*************************************************************************/
void rmatrixtranspose(const ae_int_t m, const ae_int_t n, const real_2d_array &a, const ae_int_t ia, const ae_int_t ja, const real_2d_array &b, const ae_int_t ib, const ae_int_t jb);


/*************************************************************************
This code enforces symmetricy of the matrix by copying Upper part to lower
one (or vice versa).

INPUT PARAMETERS:
    A   -   matrix
    N   -   number of rows/columns
    IsUpper - whether we want to copy upper triangle to lower one (True)
            or vice versa (False).
*************************************************************************/
void rmatrixenforcesymmetricity(const real_2d_array &a, const ae_int_t n, const bool isupper);


/*************************************************************************
Copy

Input parameters:
    M   -   number of rows
    N   -   number of columns
    A   -   source matrix, MxN submatrix is copied and transposed
    IA  -   submatrix offset (row index)
    JA  -   submatrix offset (column index)
    B   -   destination matrix, must be large enough to store result
    IB  -   submatrix offset (row index)
    JB  -   submatrix offset (column index)
*************************************************************************/
void cmatrixcopy(const ae_int_t m, const ae_int_t n, const complex_2d_array &a, const ae_int_t ia, const ae_int_t ja, complex_2d_array &b, const ae_int_t ib, const ae_int_t jb);


/*************************************************************************
Copy

Input parameters:
    M   -   number of rows
    N   -   number of columns
    A   -   source matrix, MxN submatrix is copied and transposed
    IA  -   submatrix offset (row index)
    JA  -   submatrix offset (column index)
    B   -   destination matrix, must be large enough to store result
    IB  -   submatrix offset (row index)
    JB  -   submatrix offset (column index)
*************************************************************************/
void rmatrixcopy(const ae_int_t m, const ae_int_t n, const real_2d_array &a, const ae_int_t ia, const ae_int_t ja, real_2d_array &b, const ae_int_t ib, const ae_int_t jb);


/*************************************************************************
Rank-1 correction: A := A + u*v'

INPUT PARAMETERS:
    M   -   number of rows
    N   -   number of columns
    A   -   target matrix, MxN submatrix is updated
    IA  -   submatrix offset (row index)
    JA  -   submatrix offset (column index)
    U   -   vector #1
    IU  -   subvector offset
    V   -   vector #2
    IV  -   subvector offset
*************************************************************************/
void cmatrixrank1(const ae_int_t m, const ae_int_t n, complex_2d_array &a, const ae_int_t ia, const ae_int_t ja, complex_1d_array &u, const ae_int_t iu, complex_1d_array &v, const ae_int_t iv);


/*************************************************************************
Rank-1 correction: A := A + u*v'

INPUT PARAMETERS:
    M   -   number of rows
    N   -   number of columns
    A   -   target matrix, MxN submatrix is updated
    IA  -   submatrix offset (row index)
    JA  -   submatrix offset (column index)
    U   -   vector #1
    IU  -   subvector offset
    V   -   vector #2
    IV  -   subvector offset
*************************************************************************/
void rmatrixrank1(const ae_int_t m, const ae_int_t n, real_2d_array &a, const ae_int_t ia, const ae_int_t ja, real_1d_array &u, const ae_int_t iu, real_1d_array &v, const ae_int_t iv);


/*************************************************************************
Matrix-vector product: y := op(A)*x

INPUT PARAMETERS:
    M   -   number of rows of op(A)
            M>=0
    N   -   number of columns of op(A)
            N>=0
    A   -   target matrix
    IA  -   submatrix offset (row index)
    JA  -   submatrix offset (column index)
    OpA -   operation type:
            * OpA=0     =>  op(A) = A
            * OpA=1     =>  op(A) = A^T
            * OpA=2     =>  op(A) = A^H
    X   -   input vector
    IX  -   subvector offset
    IY  -   subvector offset
    Y   -   preallocated matrix, must be large enough to store result

OUTPUT PARAMETERS:
    Y   -   vector which stores result

if M=0, then subroutine does nothing.
if N=0, Y is filled by zeros.


  -- ALGLIB routine --

     28.01.2010
     Bochkanov Sergey
*************************************************************************/
void cmatrixmv(const ae_int_t m, const ae_int_t n, const complex_2d_array &a, const ae_int_t ia, const ae_int_t ja, const ae_int_t opa, const complex_1d_array &x, const ae_int_t ix, complex_1d_array &y, const ae_int_t iy);


/*************************************************************************
Matrix-vector product: y := op(A)*x

INPUT PARAMETERS:
    M   -   number of rows of op(A)
    N   -   number of columns of op(A)
    A   -   target matrix
    IA  -   submatrix offset (row index)
    JA  -   submatrix offset (column index)
    OpA -   operation type:
            * OpA=0     =>  op(A) = A
            * OpA=1     =>  op(A) = A^T
    X   -   input vector
    IX  -   subvector offset
    IY  -   subvector offset
    Y   -   preallocated matrix, must be large enough to store result

OUTPUT PARAMETERS:
    Y   -   vector which stores result

if M=0, then subroutine does nothing.
if N=0, Y is filled by zeros.


  -- ALGLIB routine --

     28.01.2010
     Bochkanov Sergey
*************************************************************************/
void rmatrixmv(const ae_int_t m, const ae_int_t n, const real_2d_array &a, const ae_int_t ia, const ae_int_t ja, const ae_int_t opa, const real_1d_array &x, const ae_int_t ix, real_1d_array &y, const ae_int_t iy);


/*************************************************************************
This subroutine calculates X*op(A^-1) where:
* X is MxN general matrix
* A is NxN upper/lower triangular/unitriangular matrix
* "op" may be identity transformation, transposition, conjugate transposition

Multiplication result replaces X.
Cache-oblivious algorithm is used.

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes two  important  improvements  of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  ! * multicore support
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
  ! * about 2-3x faster than ALGLIB for C++ without MKL
  ! * about 7-10x faster than "pure C#" edition of ALGLIB
  ! Difference in performance will be more striking  on  newer  CPU's with
  ! support for newer SIMD instructions.
  !
  ! Commercial edition of ALGLIB also supports multithreaded  acceleration
  ! of  this  function.  Because  starting/stopping  worker  thread always
  ! involves some overhead, parallelism starts to be  profitable  for  N's
  ! larger than 128.
  !
  ! In order to use multicore features you have to:
  ! * use commercial version of ALGLIB
  ! * call  this  function  with  "smp_"  prefix,  which  indicates  that
  !   multicore code will be used (for multicore support)
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

INPUT PARAMETERS
    N   -   matrix size, N>=0
    M   -   matrix size, N>=0
    A       -   matrix, actial matrix is stored in A[I1:I1+N-1,J1:J1+N-1]
    I1      -   submatrix offset
    J1      -   submatrix offset
    IsUpper -   whether matrix is upper triangular
    IsUnit  -   whether matrix is unitriangular
    OpType  -   transformation type:
                * 0 - no transformation
                * 1 - transposition
                * 2 - conjugate transposition
    X   -   matrix, actial matrix is stored in X[I2:I2+M-1,J2:J2+N-1]
    I2  -   submatrix offset
    J2  -   submatrix offset

  -- ALGLIB routine --
     15.12.2009
     Bochkanov Sergey
*************************************************************************/
void cmatrixrighttrsm(const ae_int_t m, const ae_int_t n, const complex_2d_array &a, const ae_int_t i1, const ae_int_t j1, const bool isupper, const bool isunit, const ae_int_t optype, const complex_2d_array &x, const ae_int_t i2, const ae_int_t j2);
void smp_cmatrixrighttrsm(const ae_int_t m, const ae_int_t n, const complex_2d_array &a, const ae_int_t i1, const ae_int_t j1, const bool isupper, const bool isunit, const ae_int_t optype, const complex_2d_array &x, const ae_int_t i2, const ae_int_t j2);


/*************************************************************************
This subroutine calculates op(A^-1)*X where:
* X is MxN general matrix
* A is MxM upper/lower triangular/unitriangular matrix
* "op" may be identity transformation, transposition, conjugate transposition

Multiplication result replaces X.
Cache-oblivious algorithm is used.

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes two  important  improvements  of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  ! * multicore support
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
  ! * about 2-3x faster than ALGLIB for C++ without MKL
  ! * about 7-10x faster than "pure C#" edition of ALGLIB
  ! Difference in performance will be more striking  on  newer  CPU's with
  ! support for newer SIMD instructions.
  !
  ! Commercial edition of ALGLIB also supports multithreaded  acceleration
  ! of  this  function.  Because  starting/stopping  worker  thread always
  ! involves some overhead, parallelism starts to be  profitable  for  N's
  ! larger than 128.
  !
  ! In order to use multicore features you have to:
  ! * use commercial version of ALGLIB
  ! * call  this  function  with  "smp_"  prefix,  which  indicates  that
  !   multicore code will be used (for multicore support)
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

INPUT PARAMETERS
    N   -   matrix size, N>=0
    M   -   matrix size, N>=0
    A       -   matrix, actial matrix is stored in A[I1:I1+M-1,J1:J1+M-1]
    I1      -   submatrix offset
    J1      -   submatrix offset
    IsUpper -   whether matrix is upper triangular
    IsUnit  -   whether matrix is unitriangular
    OpType  -   transformation type:
                * 0 - no transformation
                * 1 - transposition
                * 2 - conjugate transposition
    X   -   matrix, actial matrix is stored in X[I2:I2+M-1,J2:J2+N-1]
    I2  -   submatrix offset
    J2  -   submatrix offset

  -- ALGLIB routine --
     15.12.2009
     Bochkanov Sergey
*************************************************************************/
void cmatrixlefttrsm(const ae_int_t m, const ae_int_t n, const complex_2d_array &a, const ae_int_t i1, const ae_int_t j1, const bool isupper, const bool isunit, const ae_int_t optype, const complex_2d_array &x, const ae_int_t i2, const ae_int_t j2);
void smp_cmatrixlefttrsm(const ae_int_t m, const ae_int_t n, const complex_2d_array &a, const ae_int_t i1, const ae_int_t j1, const bool isupper, const bool isunit, const ae_int_t optype, const complex_2d_array &x, const ae_int_t i2, const ae_int_t j2);


/*************************************************************************
This subroutine calculates X*op(A^-1) where:
* X is MxN general matrix
* A is NxN upper/lower triangular/unitriangular matrix
* "op" may be identity transformation, transposition

Multiplication result replaces X.
Cache-oblivious algorithm is used.

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes two  important  improvements  of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  ! * multicore support
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
  ! * about 2-3x faster than ALGLIB for C++ without MKL
  ! * about 7-10x faster than "pure C#" edition of ALGLIB
  ! Difference in performance will be more striking  on  newer  CPU's with
  ! support for newer SIMD instructions.
  !
  ! Commercial edition of ALGLIB also supports multithreaded  acceleration
  ! of  this  function.  Because  starting/stopping  worker  thread always
  ! involves some overhead, parallelism starts to be  profitable  for  N's
  ! larger than 128.
  !
  ! In order to use multicore features you have to:
  ! * use commercial version of ALGLIB
  ! * call  this  function  with  "smp_"  prefix,  which  indicates  that
  !   multicore code will be used (for multicore support)
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

INPUT PARAMETERS
    N   -   matrix size, N>=0
    M   -   matrix size, N>=0
    A       -   matrix, actial matrix is stored in A[I1:I1+N-1,J1:J1+N-1]
    I1      -   submatrix offset
    J1      -   submatrix offset
    IsUpper -   whether matrix is upper triangular
    IsUnit  -   whether matrix is unitriangular
    OpType  -   transformation type:
                * 0 - no transformation
                * 1 - transposition
    X   -   matrix, actial matrix is stored in X[I2:I2+M-1,J2:J2+N-1]
    I2  -   submatrix offset
    J2  -   submatrix offset

  -- ALGLIB routine --
     15.12.2009
     Bochkanov Sergey
*************************************************************************/
void rmatrixrighttrsm(const ae_int_t m, const ae_int_t n, const real_2d_array &a, const ae_int_t i1, const ae_int_t j1, const bool isupper, const bool isunit, const ae_int_t optype, const real_2d_array &x, const ae_int_t i2, const ae_int_t j2);
void smp_rmatrixrighttrsm(const ae_int_t m, const ae_int_t n, const real_2d_array &a, const ae_int_t i1, const ae_int_t j1, const bool isupper, const bool isunit, const ae_int_t optype, const real_2d_array &x, const ae_int_t i2, const ae_int_t j2);


/*************************************************************************
This subroutine calculates op(A^-1)*X where:
* X is MxN general matrix
* A is MxM upper/lower triangular/unitriangular matrix
* "op" may be identity transformation, transposition

Multiplication result replaces X.
Cache-oblivious algorithm is used.

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes two  important  improvements  of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  ! * multicore support
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
  ! * about 2-3x faster than ALGLIB for C++ without MKL
  ! * about 7-10x faster than "pure C#" edition of ALGLIB
  ! Difference in performance will be more striking  on  newer  CPU's with
  ! support for newer SIMD instructions.
  !
  ! Commercial edition of ALGLIB also supports multithreaded  acceleration
  ! of  this  function.  Because  starting/stopping  worker  thread always
  ! involves some overhead, parallelism starts to be  profitable  for  N's
  ! larger than 128.
  !
  ! In order to use multicore features you have to:
  ! * use commercial version of ALGLIB
  ! * call  this  function  with  "smp_"  prefix,  which  indicates  that
  !   multicore code will be used (for multicore support)
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

INPUT PARAMETERS
    N   -   matrix size, N>=0
    M   -   matrix size, N>=0
    A       -   matrix, actial matrix is stored in A[I1:I1+M-1,J1:J1+M-1]
    I1      -   submatrix offset
    J1      -   submatrix offset
    IsUpper -   whether matrix is upper triangular
    IsUnit  -   whether matrix is unitriangular
    OpType  -   transformation type:
                * 0 - no transformation
                * 1 - transposition
    X   -   matrix, actial matrix is stored in X[I2:I2+M-1,J2:J2+N-1]
    I2  -   submatrix offset
    J2  -   submatrix offset

  -- ALGLIB routine --
     15.12.2009
     Bochkanov Sergey
*************************************************************************/
void rmatrixlefttrsm(const ae_int_t m, const ae_int_t n, const real_2d_array &a, const ae_int_t i1, const ae_int_t j1, const bool isupper, const bool isunit, const ae_int_t optype, const real_2d_array &x, const ae_int_t i2, const ae_int_t j2);
void smp_rmatrixlefttrsm(const ae_int_t m, const ae_int_t n, const real_2d_array &a, const ae_int_t i1, const ae_int_t j1, const bool isupper, const bool isunit, const ae_int_t optype, const real_2d_array &x, const ae_int_t i2, const ae_int_t j2);


/*************************************************************************
This subroutine calculates  C=alpha*A*A^H+beta*C  or  C=alpha*A^H*A+beta*C
where:
* C is NxN Hermitian matrix given by its upper/lower triangle
* A is NxK matrix when A*A^H is calculated, KxN matrix otherwise

Additional info:
* cache-oblivious algorithm is used.
* multiplication result replaces C. If Beta=0, C elements are not used in
  calculations (not multiplied by zero - just not referenced)
* if Alpha=0, A is not used (not multiplied by zero - just not referenced)
* if both Beta and Alpha are zero, C is filled by zeros.

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes two  important  improvements  of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  ! * multicore support
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
  ! * about 2-3x faster than ALGLIB for C++ without MKL
  ! * about 7-10x faster than "pure C#" edition of ALGLIB
  ! Difference in performance will be more striking  on  newer  CPU's with
  ! support for newer SIMD instructions.
  !
  ! Commercial edition of ALGLIB also supports multithreaded  acceleration
  ! of  this  function.  Because  starting/stopping  worker  thread always
  ! involves some overhead, parallelism starts to be  profitable  for  N's
  ! larger than 128.
  !
  ! In order to use multicore features you have to:
  ! * use commercial version of ALGLIB
  ! * call  this  function  with  "smp_"  prefix,  which  indicates  that
  !   multicore code will be used (for multicore support)
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

INPUT PARAMETERS
    N       -   matrix size, N>=0
    K       -   matrix size, K>=0
    Alpha   -   coefficient
    A       -   matrix
    IA      -   submatrix offset (row index)
    JA      -   submatrix offset (column index)
    OpTypeA -   multiplication type:
                * 0 - A*A^H is calculated
                * 2 - A^H*A is calculated
    Beta    -   coefficient
    C       -   preallocated input/output matrix
    IC      -   submatrix offset (row index)
    JC      -   submatrix offset (column index)
    IsUpper -   whether upper or lower triangle of C is updated;
                this function updates only one half of C, leaving
                other half unchanged (not referenced at all).

  -- ALGLIB routine --
     16.12.2009
     Bochkanov Sergey
*************************************************************************/
void cmatrixherk(const ae_int_t n, const ae_int_t k, const double alpha, const complex_2d_array &a, const ae_int_t ia, const ae_int_t ja, const ae_int_t optypea, const double beta, const complex_2d_array &c, const ae_int_t ic, const ae_int_t jc, const bool isupper);
void smp_cmatrixherk(const ae_int_t n, const ae_int_t k, const double alpha, const complex_2d_array &a, const ae_int_t ia, const ae_int_t ja, const ae_int_t optypea, const double beta, const complex_2d_array &c, const ae_int_t ic, const ae_int_t jc, const bool isupper);


/*************************************************************************
This subroutine calculates  C=alpha*A*A^T+beta*C  or  C=alpha*A^T*A+beta*C
where:
* C is NxN symmetric matrix given by its upper/lower triangle
* A is NxK matrix when A*A^T is calculated, KxN matrix otherwise

Additional info:
* cache-oblivious algorithm is used.
* multiplication result replaces C. If Beta=0, C elements are not used in
  calculations (not multiplied by zero - just not referenced)
* if Alpha=0, A is not used (not multiplied by zero - just not referenced)
* if both Beta and Alpha are zero, C is filled by zeros.

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes two  important  improvements  of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  ! * multicore support
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
  ! * about 2-3x faster than ALGLIB for C++ without MKL
  ! * about 7-10x faster than "pure C#" edition of ALGLIB
  ! Difference in performance will be more striking  on  newer  CPU's with
  ! support for newer SIMD instructions.
  !
  ! Commercial edition of ALGLIB also supports multithreaded  acceleration
  ! of  this  function.  Because  starting/stopping  worker  thread always
  ! involves some overhead, parallelism starts to be  profitable  for  N's
  ! larger than 128.
  !
  ! In order to use multicore features you have to:
  ! * use commercial version of ALGLIB
  ! * call  this  function  with  "smp_"  prefix,  which  indicates  that
  !   multicore code will be used (for multicore support)
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

INPUT PARAMETERS
    N       -   matrix size, N>=0
    K       -   matrix size, K>=0
    Alpha   -   coefficient
    A       -   matrix
    IA      -   submatrix offset (row index)
    JA      -   submatrix offset (column index)
    OpTypeA -   multiplication type:
                * 0 - A*A^T is calculated
                * 2 - A^T*A is calculated
    Beta    -   coefficient
    C       -   preallocated input/output matrix
    IC      -   submatrix offset (row index)
    JC      -   submatrix offset (column index)
    IsUpper -   whether C is upper triangular or lower triangular

  -- ALGLIB routine --
     16.12.2009
     Bochkanov Sergey
*************************************************************************/
void rmatrixsyrk(const ae_int_t n, const ae_int_t k, const double alpha, const real_2d_array &a, const ae_int_t ia, const ae_int_t ja, const ae_int_t optypea, const double beta, const real_2d_array &c, const ae_int_t ic, const ae_int_t jc, const bool isupper);
void smp_rmatrixsyrk(const ae_int_t n, const ae_int_t k, const double alpha, const real_2d_array &a, const ae_int_t ia, const ae_int_t ja, const ae_int_t optypea, const double beta, const real_2d_array &c, const ae_int_t ic, const ae_int_t jc, const bool isupper);


/*************************************************************************
This subroutine calculates C = alpha*op1(A)*op2(B) +beta*C where:
* C is MxN general matrix
* op1(A) is MxK matrix
* op2(B) is KxN matrix
* "op" may be identity transformation, transposition, conjugate transposition

Additional info:
* cache-oblivious algorithm is used.
* multiplication result replaces C. If Beta=0, C elements are not used in
  calculations (not multiplied by zero - just not referenced)
* if Alpha=0, A is not used (not multiplied by zero - just not referenced)
* if both Beta and Alpha are zero, C is filled by zeros.

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes two  important  improvements  of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  ! * multicore support
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
  ! * about 2-3x faster than ALGLIB for C++ without MKL
  ! * about 7-10x faster than "pure C#" edition of ALGLIB
  ! Difference in performance will be more striking  on  newer  CPU's with
  ! support for newer SIMD instructions.
  !
  ! Commercial edition of ALGLIB also supports multithreaded  acceleration
  ! of  this  function.  Because  starting/stopping  worker  thread always
  ! involves some overhead, parallelism starts to be  profitable  for  N's
  ! larger than 128.
  !
  ! In order to use multicore features you have to:
  ! * use commercial version of ALGLIB
  ! * call  this  function  with  "smp_"  prefix,  which  indicates  that
  !   multicore code will be used (for multicore support)
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

IMPORTANT:

This function does NOT preallocate output matrix C, it MUST be preallocated
by caller prior to calling this function. In case C does not have  enough
space to store result, exception will be generated.

INPUT PARAMETERS
    M       -   matrix size, M>0
    N       -   matrix size, N>0
    K       -   matrix size, K>0
    Alpha   -   coefficient
    A       -   matrix
    IA      -   submatrix offset
    JA      -   submatrix offset
    OpTypeA -   transformation type:
                * 0 - no transformation
                * 1 - transposition
                * 2 - conjugate transposition
    B       -   matrix
    IB      -   submatrix offset
    JB      -   submatrix offset
    OpTypeB -   transformation type:
                * 0 - no transformation
                * 1 - transposition
                * 2 - conjugate transposition
    Beta    -   coefficient
    C       -   matrix (PREALLOCATED, large enough to store result)
    IC      -   submatrix offset
    JC      -   submatrix offset

  -- ALGLIB routine --
     16.12.2009
     Bochkanov Sergey
*************************************************************************/
void cmatrixgemm(const ae_int_t m, const ae_int_t n, const ae_int_t k, const alglib::complex alpha, const complex_2d_array &a, const ae_int_t ia, const ae_int_t ja, const ae_int_t optypea, const complex_2d_array &b, const ae_int_t ib, const ae_int_t jb, const ae_int_t optypeb, const alglib::complex beta, const complex_2d_array &c, const ae_int_t ic, const ae_int_t jc);
void smp_cmatrixgemm(const ae_int_t m, const ae_int_t n, const ae_int_t k, const alglib::complex alpha, const complex_2d_array &a, const ae_int_t ia, const ae_int_t ja, const ae_int_t optypea, const complex_2d_array &b, const ae_int_t ib, const ae_int_t jb, const ae_int_t optypeb, const alglib::complex beta, const complex_2d_array &c, const ae_int_t ic, const ae_int_t jc);


/*************************************************************************
This subroutine calculates C = alpha*op1(A)*op2(B) +beta*C where:
* C is MxN general matrix
* op1(A) is MxK matrix
* op2(B) is KxN matrix
* "op" may be identity transformation, transposition

Additional info:
* cache-oblivious algorithm is used.
* multiplication result replaces C. If Beta=0, C elements are not used in
  calculations (not multiplied by zero - just not referenced)
* if Alpha=0, A is not used (not multiplied by zero - just not referenced)
* if both Beta and Alpha are zero, C is filled by zeros.

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes two  important  improvements  of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  ! * multicore support
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
  ! * about 2-3x faster than ALGLIB for C++ without MKL
  ! * about 7-10x faster than "pure C#" edition of ALGLIB
  ! Difference in performance will be more striking  on  newer  CPU's with
  ! support for newer SIMD instructions.
  !
  ! Commercial edition of ALGLIB also supports multithreaded  acceleration
  ! of  this  function.  Because  starting/stopping  worker  thread always
  ! involves some overhead, parallelism starts to be  profitable  for  N's
  ! larger than 128.
  !
  ! In order to use multicore features you have to:
  ! * use commercial version of ALGLIB
  ! * call  this  function  with  "smp_"  prefix,  which  indicates  that
  !   multicore code will be used (for multicore support)
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

IMPORTANT:

This function does NOT preallocate output matrix C, it MUST be preallocated
by caller prior to calling this function. In case C does not have  enough
space to store result, exception will be generated.

INPUT PARAMETERS
    M       -   matrix size, M>0
    N       -   matrix size, N>0
    K       -   matrix size, K>0
    Alpha   -   coefficient
    A       -   matrix
    IA      -   submatrix offset
    JA      -   submatrix offset
    OpTypeA -   transformation type:
                * 0 - no transformation
                * 1 - transposition
    B       -   matrix
    IB      -   submatrix offset
    JB      -   submatrix offset
    OpTypeB -   transformation type:
                * 0 - no transformation
                * 1 - transposition
    Beta    -   coefficient
    C       -   PREALLOCATED output matrix, large enough to store result
    IC      -   submatrix offset
    JC      -   submatrix offset

  -- ALGLIB routine --
     2009-2013
     Bochkanov Sergey
*************************************************************************/
void rmatrixgemm(const ae_int_t m, const ae_int_t n, const ae_int_t k, const double alpha, const real_2d_array &a, const ae_int_t ia, const ae_int_t ja, const ae_int_t optypea, const real_2d_array &b, const ae_int_t ib, const ae_int_t jb, const ae_int_t optypeb, const double beta, const real_2d_array &c, const ae_int_t ic, const ae_int_t jc);
void smp_rmatrixgemm(const ae_int_t m, const ae_int_t n, const ae_int_t k, const double alpha, const real_2d_array &a, const ae_int_t ia, const ae_int_t ja, const ae_int_t optypea, const real_2d_array &b, const ae_int_t ib, const ae_int_t jb, const ae_int_t optypeb, const double beta, const real_2d_array &c, const ae_int_t ic, const ae_int_t jc);


/*************************************************************************
This subroutine is an older version of CMatrixHERK(), one with wrong  name
(it is HErmitian update, not SYmmetric). It  is  left  here  for  backward
compatibility.

  -- ALGLIB routine --
     16.12.2009
     Bochkanov Sergey
*************************************************************************/
void cmatrixsyrk(const ae_int_t n, const ae_int_t k, const double alpha, const complex_2d_array &a, const ae_int_t ia, const ae_int_t ja, const ae_int_t optypea, const double beta, const complex_2d_array &c, const ae_int_t ic, const ae_int_t jc, const bool isupper);
void smp_cmatrixsyrk(const ae_int_t n, const ae_int_t k, const double alpha, const complex_2d_array &a, const ae_int_t ia, const ae_int_t ja, const ae_int_t optypea, const double beta, const complex_2d_array &c, const ae_int_t ic, const ae_int_t jc, const bool isupper);

/*************************************************************************
QR decomposition of a rectangular matrix of size MxN

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes two  important  improvements  of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  ! * multicore support
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
  ! * about 2-3x faster than ALGLIB for C++ without MKL
  ! * about 7-10x faster than "pure C#" edition of ALGLIB
  ! Difference in performance will be more striking  on  newer  CPU's with
  ! support for newer SIMD instructions. Generally,  MKL  accelerates  any
  ! problem whose size is at least 128, with best  efficiency achieved for
  ! N's larger than 512.
  !
  ! Commercial edition of ALGLIB also supports multithreaded  acceleration
  ! of this function. We should note that QP decomposition  is  harder  to
  ! parallelize than, say, matrix-matrix  product  -  this  algorithm  has
  ! many internal synchronization points which can not be avoided. However
  ! parallelism starts to be profitable starting  from  N=512,   achieving
  ! near-linear speedup for N=4096 or higher.
  !
  ! In order to use multicore features you have to:
  ! * use commercial version of ALGLIB
  ! * call  this  function  with  "smp_"  prefix,  which  indicates  that
  !   multicore code will be used (for multicore support)
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

Input parameters:
    A   -   matrix A whose indexes range within [0..M-1, 0..N-1].
    M   -   number of rows in matrix A.
    N   -   number of columns in matrix A.

Output parameters:
    A   -   matrices Q and R in compact form (see below).
    Tau -   array of scalar factors which are used to form
            matrix Q. Array whose index ranges within [0.. Min(M-1,N-1)].

Matrix A is represented as A = QR, where Q is an orthogonal matrix of size
MxM, R - upper triangular (or upper trapezoid) matrix of size M x N.

The elements of matrix R are located on and above the main diagonal of
matrix A. The elements which are located in Tau array and below the main
diagonal of matrix A are used to form matrix Q as follows:

Matrix Q is represented as a product of elementary reflections

Q = H(0)*H(2)*...*H(k-1),

where k = min(m,n), and each H(i) is in the form

H(i) = 1 - tau * v * (v^T)

where tau is a scalar stored in Tau[I]; v - real vector,
so that v(0:i-1) = 0, v(i) = 1, v(i+1:m-1) stored in A(i+1:m-1,i).

  -- ALGLIB routine --
     17.02.2010
     Bochkanov Sergey
*************************************************************************/
void rmatrixqr(real_2d_array &a, const ae_int_t m, const ae_int_t n, real_1d_array &tau);
void smp_rmatrixqr(real_2d_array &a, const ae_int_t m, const ae_int_t n, real_1d_array &tau);


/*************************************************************************
LQ decomposition of a rectangular matrix of size MxN

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes two  important  improvements  of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  ! * multicore support
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
  ! * about 2-3x faster than ALGLIB for C++ without MKL
  ! * about 7-10x faster than "pure C#" edition of ALGLIB
  ! Difference in performance will be more striking  on  newer  CPU's with
  ! support for newer SIMD instructions. Generally,  MKL  accelerates  any
  ! problem whose size is at least 128, with best  efficiency achieved for
  ! N's larger than 512.
  !
  ! Commercial edition of ALGLIB also supports multithreaded  acceleration
  ! of this function. We should note that QP decomposition  is  harder  to
  ! parallelize than, say, matrix-matrix  product  -  this  algorithm  has
  ! many internal synchronization points which can not be avoided. However
  ! parallelism starts to be profitable starting  from  N=512,   achieving
  ! near-linear speedup for N=4096 or higher.
  !
  ! In order to use multicore features you have to:
  ! * use commercial version of ALGLIB
  ! * call  this  function  with  "smp_"  prefix,  which  indicates  that
  !   multicore code will be used (for multicore support)
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

Input parameters:
    A   -   matrix A whose indexes range within [0..M-1, 0..N-1].
    M   -   number of rows in matrix A.
    N   -   number of columns in matrix A.

Output parameters:
    A   -   matrices L and Q in compact form (see below)
    Tau -   array of scalar factors which are used to form
            matrix Q. Array whose index ranges within [0..Min(M,N)-1].

Matrix A is represented as A = LQ, where Q is an orthogonal matrix of size
MxM, L - lower triangular (or lower trapezoid) matrix of size M x N.

The elements of matrix L are located on and below  the  main  diagonal  of
matrix A. The elements which are located in Tau array and above  the  main
diagonal of matrix A are used to form matrix Q as follows:

Matrix Q is represented as a product of elementary reflections

Q = H(k-1)*H(k-2)*...*H(1)*H(0),

where k = min(m,n), and each H(i) is of the form

H(i) = 1 - tau * v * (v^T)

where tau is a scalar stored in Tau[I]; v - real vector, so that v(0:i-1)=0,
v(i) = 1, v(i+1:n-1) stored in A(i,i+1:n-1).

  -- ALGLIB routine --
     17.02.2010
     Bochkanov Sergey
*************************************************************************/
void rmatrixlq(real_2d_array &a, const ae_int_t m, const ae_int_t n, real_1d_array &tau);
void smp_rmatrixlq(real_2d_array &a, const ae_int_t m, const ae_int_t n, real_1d_array &tau);


/*************************************************************************
QR decomposition of a rectangular complex matrix of size MxN

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes two  important  improvements  of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  ! * multicore support
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
  ! * about 2-3x faster than ALGLIB for C++ without MKL
  ! * about 7-10x faster than "pure C#" edition of ALGLIB
  ! Difference in performance will be more striking  on  newer  CPU's with
  ! support for newer SIMD instructions. Generally,  MKL  accelerates  any
  ! problem whose size is at least 128, with best  efficiency achieved for
  ! N's larger than 512.
  !
  ! Commercial edition of ALGLIB also supports multithreaded  acceleration
  ! of this function. We should note that QP decomposition  is  harder  to
  ! parallelize than, say, matrix-matrix  product  -  this  algorithm  has
  ! many internal synchronization points which can not be avoided. However
  ! parallelism starts to be profitable starting  from  N=512,   achieving
  ! near-linear speedup for N=4096 or higher.
  !
  ! In order to use multicore features you have to:
  ! * use commercial version of ALGLIB
  ! * call  this  function  with  "smp_"  prefix,  which  indicates  that
  !   multicore code will be used (for multicore support)
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

Input parameters:
    A   -   matrix A whose indexes range within [0..M-1, 0..N-1]
    M   -   number of rows in matrix A.
    N   -   number of columns in matrix A.

Output parameters:
    A   -   matrices Q and R in compact form
    Tau -   array of scalar factors which are used to form matrix Q. Array
            whose indexes range within [0.. Min(M,N)-1]

Matrix A is represented as A = QR, where Q is an orthogonal matrix of size
MxM, R - upper triangular (or upper trapezoid) matrix of size MxN.

  -- LAPACK routine (version 3.0) --
     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
     Courant Institute, Argonne National Lab, and Rice University
     September 30, 1994
*************************************************************************/
void cmatrixqr(complex_2d_array &a, const ae_int_t m, const ae_int_t n, complex_1d_array &tau);
void smp_cmatrixqr(complex_2d_array &a, const ae_int_t m, const ae_int_t n, complex_1d_array &tau);


/*************************************************************************
LQ decomposition of a rectangular complex matrix of size MxN

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes two  important  improvements  of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  ! * multicore support
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
  ! * about 2-3x faster than ALGLIB for C++ without MKL
  ! * about 7-10x faster than "pure C#" edition of ALGLIB
  ! Difference in performance will be more striking  on  newer  CPU's with
  ! support for newer SIMD instructions. Generally,  MKL  accelerates  any
  ! problem whose size is at least 128, with best  efficiency achieved for
  ! N's larger than 512.
  !
  ! Commercial edition of ALGLIB also supports multithreaded  acceleration
  ! of this function. We should note that QP decomposition  is  harder  to
  ! parallelize than, say, matrix-matrix  product  -  this  algorithm  has
  ! many internal synchronization points which can not be avoided. However
  ! parallelism starts to be profitable starting  from  N=512,   achieving
  ! near-linear speedup for N=4096 or higher.
  !
  ! In order to use multicore features you have to:
  ! * use commercial version of ALGLIB
  ! * call  this  function  with  "smp_"  prefix,  which  indicates  that
  !   multicore code will be used (for multicore support)
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

Input parameters:
    A   -   matrix A whose indexes range within [0..M-1, 0..N-1]
    M   -   number of rows in matrix A.
    N   -   number of columns in matrix A.

Output parameters:
    A   -   matrices Q and L in compact form
    Tau -   array of scalar factors which are used to form matrix Q. Array
            whose indexes range within [0.. Min(M,N)-1]

Matrix A is represented as A = LQ, where Q is an orthogonal matrix of size
MxM, L - lower triangular (or lower trapezoid) matrix of size MxN.

  -- LAPACK routine (version 3.0) --
     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
     Courant Institute, Argonne National Lab, and Rice University
     September 30, 1994
*************************************************************************/
void cmatrixlq(complex_2d_array &a, const ae_int_t m, const ae_int_t n, complex_1d_array &tau);
void smp_cmatrixlq(complex_2d_array &a, const ae_int_t m, const ae_int_t n, complex_1d_array &tau);


/*************************************************************************
Partial unpacking of matrix Q from the QR decomposition of a matrix A

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes two  important  improvements  of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  ! * multicore support
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
  ! * about 2-3x faster than ALGLIB for C++ without MKL
  ! * about 7-10x faster than "pure C#" edition of ALGLIB
  ! Difference in performance will be more striking  on  newer  CPU's with
  ! support for newer SIMD instructions. Generally,  MKL  accelerates  any
  ! problem whose size is at least 128, with best  efficiency achieved for
  ! N's larger than 512.
  !
  ! Commercial edition of ALGLIB also supports multithreaded  acceleration
  ! of this function. We should note that QP decomposition  is  harder  to
  ! parallelize than, say, matrix-matrix  product  -  this  algorithm  has
  ! many internal synchronization points which can not be avoided. However
  ! parallelism starts to be profitable starting  from  N=512,   achieving
  ! near-linear speedup for N=4096 or higher.
  !
  ! In order to use multicore features you have to:
  ! * use commercial version of ALGLIB
  ! * call  this  function  with  "smp_"  prefix,  which  indicates  that
  !   multicore code will be used (for multicore support)
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

Input parameters:
    A       -   matrices Q and R in compact form.
                Output of RMatrixQR subroutine.
    M       -   number of rows in given matrix A. M>=0.
    N       -   number of columns in given matrix A. N>=0.
    Tau     -   scalar factors which are used to form Q.
                Output of the RMatrixQR subroutine.
    QColumns -  required number of columns of matrix Q. M>=QColumns>=0.

Output parameters:
    Q       -   first QColumns columns of matrix Q.
                Array whose indexes range within [0..M-1, 0..QColumns-1].
                If QColumns=0, the array remains unchanged.

  -- ALGLIB routine --
     17.02.2010
     Bochkanov Sergey
*************************************************************************/
void rmatrixqrunpackq(const real_2d_array &a, const ae_int_t m, const ae_int_t n, const real_1d_array &tau, const ae_int_t qcolumns, real_2d_array &q);
void smp_rmatrixqrunpackq(const real_2d_array &a, const ae_int_t m, const ae_int_t n, const real_1d_array &tau, const ae_int_t qcolumns, real_2d_array &q);


/*************************************************************************
Unpacking of matrix R from the QR decomposition of a matrix A

Input parameters:
    A       -   matrices Q and R in compact form.
                Output of RMatrixQR subroutine.
    M       -   number of rows in given matrix A. M>=0.
    N       -   number of columns in given matrix A. N>=0.

Output parameters:
    R       -   matrix R, array[0..M-1, 0..N-1].

  -- ALGLIB routine --
     17.02.2010
     Bochkanov Sergey
*************************************************************************/
void rmatrixqrunpackr(const real_2d_array &a, const ae_int_t m, const ae_int_t n, real_2d_array &r);


/*************************************************************************
Partial unpacking of matrix Q from the LQ decomposition of a matrix A

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes two  important  improvements  of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  ! * multicore support
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
  ! * about 2-3x faster than ALGLIB for C++ without MKL
  ! * about 7-10x faster than "pure C#" edition of ALGLIB
  ! Difference in performance will be more striking  on  newer  CPU's with
  ! support for newer SIMD instructions. Generally,  MKL  accelerates  any
  ! problem whose size is at least 128, with best  efficiency achieved for
  ! N's larger than 512.
  !
  ! Commercial edition of ALGLIB also supports multithreaded  acceleration
  ! of this function. We should note that QP decomposition  is  harder  to
  ! parallelize than, say, matrix-matrix  product  -  this  algorithm  has
  ! many internal synchronization points which can not be avoided. However
  ! parallelism starts to be profitable starting  from  N=512,   achieving
  ! near-linear speedup for N=4096 or higher.
  !
  ! In order to use multicore features you have to:
  ! * use commercial version of ALGLIB
  ! * call  this  function  with  "smp_"  prefix,  which  indicates  that
  !   multicore code will be used (for multicore support)
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

Input parameters:
    A       -   matrices L and Q in compact form.
                Output of RMatrixLQ subroutine.
    M       -   number of rows in given matrix A. M>=0.
    N       -   number of columns in given matrix A. N>=0.
    Tau     -   scalar factors which are used to form Q.
                Output of the RMatrixLQ subroutine.
    QRows   -   required number of rows in matrix Q. N>=QRows>=0.

Output parameters:
    Q       -   first QRows rows of matrix Q. Array whose indexes range
                within [0..QRows-1, 0..N-1]. If QRows=0, the array remains
                unchanged.

  -- ALGLIB routine --
     17.02.2010
     Bochkanov Sergey
*************************************************************************/
void rmatrixlqunpackq(const real_2d_array &a, const ae_int_t m, const ae_int_t n, const real_1d_array &tau, const ae_int_t qrows, real_2d_array &q);
void smp_rmatrixlqunpackq(const real_2d_array &a, const ae_int_t m, const ae_int_t n, const real_1d_array &tau, const ae_int_t qrows, real_2d_array &q);


/*************************************************************************
Unpacking of matrix L from the LQ decomposition of a matrix A

Input parameters:
    A       -   matrices Q and L in compact form.
                Output of RMatrixLQ subroutine.
    M       -   number of rows in given matrix A. M>=0.
    N       -   number of columns in given matrix A. N>=0.

Output parameters:
    L       -   matrix L, array[0..M-1, 0..N-1].

  -- ALGLIB routine --
     17.02.2010
     Bochkanov Sergey
*************************************************************************/
void rmatrixlqunpackl(const real_2d_array &a, const ae_int_t m, const ae_int_t n, real_2d_array &l);


/*************************************************************************
Partial unpacking of matrix Q from QR decomposition of a complex matrix A.

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes two  important  improvements  of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  ! * multicore support
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
  ! * about 2-3x faster than ALGLIB for C++ without MKL
  ! * about 7-10x faster than "pure C#" edition of ALGLIB
  ! Difference in performance will be more striking  on  newer  CPU's with
  ! support for newer SIMD instructions. Generally,  MKL  accelerates  any
  ! problem whose size is at least 128, with best  efficiency achieved for
  ! N's larger than 512.
  !
  ! Commercial edition of ALGLIB also supports multithreaded  acceleration
  ! of this function. We should note that QP decomposition  is  harder  to
  ! parallelize than, say, matrix-matrix  product  -  this  algorithm  has
  ! many internal synchronization points which can not be avoided. However
  ! parallelism starts to be profitable starting  from  N=512,   achieving
  ! near-linear speedup for N=4096 or higher.
  !
  ! In order to use multicore features you have to:
  ! * use commercial version of ALGLIB
  ! * call  this  function  with  "smp_"  prefix,  which  indicates  that
  !   multicore code will be used (for multicore support)
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

Input parameters:
    A           -   matrices Q and R in compact form.
                    Output of CMatrixQR subroutine .
    M           -   number of rows in matrix A. M>=0.
    N           -   number of columns in matrix A. N>=0.
    Tau         -   scalar factors which are used to form Q.
                    Output of CMatrixQR subroutine .
    QColumns    -   required number of columns in matrix Q. M>=QColumns>=0.

Output parameters:
    Q           -   first QColumns columns of matrix Q.
                    Array whose index ranges within [0..M-1, 0..QColumns-1].
                    If QColumns=0, array isn't changed.

  -- ALGLIB routine --
     17.02.2010
     Bochkanov Sergey
*************************************************************************/
void cmatrixqrunpackq(const complex_2d_array &a, const ae_int_t m, const ae_int_t n, const complex_1d_array &tau, const ae_int_t qcolumns, complex_2d_array &q);
void smp_cmatrixqrunpackq(const complex_2d_array &a, const ae_int_t m, const ae_int_t n, const complex_1d_array &tau, const ae_int_t qcolumns, complex_2d_array &q);


/*************************************************************************
Unpacking of matrix R from the QR decomposition of a matrix A

Input parameters:
    A       -   matrices Q and R in compact form.
                Output of CMatrixQR subroutine.
    M       -   number of rows in given matrix A. M>=0.
    N       -   number of columns in given matrix A. N>=0.

Output parameters:
    R       -   matrix R, array[0..M-1, 0..N-1].

  -- ALGLIB routine --
     17.02.2010
     Bochkanov Sergey
*************************************************************************/
void cmatrixqrunpackr(const complex_2d_array &a, const ae_int_t m, const ae_int_t n, complex_2d_array &r);


/*************************************************************************
Partial unpacking of matrix Q from LQ decomposition of a complex matrix A.

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes two  important  improvements  of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  ! * multicore support
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
  ! * about 2-3x faster than ALGLIB for C++ without MKL
  ! * about 7-10x faster than "pure C#" edition of ALGLIB
  ! Difference in performance will be more striking  on  newer  CPU's with
  ! support for newer SIMD instructions. Generally,  MKL  accelerates  any
  ! problem whose size is at least 128, with best  efficiency achieved for
  ! N's larger than 512.
  !
  ! Commercial edition of ALGLIB also supports multithreaded  acceleration
  ! of this function. We should note that QP decomposition  is  harder  to
  ! parallelize than, say, matrix-matrix  product  -  this  algorithm  has
  ! many internal synchronization points which can not be avoided. However
  ! parallelism starts to be profitable starting  from  N=512,   achieving
  ! near-linear speedup for N=4096 or higher.
  !
  ! In order to use multicore features you have to:
  ! * use commercial version of ALGLIB
  ! * call  this  function  with  "smp_"  prefix,  which  indicates  that
  !   multicore code will be used (for multicore support)
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

Input parameters:
    A           -   matrices Q and R in compact form.
                    Output of CMatrixLQ subroutine .
    M           -   number of rows in matrix A. M>=0.
    N           -   number of columns in matrix A. N>=0.
    Tau         -   scalar factors which are used to form Q.
                    Output of CMatrixLQ subroutine .
    QRows       -   required number of rows in matrix Q. N>=QColumns>=0.

Output parameters:
    Q           -   first QRows rows of matrix Q.
                    Array whose index ranges within [0..QRows-1, 0..N-1].
                    If QRows=0, array isn't changed.

  -- ALGLIB routine --
     17.02.2010
     Bochkanov Sergey
*************************************************************************/
void cmatrixlqunpackq(const complex_2d_array &a, const ae_int_t m, const ae_int_t n, const complex_1d_array &tau, const ae_int_t qrows, complex_2d_array &q);
void smp_cmatrixlqunpackq(const complex_2d_array &a, const ae_int_t m, const ae_int_t n, const complex_1d_array &tau, const ae_int_t qrows, complex_2d_array &q);


/*************************************************************************
Unpacking of matrix L from the LQ decomposition of a matrix A

Input parameters:
    A       -   matrices Q and L in compact form.
                Output of CMatrixLQ subroutine.
    M       -   number of rows in given matrix A. M>=0.
    N       -   number of columns in given matrix A. N>=0.

Output parameters:
    L       -   matrix L, array[0..M-1, 0..N-1].

  -- ALGLIB routine --
     17.02.2010
     Bochkanov Sergey
*************************************************************************/
void cmatrixlqunpackl(const complex_2d_array &a, const ae_int_t m, const ae_int_t n, complex_2d_array &l);


/*************************************************************************
Reduction of a rectangular matrix to  bidiagonal form

The algorithm reduces the rectangular matrix A to  bidiagonal form by
orthogonal transformations P and Q: A = Q*B*(P^T).

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes one  important  improvement   of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Multithreaded acceleration is NOT supported for this function  because
  ! bidiagonal decompostion is inherently sequential in nature.
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

Input parameters:
    A       -   source matrix. array[0..M-1, 0..N-1]
    M       -   number of rows in matrix A.
    N       -   number of columns in matrix A.

Output parameters:
    A       -   matrices Q, B, P in compact form (see below).
    TauQ    -   scalar factors which are used to form matrix Q.
    TauP    -   scalar factors which are used to form matrix P.

The main diagonal and one of the  secondary  diagonals  of  matrix  A  are
replaced with bidiagonal  matrix  B.  Other  elements  contain  elementary
reflections which form MxM matrix Q and NxN matrix P, respectively.

If M>=N, B is the upper  bidiagonal  MxN  matrix  and  is  stored  in  the
corresponding  elements  of  matrix  A.  Matrix  Q  is  represented  as  a
product   of   elementary   reflections   Q = H(0)*H(1)*...*H(n-1),  where
H(i) = 1-tau*v*v'. Here tau is a scalar which is stored  in  TauQ[i],  and
vector v has the following  structure:  v(0:i-1)=0, v(i)=1, v(i+1:m-1)  is
stored   in   elements   A(i+1:m-1,i).   Matrix   P  is  as  follows:  P =
G(0)*G(1)*...*G(n-2), where G(i) = 1 - tau*u*u'. Tau is stored in TauP[i],
u(0:i)=0, u(i+1)=1, u(i+2:n-1) is stored in elements A(i,i+2:n-1).

If M<N, B is the  lower  bidiagonal  MxN  matrix  and  is  stored  in  the
corresponding   elements  of  matrix  A.  Q = H(0)*H(1)*...*H(m-2),  where
H(i) = 1 - tau*v*v', tau is stored in TauQ, v(0:i)=0, v(i+1)=1, v(i+2:m-1)
is    stored    in   elements   A(i+2:m-1,i).    P = G(0)*G(1)*...*G(m-1),
G(i) = 1-tau*u*u', tau is stored in  TauP,  u(0:i-1)=0, u(i)=1, u(i+1:n-1)
is stored in A(i,i+1:n-1).

EXAMPLE:

m=6, n=5 (m > n):               m=5, n=6 (m < n):

(  d   e   u1  u1  u1 )         (  d   u1  u1  u1  u1  u1 )
(  v1  d   e   u2  u2 )         (  e   d   u2  u2  u2  u2 )
(  v1  v2  d   e   u3 )         (  v1  e   d   u3  u3  u3 )
(  v1  v2  v3  d   e  )         (  v1  v2  e   d   u4  u4 )
(  v1  v2  v3  v4  d  )         (  v1  v2  v3  e   d   u5 )
(  v1  v2  v3  v4  v5 )

Here vi and ui are vectors which form H(i) and G(i), and d and e -
are the diagonal and off-diagonal elements of matrix B.

  -- LAPACK routine (version 3.0) --
     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
     Courant Institute, Argonne National Lab, and Rice University
     September 30, 1994.
     Sergey Bochkanov, ALGLIB project, translation from FORTRAN to
     pseudocode, 2007-2010.
*************************************************************************/
void rmatrixbd(real_2d_array &a, const ae_int_t m, const ae_int_t n, real_1d_array &tauq, real_1d_array &taup);


/*************************************************************************
Unpacking matrix Q which reduces a matrix to bidiagonal form.

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes one  important  improvement   of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Multithreaded acceleration is NOT supported for this function.
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

Input parameters:
    QP          -   matrices Q and P in compact form.
                    Output of ToBidiagonal subroutine.
    M           -   number of rows in matrix A.
    N           -   number of columns in matrix A.
    TAUQ        -   scalar factors which are used to form Q.
                    Output of ToBidiagonal subroutine.
    QColumns    -   required number of columns in matrix Q.
                    M>=QColumns>=0.

Output parameters:
    Q           -   first QColumns columns of matrix Q.
                    Array[0..M-1, 0..QColumns-1]
                    If QColumns=0, the array is not modified.

  -- ALGLIB --
     2005-2010
     Bochkanov Sergey
*************************************************************************/
void rmatrixbdunpackq(const real_2d_array &qp, const ae_int_t m, const ae_int_t n, const real_1d_array &tauq, const ae_int_t qcolumns, real_2d_array &q);


/*************************************************************************
Multiplication by matrix Q which reduces matrix A to  bidiagonal form.

The algorithm allows pre- or post-multiply by Q or Q'.

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes one  important  improvement   of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Multithreaded acceleration is NOT supported for this function.
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

Input parameters:
    QP          -   matrices Q and P in compact form.
                    Output of ToBidiagonal subroutine.
    M           -   number of rows in matrix A.
    N           -   number of columns in matrix A.
    TAUQ        -   scalar factors which are used to form Q.
                    Output of ToBidiagonal subroutine.
    Z           -   multiplied matrix.
                    array[0..ZRows-1,0..ZColumns-1]
    ZRows       -   number of rows in matrix Z. If FromTheRight=False,
                    ZRows=M, otherwise ZRows can be arbitrary.
    ZColumns    -   number of columns in matrix Z. If FromTheRight=True,
                    ZColumns=M, otherwise ZColumns can be arbitrary.
    FromTheRight -  pre- or post-multiply.
    DoTranspose -   multiply by Q or Q'.

Output parameters:
    Z           -   product of Z and Q.
                    Array[0..ZRows-1,0..ZColumns-1]
                    If ZRows=0 or ZColumns=0, the array is not modified.

  -- ALGLIB --
     2005-2010
     Bochkanov Sergey
*************************************************************************/
void rmatrixbdmultiplybyq(const real_2d_array &qp, const ae_int_t m, const ae_int_t n, const real_1d_array &tauq, real_2d_array &z, const ae_int_t zrows, const ae_int_t zcolumns, const bool fromtheright, const bool dotranspose);


/*************************************************************************
Unpacking matrix P which reduces matrix A to bidiagonal form.
The subroutine returns transposed matrix P.

Input parameters:
    QP      -   matrices Q and P in compact form.
                Output of ToBidiagonal subroutine.
    M       -   number of rows in matrix A.
    N       -   number of columns in matrix A.
    TAUP    -   scalar factors which are used to form P.
                Output of ToBidiagonal subroutine.
    PTRows  -   required number of rows of matrix P^T. N >= PTRows >= 0.

Output parameters:
    PT      -   first PTRows columns of matrix P^T
                Array[0..PTRows-1, 0..N-1]
                If PTRows=0, the array is not modified.

  -- ALGLIB --
     2005-2010
     Bochkanov Sergey
*************************************************************************/
void rmatrixbdunpackpt(const real_2d_array &qp, const ae_int_t m, const ae_int_t n, const real_1d_array &taup, const ae_int_t ptrows, real_2d_array &pt);


/*************************************************************************
Multiplication by matrix P which reduces matrix A to  bidiagonal form.

The algorithm allows pre- or post-multiply by P or P'.

Input parameters:
    QP          -   matrices Q and P in compact form.
                    Output of RMatrixBD subroutine.
    M           -   number of rows in matrix A.
    N           -   number of columns in matrix A.
    TAUP        -   scalar factors which are used to form P.
                    Output of RMatrixBD subroutine.
    Z           -   multiplied matrix.
                    Array whose indexes range within [0..ZRows-1,0..ZColumns-1].
    ZRows       -   number of rows in matrix Z. If FromTheRight=False,
                    ZRows=N, otherwise ZRows can be arbitrary.
    ZColumns    -   number of columns in matrix Z. If FromTheRight=True,
                    ZColumns=N, otherwise ZColumns can be arbitrary.
    FromTheRight -  pre- or post-multiply.
    DoTranspose -   multiply by P or P'.

Output parameters:
    Z - product of Z and P.
                Array whose indexes range within [0..ZRows-1,0..ZColumns-1].
                If ZRows=0 or ZColumns=0, the array is not modified.

  -- ALGLIB --
     2005-2010
     Bochkanov Sergey
*************************************************************************/
void rmatrixbdmultiplybyp(const real_2d_array &qp, const ae_int_t m, const ae_int_t n, const real_1d_array &taup, real_2d_array &z, const ae_int_t zrows, const ae_int_t zcolumns, const bool fromtheright, const bool dotranspose);


/*************************************************************************
Unpacking of the main and secondary diagonals of bidiagonal decomposition
of matrix A.

Input parameters:
    B   -   output of RMatrixBD subroutine.
    M   -   number of rows in matrix B.
    N   -   number of columns in matrix B.

Output parameters:
    IsUpper -   True, if the matrix is upper bidiagonal.
                otherwise IsUpper is False.
    D       -   the main diagonal.
                Array whose index ranges within [0..Min(M,N)-1].
    E       -   the secondary diagonal (upper or lower, depending on
                the value of IsUpper).
                Array index ranges within [0..Min(M,N)-1], the last
                element is not used.

  -- ALGLIB --
     2005-2010
     Bochkanov Sergey
*************************************************************************/
void rmatrixbdunpackdiagonals(const real_2d_array &b, const ae_int_t m, const ae_int_t n, bool &isupper, real_1d_array &d, real_1d_array &e);


/*************************************************************************
Reduction of a square matrix to  upper Hessenberg form: Q'*A*Q = H,
where Q is an orthogonal matrix, H - Hessenberg matrix.

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes one  important  improvement   of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Generally, commercial ALGLIB is several times faster than  open-source
  ! generic C edition, and many times faster than open-source C# edition.
  !
  ! Multithreaded acceleration is NOT supported for this function.
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

Input parameters:
    A       -   matrix A with elements [0..N-1, 0..N-1]
    N       -   size of matrix A.

Output parameters:
    A       -   matrices Q and P in  compact form (see below).
    Tau     -   array of scalar factors which are used to form matrix Q.
                Array whose index ranges within [0..N-2]

Matrix H is located on the main diagonal, on the lower secondary  diagonal
and above the main diagonal of matrix A. The elements which are used to
form matrix Q are situated in array Tau and below the lower secondary
diagonal of matrix A as follows:

Matrix Q is represented as a product of elementary reflections

Q = H(0)*H(2)*...*H(n-2),

where each H(i) is given by

H(i) = 1 - tau * v * (v^T)

where tau is a scalar stored in Tau[I]; v - is a real vector,
so that v(0:i) = 0, v(i+1) = 1, v(i+2:n-1) stored in A(i+2:n-1,i).

  -- LAPACK routine (version 3.0) --
     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
     Courant Institute, Argonne National Lab, and Rice University
     October 31, 1992
*************************************************************************/
void rmatrixhessenberg(real_2d_array &a, const ae_int_t n, real_1d_array &tau);


/*************************************************************************
Unpacking matrix Q which reduces matrix A to upper Hessenberg form

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes one  important  improvement   of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Generally, commercial ALGLIB is several times faster than  open-source
  ! generic C edition, and many times faster than open-source C# edition.
  !
  ! Multithreaded acceleration is NOT supported for this function.
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

Input parameters:
    A   -   output of RMatrixHessenberg subroutine.
    N   -   size of matrix A.
    Tau -   scalar factors which are used to form Q.
            Output of RMatrixHessenberg subroutine.

Output parameters:
    Q   -   matrix Q.
            Array whose indexes range within [0..N-1, 0..N-1].

  -- ALGLIB --
     2005-2010
     Bochkanov Sergey
*************************************************************************/
void rmatrixhessenbergunpackq(const real_2d_array &a, const ae_int_t n, const real_1d_array &tau, real_2d_array &q);


/*************************************************************************
Unpacking matrix H (the result of matrix A reduction to upper Hessenberg form)

Input parameters:
    A   -   output of RMatrixHessenberg subroutine.
    N   -   size of matrix A.

Output parameters:
    H   -   matrix H. Array whose indexes range within [0..N-1, 0..N-1].

  -- ALGLIB --
     2005-2010
     Bochkanov Sergey
*************************************************************************/
void rmatrixhessenbergunpackh(const real_2d_array &a, const ae_int_t n, real_2d_array &h);


/*************************************************************************
Reduction of a symmetric matrix which is given by its higher or lower
triangular part to a tridiagonal matrix using orthogonal similarity
transformation: Q'*A*Q=T.

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes one  important  improvement   of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Generally, commercial ALGLIB is several times faster than  open-source
  ! generic C edition, and many times faster than open-source C# edition.
  !
  ! Multithreaded acceleration is NOT supported for this function.
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

Input parameters:
    A       -   matrix to be transformed
                array with elements [0..N-1, 0..N-1].
    N       -   size of matrix A.
    IsUpper -   storage format. If IsUpper = True, then matrix A is given
                by its upper triangle, and the lower triangle is not used
                and not modified by the algorithm, and vice versa
                if IsUpper = False.

Output parameters:
    A       -   matrices T and Q in  compact form (see lower)
    Tau     -   array of factors which are forming matrices H(i)
                array with elements [0..N-2].
    D       -   main diagonal of symmetric matrix T.
                array with elements [0..N-1].
    E       -   secondary diagonal of symmetric matrix T.
                array with elements [0..N-2].


  If IsUpper=True, the matrix Q is represented as a product of elementary
  reflectors

     Q = H(n-2) . . . H(2) H(0).

  Each H(i) has the form

     H(i) = I - tau * v * v'

  where tau is a real scalar, and v is a real vector with
  v(i+1:n-1) = 0, v(i) = 1, v(0:i-1) is stored on exit in
  A(0:i-1,i+1), and tau in TAU(i).

  If IsUpper=False, the matrix Q is represented as a product of elementary
  reflectors

     Q = H(0) H(2) . . . H(n-2).

  Each H(i) has the form

     H(i) = I - tau * v * v'

  where tau is a real scalar, and v is a real vector with
  v(0:i) = 0, v(i+1) = 1, v(i+2:n-1) is stored on exit in A(i+2:n-1,i),
  and tau in TAU(i).

  The contents of A on exit are illustrated by the following examples
  with n = 5:

  if UPLO = 'U':                       if UPLO = 'L':

    (  d   e   v1  v2  v3 )              (  d                  )
    (      d   e   v2  v3 )              (  e   d              )
    (          d   e   v3 )              (  v0  e   d          )
    (              d   e  )              (  v0  v1  e   d      )
    (                  d  )              (  v0  v1  v2  e   d  )

  where d and e denote diagonal and off-diagonal elements of T, and vi
  denotes an element of the vector defining H(i).

  -- LAPACK routine (version 3.0) --
     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
     Courant Institute, Argonne National Lab, and Rice University
     October 31, 1992
*************************************************************************/
void smatrixtd(real_2d_array &a, const ae_int_t n, const bool isupper, real_1d_array &tau, real_1d_array &d, real_1d_array &e);


/*************************************************************************
Unpacking matrix Q which reduces symmetric matrix to a tridiagonal
form.


COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes one  important  improvement   of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Generally, commercial ALGLIB is several times faster than  open-source
  ! generic C edition, and many times faster than open-source C# edition.
  !
  ! Multithreaded acceleration is NOT supported for this function.
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

Input parameters:
    A       -   the result of a SMatrixTD subroutine
    N       -   size of matrix A.
    IsUpper -   storage format (a parameter of SMatrixTD subroutine)
    Tau     -   the result of a SMatrixTD subroutine

Output parameters:
    Q       -   transformation matrix.
                array with elements [0..N-1, 0..N-1].

  -- ALGLIB --
     Copyright 2005-2010 by Bochkanov Sergey
*************************************************************************/
void smatrixtdunpackq(const real_2d_array &a, const ae_int_t n, const bool isupper, const real_1d_array &tau, real_2d_array &q);


/*************************************************************************
Reduction of a Hermitian matrix which is given  by  its  higher  or  lower
triangular part to a real  tridiagonal  matrix  using  unitary  similarity
transformation: Q'*A*Q = T.


COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes one  important  improvement   of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Generally, commercial ALGLIB is several times faster than  open-source
  ! generic C edition, and many times faster than open-source C# edition.
  !
  ! Multithreaded acceleration is NOT supported for this function.
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

Input parameters:
    A       -   matrix to be transformed
                array with elements [0..N-1, 0..N-1].
    N       -   size of matrix A.
    IsUpper -   storage format. If IsUpper = True, then matrix A is  given
                by its upper triangle, and the lower triangle is not  used
                and not modified by the algorithm, and vice versa
                if IsUpper = False.

Output parameters:
    A       -   matrices T and Q in  compact form (see lower)
    Tau     -   array of factors which are forming matrices H(i)
                array with elements [0..N-2].
    D       -   main diagonal of real symmetric matrix T.
                array with elements [0..N-1].
    E       -   secondary diagonal of real symmetric matrix T.
                array with elements [0..N-2].


  If IsUpper=True, the matrix Q is represented as a product of elementary
  reflectors

     Q = H(n-2) . . . H(2) H(0).

  Each H(i) has the form

     H(i) = I - tau * v * v'

  where tau is a complex scalar, and v is a complex vector with
  v(i+1:n-1) = 0, v(i) = 1, v(0:i-1) is stored on exit in
  A(0:i-1,i+1), and tau in TAU(i).

  If IsUpper=False, the matrix Q is represented as a product of elementary
  reflectors

     Q = H(0) H(2) . . . H(n-2).

  Each H(i) has the form

     H(i) = I - tau * v * v'

  where tau is a complex scalar, and v is a complex vector with
  v(0:i) = 0, v(i+1) = 1, v(i+2:n-1) is stored on exit in A(i+2:n-1,i),
  and tau in TAU(i).

  The contents of A on exit are illustrated by the following examples
  with n = 5:

  if UPLO = 'U':                       if UPLO = 'L':

    (  d   e   v1  v2  v3 )              (  d                  )
    (      d   e   v2  v3 )              (  e   d              )
    (          d   e   v3 )              (  v0  e   d          )
    (              d   e  )              (  v0  v1  e   d      )
    (                  d  )              (  v0  v1  v2  e   d  )

where d and e denote diagonal and off-diagonal elements of T, and vi
denotes an element of the vector defining H(i).

  -- LAPACK routine (version 3.0) --
     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
     Courant Institute, Argonne National Lab, and Rice University
     October 31, 1992
*************************************************************************/
void hmatrixtd(complex_2d_array &a, const ae_int_t n, const bool isupper, complex_1d_array &tau, real_1d_array &d, real_1d_array &e);


/*************************************************************************
Unpacking matrix Q which reduces a Hermitian matrix to a real  tridiagonal
form.


COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes one  important  improvement   of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Generally, commercial ALGLIB is several times faster than  open-source
  ! generic C edition, and many times faster than open-source C# edition.
  !
  ! Multithreaded acceleration is NOT supported for this function.
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

Input parameters:
    A       -   the result of a HMatrixTD subroutine
    N       -   size of matrix A.
    IsUpper -   storage format (a parameter of HMatrixTD subroutine)
    Tau     -   the result of a HMatrixTD subroutine

Output parameters:
    Q       -   transformation matrix.
                array with elements [0..N-1, 0..N-1].

  -- ALGLIB --
     Copyright 2005-2010 by Bochkanov Sergey
*************************************************************************/
void hmatrixtdunpackq(const complex_2d_array &a, const ae_int_t n, const bool isupper, const complex_1d_array &tau, complex_2d_array &q);

/*************************************************************************
Singular value decomposition of a bidiagonal matrix (extended algorithm)

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes one  important  improvement   of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Generally, commercial ALGLIB is several times faster than  open-source
  ! generic C edition, and many times faster than open-source C# edition.
  !
  ! Multithreaded acceleration is NOT supported for this function.
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

The algorithm performs the singular value decomposition  of  a  bidiagonal
matrix B (upper or lower) representing it as B = Q*S*P^T, where Q and  P -
orthogonal matrices, S - diagonal matrix with non-negative elements on the
main diagonal, in descending order.

The  algorithm  finds  singular  values.  In  addition,  the algorithm can
calculate  matrices  Q  and P (more precisely, not the matrices, but their
product  with  given  matrices U and VT - U*Q and (P^T)*VT)).  Of  course,
matrices U and VT can be of any type, including identity. Furthermore, the
algorithm can calculate Q'*C (this product is calculated more  effectively
than U*Q,  because  this calculation operates with rows instead  of matrix
columns).

The feature of the algorithm is its ability to find  all  singular  values
including those which are arbitrarily close to 0  with  relative  accuracy
close to  machine precision. If the parameter IsFractionalAccuracyRequired
is set to True, all singular values will have high relative accuracy close
to machine precision. If the parameter is set to False, only  the  biggest
singular value will have relative accuracy  close  to  machine  precision.
The absolute error of other singular values is equal to the absolute error
of the biggest singular value.

Input parameters:
    D       -   main diagonal of matrix B.
                Array whose index ranges within [0..N-1].
    E       -   superdiagonal (or subdiagonal) of matrix B.
                Array whose index ranges within [0..N-2].
    N       -   size of matrix B.
    IsUpper -   True, if the matrix is upper bidiagonal.
    IsFractionalAccuracyRequired -
                THIS PARAMETER IS IGNORED SINCE ALGLIB 3.5.0
                SINGULAR VALUES ARE ALWAYS SEARCHED WITH HIGH ACCURACY.
    U       -   matrix to be multiplied by Q.
                Array whose indexes range within [0..NRU-1, 0..N-1].
                The matrix can be bigger, in that case only the  submatrix
                [0..NRU-1, 0..N-1] will be multiplied by Q.
    NRU     -   number of rows in matrix U.
    C       -   matrix to be multiplied by Q'.
                Array whose indexes range within [0..N-1, 0..NCC-1].
                The matrix can be bigger, in that case only the  submatrix
                [0..N-1, 0..NCC-1] will be multiplied by Q'.
    NCC     -   number of columns in matrix C.
    VT      -   matrix to be multiplied by P^T.
                Array whose indexes range within [0..N-1, 0..NCVT-1].
                The matrix can be bigger, in that case only the  submatrix
                [0..N-1, 0..NCVT-1] will be multiplied by P^T.
    NCVT    -   number of columns in matrix VT.

Output parameters:
    D       -   singular values of matrix B in descending order.
    U       -   if NRU>0, contains matrix U*Q.
    VT      -   if NCVT>0, contains matrix (P^T)*VT.
    C       -   if NCC>0, contains matrix Q'*C.

Result:
    True, if the algorithm has converged.
    False, if the algorithm hasn't converged (rare case).

NOTE: multiplication U*Q is performed by means of transposition to internal
      buffer, multiplication and backward transposition. It helps to avoid
      costly columnwise operations and speed-up algorithm.

Additional information:
    The type of convergence is controlled by the internal  parameter  TOL.
    If the parameter is greater than 0, the singular values will have
    relative accuracy TOL. If TOL<0, the singular values will have
    absolute accuracy ABS(TOL)*norm(B).
    By default, |TOL| falls within the range of 10*Epsilon and 100*Epsilon,
    where Epsilon is the machine precision. It is not  recommended  to  use
    TOL less than 10*Epsilon since this will  considerably  slow  down  the
    algorithm and may not lead to error decreasing.

History:
    * 31 March, 2007.
        changed MAXITR from 6 to 12.

  -- LAPACK routine (version 3.0) --
     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
     Courant Institute, Argonne National Lab, and Rice University
     October 31, 1999.
*************************************************************************/
bool rmatrixbdsvd(real_1d_array &d, const real_1d_array &e, const ae_int_t n, const bool isupper, const bool isfractionalaccuracyrequired, real_2d_array &u, const ae_int_t nru, real_2d_array &c, const ae_int_t ncc, real_2d_array &vt, const ae_int_t ncvt);

/*************************************************************************
Singular value decomposition of a rectangular matrix.

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes one  important  improvement   of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Generally, commercial ALGLIB is several times faster than  open-source
  ! generic C edition, and many times faster than open-source C# edition.
  !
  ! Multithreaded acceleration is only partially supported (some parts are
  ! optimized, but most - are not).
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

The algorithm calculates the singular value decomposition of a matrix of
size MxN: A = U * S * V^T

The algorithm finds the singular values and, optionally, matrices U and V^T.
The algorithm can find both first min(M,N) columns of matrix U and rows of
matrix V^T (singular vectors), and matrices U and V^T wholly (of sizes MxM
and NxN respectively).

Take into account that the subroutine does not return matrix V but V^T.

Input parameters:
    A           -   matrix to be decomposed.
                    Array whose indexes range within [0..M-1, 0..N-1].
    M           -   number of rows in matrix A.
    N           -   number of columns in matrix A.
    UNeeded     -   0, 1 or 2. See the description of the parameter U.
    VTNeeded    -   0, 1 or 2. See the description of the parameter VT.
    AdditionalMemory -
                    If the parameter:
                     * equals 0, the algorithm doesn�t use additional
                       memory (lower requirements, lower performance).
                     * equals 1, the algorithm uses additional
                       memory of size min(M,N)*min(M,N) of real numbers.
                       It often speeds up the algorithm.
                     * equals 2, the algorithm uses additional
                       memory of size M*min(M,N) of real numbers.
                       It allows to get a maximum performance.
                    The recommended value of the parameter is 2.

Output parameters:
    W           -   contains singular values in descending order.
    U           -   if UNeeded=0, U isn't changed, the left singular vectors
                    are not calculated.
                    if Uneeded=1, U contains left singular vectors (first
                    min(M,N) columns of matrix U). Array whose indexes range
                    within [0..M-1, 0..Min(M,N)-1].
                    if UNeeded=2, U contains matrix U wholly. Array whose
                    indexes range within [0..M-1, 0..M-1].
    VT          -   if VTNeeded=0, VT isn�t changed, the right singular vectors
                    are not calculated.
                    if VTNeeded=1, VT contains right singular vectors (first
                    min(M,N) rows of matrix V^T). Array whose indexes range
                    within [0..min(M,N)-1, 0..N-1].
                    if VTNeeded=2, VT contains matrix V^T wholly. Array whose
                    indexes range within [0..N-1, 0..N-1].

  -- ALGLIB --
     Copyright 2005 by Bochkanov Sergey
*************************************************************************/
bool rmatrixsvd(const real_2d_array &a, const ae_int_t m, const ae_int_t n, const ae_int_t uneeded, const ae_int_t vtneeded, const ae_int_t additionalmemory, real_1d_array &w, real_2d_array &u, real_2d_array &vt);
bool smp_rmatrixsvd(const real_2d_array &a, const ae_int_t m, const ae_int_t n, const ae_int_t uneeded, const ae_int_t vtneeded, const ae_int_t additionalmemory, real_1d_array &w, real_2d_array &u, real_2d_array &vt);

/*************************************************************************
Finding the eigenvalues and eigenvectors of a symmetric matrix

The algorithm finds eigen pairs of a symmetric matrix by reducing it to
tridiagonal form and using the QL/QR algorithm.

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes one  important  improvement   of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Generally, commercial ALGLIB is several times faster than  open-source
  ! generic C edition, and many times faster than open-source C# edition.
  !
  ! Multithreaded acceleration is NOT supported for this function.
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

Input parameters:
    A       -   symmetric matrix which is given by its upper or lower
                triangular part.
                Array whose indexes range within [0..N-1, 0..N-1].
    N       -   size of matrix A.
    ZNeeded -   flag controlling whether the eigenvectors are needed or not.
                If ZNeeded is equal to:
                 * 0, the eigenvectors are not returned;
                 * 1, the eigenvectors are returned.
    IsUpper -   storage format.

Output parameters:
    D       -   eigenvalues in ascending order.
                Array whose index ranges within [0..N-1].
    Z       -   if ZNeeded is equal to:
                 * 0, Z hasn�t changed;
                 * 1, Z contains the eigenvectors.
                Array whose indexes range within [0..N-1, 0..N-1].
                The eigenvectors are stored in the matrix columns.

Result:
    True, if the algorithm has converged.
    False, if the algorithm hasn't converged (rare case).

  -- ALGLIB --
     Copyright 2005-2008 by Bochkanov Sergey
*************************************************************************/
bool smatrixevd(const real_2d_array &a, const ae_int_t n, const ae_int_t zneeded, const bool isupper, real_1d_array &d, real_2d_array &z);


/*************************************************************************
Subroutine for finding the eigenvalues (and eigenvectors) of  a  symmetric
matrix  in  a  given half open interval (A, B] by using  a  bisection  and
inverse iteration

Input parameters:
    A       -   symmetric matrix which is given by its upper or lower
                triangular part. Array [0..N-1, 0..N-1].
    N       -   size of matrix A.
    ZNeeded -   flag controlling whether the eigenvectors are needed or not.
                If ZNeeded is equal to:
                 * 0, the eigenvectors are not returned;
                 * 1, the eigenvectors are returned.
    IsUpperA -  storage format of matrix A.
    B1, B2 -    half open interval (B1, B2] to search eigenvalues in.

Output parameters:
    M       -   number of eigenvalues found in a given half-interval (M>=0).
    W       -   array of the eigenvalues found.
                Array whose index ranges within [0..M-1].
    Z       -   if ZNeeded is equal to:
                 * 0, Z hasn�t changed;
                 * 1, Z contains eigenvectors.
                Array whose indexes range within [0..N-1, 0..M-1].
                The eigenvectors are stored in the matrix columns.

Result:
    True, if successful. M contains the number of eigenvalues in the given
    half-interval (could be equal to 0), W contains the eigenvalues,
    Z contains the eigenvectors (if needed).

    False, if the bisection method subroutine wasn't able to find the
    eigenvalues in the given interval or if the inverse iteration subroutine
    wasn't able to find all the corresponding eigenvectors.
    In that case, the eigenvalues and eigenvectors are not returned,
    M is equal to 0.

  -- ALGLIB --
     Copyright 07.01.2006 by Bochkanov Sergey
*************************************************************************/
bool smatrixevdr(const real_2d_array &a, const ae_int_t n, const ae_int_t zneeded, const bool isupper, const double b1, const double b2, ae_int_t &m, real_1d_array &w, real_2d_array &z);


/*************************************************************************
Subroutine for finding the eigenvalues and  eigenvectors  of  a  symmetric
matrix with given indexes by using bisection and inverse iteration methods.

Input parameters:
    A       -   symmetric matrix which is given by its upper or lower
                triangular part. Array whose indexes range within [0..N-1, 0..N-1].
    N       -   size of matrix A.
    ZNeeded -   flag controlling whether the eigenvectors are needed or not.
                If ZNeeded is equal to:
                 * 0, the eigenvectors are not returned;
                 * 1, the eigenvectors are returned.
    IsUpperA -  storage format of matrix A.
    I1, I2 -    index interval for searching (from I1 to I2).
                0 <= I1 <= I2 <= N-1.

Output parameters:
    W       -   array of the eigenvalues found.
                Array whose index ranges within [0..I2-I1].
    Z       -   if ZNeeded is equal to:
                 * 0, Z hasn�t changed;
                 * 1, Z contains eigenvectors.
                Array whose indexes range within [0..N-1, 0..I2-I1].
                In that case, the eigenvectors are stored in the matrix columns.

Result:
    True, if successful. W contains the eigenvalues, Z contains the
    eigenvectors (if needed).

    False, if the bisection method subroutine wasn't able to find the
    eigenvalues in the given interval or if the inverse iteration subroutine
    wasn't able to find all the corresponding eigenvectors.
    In that case, the eigenvalues and eigenvectors are not returned.

  -- ALGLIB --
     Copyright 07.01.2006 by Bochkanov Sergey
*************************************************************************/
bool smatrixevdi(const real_2d_array &a, const ae_int_t n, const ae_int_t zneeded, const bool isupper, const ae_int_t i1, const ae_int_t i2, real_1d_array &w, real_2d_array &z);


/*************************************************************************
Finding the eigenvalues and eigenvectors of a Hermitian matrix

The algorithm finds eigen pairs of a Hermitian matrix by  reducing  it  to
real tridiagonal form and using the QL/QR algorithm.

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes one  important  improvement   of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Generally, commercial ALGLIB is several times faster than  open-source
  ! generic C edition, and many times faster than open-source C# edition.
  !
  ! Multithreaded acceleration is NOT supported for this function.
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

Input parameters:
    A       -   Hermitian matrix which is given  by  its  upper  or  lower
                triangular part.
                Array whose indexes range within [0..N-1, 0..N-1].
    N       -   size of matrix A.
    IsUpper -   storage format.
    ZNeeded -   flag controlling whether the eigenvectors  are  needed  or
                not. If ZNeeded is equal to:
                 * 0, the eigenvectors are not returned;
                 * 1, the eigenvectors are returned.

Output parameters:
    D       -   eigenvalues in ascending order.
                Array whose index ranges within [0..N-1].
    Z       -   if ZNeeded is equal to:
                 * 0, Z hasn�t changed;
                 * 1, Z contains the eigenvectors.
                Array whose indexes range within [0..N-1, 0..N-1].
                The eigenvectors are stored in the matrix columns.

Result:
    True, if the algorithm has converged.
    False, if the algorithm hasn't converged (rare case).

Note:
    eigenvectors of Hermitian matrix are defined up to  multiplication  by
    a complex number L, such that |L|=1.

  -- ALGLIB --
     Copyright 2005, 23 March 2007 by Bochkanov Sergey
*************************************************************************/
bool hmatrixevd(const complex_2d_array &a, const ae_int_t n, const ae_int_t zneeded, const bool isupper, real_1d_array &d, complex_2d_array &z);


/*************************************************************************
Subroutine for finding the eigenvalues (and eigenvectors) of  a  Hermitian
matrix  in  a  given half-interval (A, B] by using a bisection and inverse
iteration

Input parameters:
    A       -   Hermitian matrix which is given  by  its  upper  or  lower
                triangular  part.  Array  whose   indexes   range   within
                [0..N-1, 0..N-1].
    N       -   size of matrix A.
    ZNeeded -   flag controlling whether the eigenvectors  are  needed  or
                not. If ZNeeded is equal to:
                 * 0, the eigenvectors are not returned;
                 * 1, the eigenvectors are returned.
    IsUpperA -  storage format of matrix A.
    B1, B2 -    half-interval (B1, B2] to search eigenvalues in.

Output parameters:
    M       -   number of eigenvalues found in a given half-interval, M>=0
    W       -   array of the eigenvalues found.
                Array whose index ranges within [0..M-1].
    Z       -   if ZNeeded is equal to:
                 * 0, Z hasn�t changed;
                 * 1, Z contains eigenvectors.
                Array whose indexes range within [0..N-1, 0..M-1].
                The eigenvectors are stored in the matrix columns.

Result:
    True, if successful. M contains the number of eigenvalues in the given
    half-interval (could be equal to 0), W contains the eigenvalues,
    Z contains the eigenvectors (if needed).

    False, if the bisection method subroutine  wasn't  able  to  find  the
    eigenvalues  in  the  given  interval  or  if  the  inverse  iteration
    subroutine  wasn't  able  to  find all the corresponding eigenvectors.
    In that case, the eigenvalues and eigenvectors are not returned, M  is
    equal to 0.

Note:
    eigen vectors of Hermitian matrix are defined up to multiplication  by
    a complex number L, such as |L|=1.

  -- ALGLIB --
     Copyright 07.01.2006, 24.03.2007 by Bochkanov Sergey.
*************************************************************************/
bool hmatrixevdr(const complex_2d_array &a, const ae_int_t n, const ae_int_t zneeded, const bool isupper, const double b1, const double b2, ae_int_t &m, real_1d_array &w, complex_2d_array &z);


/*************************************************************************
Subroutine for finding the eigenvalues and  eigenvectors  of  a  Hermitian
matrix with given indexes by using bisection and inverse iteration methods

Input parameters:
    A       -   Hermitian matrix which is given  by  its  upper  or  lower
                triangular part.
                Array whose indexes range within [0..N-1, 0..N-1].
    N       -   size of matrix A.
    ZNeeded -   flag controlling whether the eigenvectors  are  needed  or
                not. If ZNeeded is equal to:
                 * 0, the eigenvectors are not returned;
                 * 1, the eigenvectors are returned.
    IsUpperA -  storage format of matrix A.
    I1, I2 -    index interval for searching (from I1 to I2).
                0 <= I1 <= I2 <= N-1.

Output parameters:
    W       -   array of the eigenvalues found.
                Array whose index ranges within [0..I2-I1].
    Z       -   if ZNeeded is equal to:
                 * 0, Z hasn�t changed;
                 * 1, Z contains eigenvectors.
                Array whose indexes range within [0..N-1, 0..I2-I1].
                In  that  case,  the eigenvectors are stored in the matrix
                columns.

Result:
    True, if successful. W contains the eigenvalues, Z contains the
    eigenvectors (if needed).

    False, if the bisection method subroutine  wasn't  able  to  find  the
    eigenvalues  in  the  given  interval  or  if  the  inverse  iteration
    subroutine wasn't able to find  all  the  corresponding  eigenvectors.
    In that case, the eigenvalues and eigenvectors are not returned.

Note:
    eigen vectors of Hermitian matrix are defined up to multiplication  by
    a complex number L, such as |L|=1.

  -- ALGLIB --
     Copyright 07.01.2006, 24.03.2007 by Bochkanov Sergey.
*************************************************************************/
bool hmatrixevdi(const complex_2d_array &a, const ae_int_t n, const ae_int_t zneeded, const bool isupper, const ae_int_t i1, const ae_int_t i2, real_1d_array &w, complex_2d_array &z);


/*************************************************************************
Finding the eigenvalues and eigenvectors of a tridiagonal symmetric matrix

The algorithm finds the eigen pairs of a tridiagonal symmetric matrix by
using an QL/QR algorithm with implicit shifts.

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes one  important  improvement   of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Generally, commercial ALGLIB is several times faster than  open-source
  ! generic C edition, and many times faster than open-source C# edition.
  !
  ! Multithreaded acceleration is NOT supported for this function.
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

Input parameters:
    D       -   the main diagonal of a tridiagonal matrix.
                Array whose index ranges within [0..N-1].
    E       -   the secondary diagonal of a tridiagonal matrix.
                Array whose index ranges within [0..N-2].
    N       -   size of matrix A.
    ZNeeded -   flag controlling whether the eigenvectors are needed or not.
                If ZNeeded is equal to:
                 * 0, the eigenvectors are not needed;
                 * 1, the eigenvectors of a tridiagonal matrix
                   are multiplied by the square matrix Z. It is used if the
                   tridiagonal matrix is obtained by the similarity
                   transformation of a symmetric matrix;
                 * 2, the eigenvectors of a tridiagonal matrix replace the
                   square matrix Z;
                 * 3, matrix Z contains the first row of the eigenvectors
                   matrix.
    Z       -   if ZNeeded=1, Z contains the square matrix by which the
                eigenvectors are multiplied.
                Array whose indexes range within [0..N-1, 0..N-1].

Output parameters:
    D       -   eigenvalues in ascending order.
                Array whose index ranges within [0..N-1].
    Z       -   if ZNeeded is equal to:
                 * 0, Z hasn�t changed;
                 * 1, Z contains the product of a given matrix (from the left)
                   and the eigenvectors matrix (from the right);
                 * 2, Z contains the eigenvectors.
                 * 3, Z contains the first row of the eigenvectors matrix.
                If ZNeeded<3, Z is the array whose indexes range within [0..N-1, 0..N-1].
                In that case, the eigenvectors are stored in the matrix columns.
                If ZNeeded=3, Z is the array whose indexes range within [0..0, 0..N-1].

Result:
    True, if the algorithm has converged.
    False, if the algorithm hasn't converged.

  -- LAPACK routine (version 3.0) --
     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
     Courant Institute, Argonne National Lab, and Rice University
     September 30, 1994
*************************************************************************/
bool smatrixtdevd(real_1d_array &d, const real_1d_array &e, const ae_int_t n, const ae_int_t zneeded, real_2d_array &z);


/*************************************************************************
Subroutine for finding the tridiagonal matrix eigenvalues/vectors in a
given half-interval (A, B] by using bisection and inverse iteration.

Input parameters:
    D       -   the main diagonal of a tridiagonal matrix.
                Array whose index ranges within [0..N-1].
    E       -   the secondary diagonal of a tridiagonal matrix.
                Array whose index ranges within [0..N-2].
    N       -   size of matrix, N>=0.
    ZNeeded -   flag controlling whether the eigenvectors are needed or not.
                If ZNeeded is equal to:
                 * 0, the eigenvectors are not needed;
                 * 1, the eigenvectors of a tridiagonal matrix are multiplied
                   by the square matrix Z. It is used if the tridiagonal
                   matrix is obtained by the similarity transformation
                   of a symmetric matrix.
                 * 2, the eigenvectors of a tridiagonal matrix replace matrix Z.
    A, B    -   half-interval (A, B] to search eigenvalues in.
    Z       -   if ZNeeded is equal to:
                 * 0, Z isn't used and remains unchanged;
                 * 1, Z contains the square matrix (array whose indexes range
                   within [0..N-1, 0..N-1]) which reduces the given symmetric
                   matrix to tridiagonal form;
                 * 2, Z isn't used (but changed on the exit).

Output parameters:
    D       -   array of the eigenvalues found.
                Array whose index ranges within [0..M-1].
    M       -   number of eigenvalues found in the given half-interval (M>=0).
    Z       -   if ZNeeded is equal to:
                 * 0, doesn't contain any information;
                 * 1, contains the product of a given NxN matrix Z (from the
                   left) and NxM matrix of the eigenvectors found (from the
                   right). Array whose indexes range within [0..N-1, 0..M-1].
                 * 2, contains the matrix of the eigenvectors found.
                   Array whose indexes range within [0..N-1, 0..M-1].

Result:

    True, if successful. In that case, M contains the number of eigenvalues
    in the given half-interval (could be equal to 0), D contains the eigenvalues,
    Z contains the eigenvectors (if needed).
    It should be noted that the subroutine changes the size of arrays D and Z.

    False, if the bisection method subroutine wasn't able to find the
    eigenvalues in the given interval or if the inverse iteration subroutine
    wasn't able to find all the corresponding eigenvectors. In that case,
    the eigenvalues and eigenvectors are not returned, M is equal to 0.

  -- ALGLIB --
     Copyright 31.03.2008 by Bochkanov Sergey
*************************************************************************/
bool smatrixtdevdr(real_1d_array &d, const real_1d_array &e, const ae_int_t n, const ae_int_t zneeded, const double a, const double b, ae_int_t &m, real_2d_array &z);


/*************************************************************************
Subroutine for finding tridiagonal matrix eigenvalues/vectors with given
indexes (in ascending order) by using the bisection and inverse iteraion.

Input parameters:
    D       -   the main diagonal of a tridiagonal matrix.
                Array whose index ranges within [0..N-1].
    E       -   the secondary diagonal of a tridiagonal matrix.
                Array whose index ranges within [0..N-2].
    N       -   size of matrix. N>=0.
    ZNeeded -   flag controlling whether the eigenvectors are needed or not.
                If ZNeeded is equal to:
                 * 0, the eigenvectors are not needed;
                 * 1, the eigenvectors of a tridiagonal matrix are multiplied
                   by the square matrix Z. It is used if the
                   tridiagonal matrix is obtained by the similarity transformation
                   of a symmetric matrix.
                 * 2, the eigenvectors of a tridiagonal matrix replace
                   matrix Z.
    I1, I2  -   index interval for searching (from I1 to I2).
                0 <= I1 <= I2 <= N-1.
    Z       -   if ZNeeded is equal to:
                 * 0, Z isn't used and remains unchanged;
                 * 1, Z contains the square matrix (array whose indexes range within [0..N-1, 0..N-1])
                   which reduces the given symmetric matrix to  tridiagonal form;
                 * 2, Z isn't used (but changed on the exit).

Output parameters:
    D       -   array of the eigenvalues found.
                Array whose index ranges within [0..I2-I1].
    Z       -   if ZNeeded is equal to:
                 * 0, doesn't contain any information;
                 * 1, contains the product of a given NxN matrix Z (from the left) and
                   Nx(I2-I1) matrix of the eigenvectors found (from the right).
                   Array whose indexes range within [0..N-1, 0..I2-I1].
                 * 2, contains the matrix of the eigenvalues found.
                   Array whose indexes range within [0..N-1, 0..I2-I1].


Result:

    True, if successful. In that case, D contains the eigenvalues,
    Z contains the eigenvectors (if needed).
    It should be noted that the subroutine changes the size of arrays D and Z.

    False, if the bisection method subroutine wasn't able to find the eigenvalues
    in the given interval or if the inverse iteration subroutine wasn't able
    to find all the corresponding eigenvectors. In that case, the eigenvalues
    and eigenvectors are not returned.

  -- ALGLIB --
     Copyright 25.12.2005 by Bochkanov Sergey
*************************************************************************/
bool smatrixtdevdi(real_1d_array &d, const real_1d_array &e, const ae_int_t n, const ae_int_t zneeded, const ae_int_t i1, const ae_int_t i2, real_2d_array &z);


/*************************************************************************
Finding eigenvalues and eigenvectors of a general (unsymmetric) matrix

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes one  important  improvement   of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison. Speed-up provided by MKL for this particular problem (EVD)
  ! is really high, because  MKL  uses combination of (a) better low-level
  ! optimizations, and (b) better EVD algorithms.
  !
  ! On one particular SSE-capable  machine  for  N=1024,  commercial  MKL-
  ! -capable ALGLIB was:
  ! * 7-10 times faster than open source "generic C" version
  ! * 15-18 times faster than "pure C#" version
  !
  ! Multithreaded acceleration is NOT supported for this function.
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

The algorithm finds eigenvalues and eigenvectors of a general matrix by
using the QR algorithm with multiple shifts. The algorithm can find
eigenvalues and both left and right eigenvectors.

The right eigenvector is a vector x such that A*x = w*x, and the left
eigenvector is a vector y such that y'*A = w*y' (here y' implies a complex
conjugate transposition of vector y).

Input parameters:
    A       -   matrix. Array whose indexes range within [0..N-1, 0..N-1].
    N       -   size of matrix A.
    VNeeded -   flag controlling whether eigenvectors are needed or not.
                If VNeeded is equal to:
                 * 0, eigenvectors are not returned;
                 * 1, right eigenvectors are returned;
                 * 2, left eigenvectors are returned;
                 * 3, both left and right eigenvectors are returned.

Output parameters:
    WR      -   real parts of eigenvalues.
                Array whose index ranges within [0..N-1].
    WR      -   imaginary parts of eigenvalues.
                Array whose index ranges within [0..N-1].
    VL, VR  -   arrays of left and right eigenvectors (if they are needed).
                If WI[i]=0, the respective eigenvalue is a real number,
                and it corresponds to the column number I of matrices VL/VR.
                If WI[i]>0, we have a pair of complex conjugate numbers with
                positive and negative imaginary parts:
                    the first eigenvalue WR[i] + sqrt(-1)*WI[i];
                    the second eigenvalue WR[i+1] + sqrt(-1)*WI[i+1];
                    WI[i]>0
                    WI[i+1] = -WI[i] < 0
                In that case, the eigenvector  corresponding to the first
                eigenvalue is located in i and i+1 columns of matrices
                VL/VR (the column number i contains the real part, and the
                column number i+1 contains the imaginary part), and the vector
                corresponding to the second eigenvalue is a complex conjugate to
                the first vector.
                Arrays whose indexes range within [0..N-1, 0..N-1].

Result:
    True, if the algorithm has converged.
    False, if the algorithm has not converged.

Note 1:
    Some users may ask the following question: what if WI[N-1]>0?
    WI[N] must contain an eigenvalue which is complex conjugate to the
    N-th eigenvalue, but the array has only size N?
    The answer is as follows: such a situation cannot occur because the
    algorithm finds a pairs of eigenvalues, therefore, if WI[i]>0, I is
    strictly less than N-1.

Note 2:
    The algorithm performance depends on the value of the internal parameter
    NS of the InternalSchurDecomposition subroutine which defines the number
    of shifts in the QR algorithm (similarly to the block width in block-matrix
    algorithms of linear algebra). If you require maximum performance
    on your machine, it is recommended to adjust this parameter manually.


See also the InternalTREVC subroutine.

The algorithm is based on the LAPACK 3.0 library.
*************************************************************************/
bool rmatrixevd(const real_2d_array &a, const ae_int_t n, const ae_int_t vneeded, real_1d_array &wr, real_1d_array &wi, real_2d_array &vl, real_2d_array &vr);

/*************************************************************************
Generation of a random uniformly distributed (Haar) orthogonal matrix

INPUT PARAMETERS:
    N   -   matrix size, N>=1

OUTPUT PARAMETERS:
    A   -   orthogonal NxN matrix, array[0..N-1,0..N-1]

NOTE: this function uses algorithm  described  in  Stewart, G. W.  (1980),
      "The Efficient Generation of  Random  Orthogonal  Matrices  with  an
      Application to Condition Estimators".

      Speaking short, to generate an (N+1)x(N+1) orthogonal matrix, it:
      * takes an NxN one
      * takes uniformly distributed unit vector of dimension N+1.
      * constructs a Householder reflection from the vector, then applies
        it to the smaller matrix (embedded in the larger size with a 1 at
        the bottom right corner).

  -- ALGLIB routine --
     04.12.2009
     Bochkanov Sergey
*************************************************************************/
void rmatrixrndorthogonal(const ae_int_t n, real_2d_array &a);


/*************************************************************************
Generation of random NxN matrix with given condition number and norm2(A)=1

INPUT PARAMETERS:
    N   -   matrix size
    C   -   condition number (in 2-norm)

OUTPUT PARAMETERS:
    A   -   random matrix with norm2(A)=1 and cond(A)=C

  -- ALGLIB routine --
     04.12.2009
     Bochkanov Sergey
*************************************************************************/
void rmatrixrndcond(const ae_int_t n, const double c, real_2d_array &a);


/*************************************************************************
Generation of a random Haar distributed orthogonal complex matrix

INPUT PARAMETERS:
    N   -   matrix size, N>=1

OUTPUT PARAMETERS:
    A   -   orthogonal NxN matrix, array[0..N-1,0..N-1]

NOTE: this function uses algorithm  described  in  Stewart, G. W.  (1980),
      "The Efficient Generation of  Random  Orthogonal  Matrices  with  an
      Application to Condition Estimators".

      Speaking short, to generate an (N+1)x(N+1) orthogonal matrix, it:
      * takes an NxN one
      * takes uniformly distributed unit vector of dimension N+1.
      * constructs a Householder reflection from the vector, then applies
        it to the smaller matrix (embedded in the larger size with a 1 at
        the bottom right corner).

  -- ALGLIB routine --
     04.12.2009
     Bochkanov Sergey
*************************************************************************/
void cmatrixrndorthogonal(const ae_int_t n, complex_2d_array &a);


/*************************************************************************
Generation of random NxN complex matrix with given condition number C and
norm2(A)=1

INPUT PARAMETERS:
    N   -   matrix size
    C   -   condition number (in 2-norm)

OUTPUT PARAMETERS:
    A   -   random matrix with norm2(A)=1 and cond(A)=C

  -- ALGLIB routine --
     04.12.2009
     Bochkanov Sergey
*************************************************************************/
void cmatrixrndcond(const ae_int_t n, const double c, complex_2d_array &a);


/*************************************************************************
Generation of random NxN symmetric matrix with given condition number  and
norm2(A)=1

INPUT PARAMETERS:
    N   -   matrix size
    C   -   condition number (in 2-norm)

OUTPUT PARAMETERS:
    A   -   random matrix with norm2(A)=1 and cond(A)=C

  -- ALGLIB routine --
     04.12.2009
     Bochkanov Sergey
*************************************************************************/
void smatrixrndcond(const ae_int_t n, const double c, real_2d_array &a);


/*************************************************************************
Generation of random NxN symmetric positive definite matrix with given
condition number and norm2(A)=1

INPUT PARAMETERS:
    N   -   matrix size
    C   -   condition number (in 2-norm)

OUTPUT PARAMETERS:
    A   -   random SPD matrix with norm2(A)=1 and cond(A)=C

  -- ALGLIB routine --
     04.12.2009
     Bochkanov Sergey
*************************************************************************/
void spdmatrixrndcond(const ae_int_t n, const double c, real_2d_array &a);


/*************************************************************************
Generation of random NxN Hermitian matrix with given condition number  and
norm2(A)=1

INPUT PARAMETERS:
    N   -   matrix size
    C   -   condition number (in 2-norm)

OUTPUT PARAMETERS:
    A   -   random matrix with norm2(A)=1 and cond(A)=C

  -- ALGLIB routine --
     04.12.2009
     Bochkanov Sergey
*************************************************************************/
void hmatrixrndcond(const ae_int_t n, const double c, complex_2d_array &a);


/*************************************************************************
Generation of random NxN Hermitian positive definite matrix with given
condition number and norm2(A)=1

INPUT PARAMETERS:
    N   -   matrix size
    C   -   condition number (in 2-norm)

OUTPUT PARAMETERS:
    A   -   random HPD matrix with norm2(A)=1 and cond(A)=C

  -- ALGLIB routine --
     04.12.2009
     Bochkanov Sergey
*************************************************************************/
void hpdmatrixrndcond(const ae_int_t n, const double c, complex_2d_array &a);


/*************************************************************************
Multiplication of MxN matrix by NxN random Haar distributed orthogonal matrix

INPUT PARAMETERS:
    A   -   matrix, array[0..M-1, 0..N-1]
    M, N-   matrix size

OUTPUT PARAMETERS:
    A   -   A*Q, where Q is random NxN orthogonal matrix

  -- ALGLIB routine --
     04.12.2009
     Bochkanov Sergey
*************************************************************************/
void rmatrixrndorthogonalfromtheright(real_2d_array &a, const ae_int_t m, const ae_int_t n);


/*************************************************************************
Multiplication of MxN matrix by MxM random Haar distributed orthogonal matrix

INPUT PARAMETERS:
    A   -   matrix, array[0..M-1, 0..N-1]
    M, N-   matrix size

OUTPUT PARAMETERS:
    A   -   Q*A, where Q is random MxM orthogonal matrix

  -- ALGLIB routine --
     04.12.2009
     Bochkanov Sergey
*************************************************************************/
void rmatrixrndorthogonalfromtheleft(real_2d_array &a, const ae_int_t m, const ae_int_t n);


/*************************************************************************
Multiplication of MxN complex matrix by NxN random Haar distributed
complex orthogonal matrix

INPUT PARAMETERS:
    A   -   matrix, array[0..M-1, 0..N-1]
    M, N-   matrix size

OUTPUT PARAMETERS:
    A   -   A*Q, where Q is random NxN orthogonal matrix

  -- ALGLIB routine --
     04.12.2009
     Bochkanov Sergey
*************************************************************************/
void cmatrixrndorthogonalfromtheright(complex_2d_array &a, const ae_int_t m, const ae_int_t n);


/*************************************************************************
Multiplication of MxN complex matrix by MxM random Haar distributed
complex orthogonal matrix

INPUT PARAMETERS:
    A   -   matrix, array[0..M-1, 0..N-1]
    M, N-   matrix size

OUTPUT PARAMETERS:
    A   -   Q*A, where Q is random MxM orthogonal matrix

  -- ALGLIB routine --
     04.12.2009
     Bochkanov Sergey
*************************************************************************/
void cmatrixrndorthogonalfromtheleft(complex_2d_array &a, const ae_int_t m, const ae_int_t n);


/*************************************************************************
Symmetric multiplication of NxN matrix by random Haar distributed
orthogonal  matrix

INPUT PARAMETERS:
    A   -   matrix, array[0..N-1, 0..N-1]
    N   -   matrix size

OUTPUT PARAMETERS:
    A   -   Q'*A*Q, where Q is random NxN orthogonal matrix

  -- ALGLIB routine --
     04.12.2009
     Bochkanov Sergey
*************************************************************************/
void smatrixrndmultiply(real_2d_array &a, const ae_int_t n);


/*************************************************************************
Hermitian multiplication of NxN matrix by random Haar distributed
complex orthogonal matrix

INPUT PARAMETERS:
    A   -   matrix, array[0..N-1, 0..N-1]
    N   -   matrix size

OUTPUT PARAMETERS:
    A   -   Q^H*A*Q, where Q is random NxN orthogonal matrix

  -- ALGLIB routine --
     04.12.2009
     Bochkanov Sergey
*************************************************************************/
void hmatrixrndmultiply(complex_2d_array &a, const ae_int_t n);

/*************************************************************************
This function creates sparse matrix in a Hash-Table format.

This function creates Hast-Table matrix, which can be  converted  to  CRS
format after its initialization is over. Typical  usage  scenario  for  a
sparse matrix is:
1. creation in a Hash-Table format
2. insertion of the matrix elements
3. conversion to the CRS representation
4. matrix is passed to some linear algebra algorithm

Some  information  about  different matrix formats can be found below, in
the "NOTES" section.

INPUT PARAMETERS
    M           -   number of rows in a matrix, M>=1
    N           -   number of columns in a matrix, N>=1
    K           -   K>=0, expected number of non-zero elements in a matrix.
                    K can be inexact approximation, can be less than actual
                    number  of  elements  (table will grow when needed) or
                    even zero).
                    It is important to understand that although hash-table
                    may grow automatically, it is better to  provide  good
                    estimate of data size.

OUTPUT PARAMETERS
    S           -   sparse M*N matrix in Hash-Table representation.
                    All elements of the matrix are zero.

NOTE 1

Hash-tables use memory inefficiently, and they have to keep  some  amount
of the "spare memory" in order to have good performance. Hash  table  for
matrix with K non-zero elements will  need  C*K*(8+2*sizeof(int))  bytes,
where C is a small constant, about 1.5-2 in magnitude.

CRS storage, from the other side, is  more  memory-efficient,  and  needs
just K*(8+sizeof(int))+M*sizeof(int) bytes, where M is a number  of  rows
in a matrix.

When you convert from the Hash-Table to CRS  representation, all unneeded
memory will be freed.

NOTE 2

Comments of SparseMatrix structure outline  information  about  different
sparse storage formats. We recommend you to read them before starting  to
use ALGLIB sparse matrices.

NOTE 3

This function completely  overwrites S with new sparse matrix. Previously
allocated storage is NOT reused. If you  want  to reuse already allocated
memory, call SparseCreateBuf function.

  -- ALGLIB PROJECT --
     Copyright 14.10.2011 by Bochkanov Sergey
*************************************************************************/
void sparsecreate(const ae_int_t m, const ae_int_t n, const ae_int_t k, sparsematrix &s);
void sparsecreate(const ae_int_t m, const ae_int_t n, sparsematrix &s);


/*************************************************************************
This version of SparseCreate function creates sparse matrix in Hash-Table
format, reusing previously allocated storage as much  as  possible.  Read
comments for SparseCreate() for more information.

INPUT PARAMETERS
    M           -   number of rows in a matrix, M>=1
    N           -   number of columns in a matrix, N>=1
    K           -   K>=0, expected number of non-zero elements in a matrix.
                    K can be inexact approximation, can be less than actual
                    number  of  elements  (table will grow when needed) or
                    even zero).
                    It is important to understand that although hash-table
                    may grow automatically, it is better to  provide  good
                    estimate of data size.
    S           -   SparseMatrix structure which MAY contain some  already
                    allocated storage.

OUTPUT PARAMETERS
    S           -   sparse M*N matrix in Hash-Table representation.
                    All elements of the matrix are zero.
                    Previously allocated storage is reused, if  its  size
                    is compatible with expected number of non-zeros K.

  -- ALGLIB PROJECT --
     Copyright 14.01.2014 by Bochkanov Sergey
*************************************************************************/
void sparsecreatebuf(const ae_int_t m, const ae_int_t n, const ae_int_t k, const sparsematrix &s);
void sparsecreatebuf(const ae_int_t m, const ae_int_t n, const sparsematrix &s);


/*************************************************************************
This function creates sparse matrix in a CRS format (expert function for
situations when you are running out of memory).

This function creates CRS matrix. Typical usage scenario for a CRS matrix
is:
1. creation (you have to tell number of non-zero elements at each row  at
   this moment)
2. insertion of the matrix elements (row by row, from left to right)
3. matrix is passed to some linear algebra algorithm

This function is a memory-efficient alternative to SparseCreate(), but it
is more complex because it requires you to know in advance how large your
matrix is. Some  information about  different matrix formats can be found
in comments on SparseMatrix structure.  We recommend  you  to  read  them
before starting to use ALGLIB sparse matrices..

INPUT PARAMETERS
    M           -   number of rows in a matrix, M>=1
    N           -   number of columns in a matrix, N>=1
    NER         -   number of elements at each row, array[M], NER[I]>=0

OUTPUT PARAMETERS
    S           -   sparse M*N matrix in CRS representation.
                    You have to fill ALL non-zero elements by calling
                    SparseSet() BEFORE you try to use this matrix.

NOTE: this function completely  overwrites  S  with  new  sparse  matrix.
      Previously allocated storage is NOT reused. If you  want  to  reuse
      already allocated memory, call SparseCreateCRSBuf function.

  -- ALGLIB PROJECT --
     Copyright 14.10.2011 by Bochkanov Sergey
*************************************************************************/
void sparsecreatecrs(const ae_int_t m, const ae_int_t n, const integer_1d_array &ner, sparsematrix &s);


/*************************************************************************
This function creates sparse matrix in a CRS format (expert function  for
situations when you are running out  of  memory).  This  version  of  CRS
matrix creation function may reuse memory already allocated in S.

This function creates CRS matrix. Typical usage scenario for a CRS matrix
is:
1. creation (you have to tell number of non-zero elements at each row  at
   this moment)
2. insertion of the matrix elements (row by row, from left to right)
3. matrix is passed to some linear algebra algorithm

This function is a memory-efficient alternative to SparseCreate(), but it
is more complex because it requires you to know in advance how large your
matrix is. Some  information about  different matrix formats can be found
in comments on SparseMatrix structure.  We recommend  you  to  read  them
before starting to use ALGLIB sparse matrices..

INPUT PARAMETERS
    M           -   number of rows in a matrix, M>=1
    N           -   number of columns in a matrix, N>=1
    NER         -   number of elements at each row, array[M], NER[I]>=0
    S           -   sparse matrix structure with possibly preallocated
                    memory.

OUTPUT PARAMETERS
    S           -   sparse M*N matrix in CRS representation.
                    You have to fill ALL non-zero elements by calling
                    SparseSet() BEFORE you try to use this matrix.

  -- ALGLIB PROJECT --
     Copyright 14.10.2011 by Bochkanov Sergey
*************************************************************************/
void sparsecreatecrsbuf(const ae_int_t m, const ae_int_t n, const integer_1d_array &ner, const sparsematrix &s);


/*************************************************************************
This function creates sparse matrix in  a  SKS  format  (skyline  storage
format). In most cases you do not need this function - CRS format  better
suits most use cases.

INPUT PARAMETERS
    M, N        -   number of rows(M) and columns (N) in a matrix:
                    * M=N (as for now, ALGLIB supports only square SKS)
                    * N>=1
                    * M>=1
    D           -   "bottom" bandwidths, array[M], D[I]>=0.
                    I-th element stores number of non-zeros at I-th  row,
                    below the diagonal (diagonal itself is not  included)
    U           -   "top" bandwidths, array[N], U[I]>=0.
                    I-th element stores number of non-zeros  at I-th row,
                    above the diagonal (diagonal itself  is not included)

OUTPUT PARAMETERS
    S           -   sparse M*N matrix in SKS representation.
                    All elements are filled by zeros.
                    You may use SparseRewriteExisting() to  change  their
                    values.

NOTE: this function completely  overwrites  S  with  new  sparse  matrix.
      Previously allocated storage is NOT reused. If you  want  to  reuse
      already allocated memory, call SparseCreateSKSBuf function.

  -- ALGLIB PROJECT --
     Copyright 13.01.2014 by Bochkanov Sergey
*************************************************************************/
void sparsecreatesks(const ae_int_t m, const ae_int_t n, const integer_1d_array &d, const integer_1d_array &u, sparsematrix &s);


/*************************************************************************
This is "buffered"  version  of  SparseCreateSKS()  which  reuses  memory
previously allocated in S (of course, memory is reallocated if needed).

This function creates sparse matrix in  a  SKS  format  (skyline  storage
format). In most cases you do not need this function - CRS format  better
suits most use cases.

INPUT PARAMETERS
    M, N        -   number of rows(M) and columns (N) in a matrix:
                    * M=N (as for now, ALGLIB supports only square SKS)
                    * N>=1
                    * M>=1
    D           -   "bottom" bandwidths, array[M], 0<=D[I]<=I.
                    I-th element stores number of non-zeros at I-th row,
                    below the diagonal (diagonal itself is not included)
    U           -   "top" bandwidths, array[N], 0<=U[I]<=I.
                    I-th element stores number of non-zeros at I-th row,
                    above the diagonal (diagonal itself is not included)

OUTPUT PARAMETERS
    S           -   sparse M*N matrix in SKS representation.
                    All elements are filled by zeros.
                    You may use SparseSet()/SparseAdd() to change their
                    values.

  -- ALGLIB PROJECT --
     Copyright 13.01.2014 by Bochkanov Sergey
*************************************************************************/
void sparsecreatesksbuf(const ae_int_t m, const ae_int_t n, const integer_1d_array &d, const integer_1d_array &u, const sparsematrix &s);


/*************************************************************************
This function copies S0 to S1.
This function completely deallocates memory owned by S1 before creating a
copy of S0. If you want to reuse memory, use SparseCopyBuf.

NOTE:  this  function  does  not verify its arguments, it just copies all
fields of the structure.

  -- ALGLIB PROJECT --
     Copyright 14.10.2011 by Bochkanov Sergey
*************************************************************************/
void sparsecopy(const sparsematrix &s0, sparsematrix &s1);


/*************************************************************************
This function copies S0 to S1.
Memory already allocated in S1 is reused as much as possible.

NOTE:  this  function  does  not verify its arguments, it just copies all
fields of the structure.

  -- ALGLIB PROJECT --
     Copyright 14.10.2011 by Bochkanov Sergey
*************************************************************************/
void sparsecopybuf(const sparsematrix &s0, const sparsematrix &s1);


/*************************************************************************
This function efficiently swaps contents of S0 and S1.

  -- ALGLIB PROJECT --
     Copyright 16.01.2014 by Bochkanov Sergey
*************************************************************************/
void sparseswap(const sparsematrix &s0, const sparsematrix &s1);


/*************************************************************************
This function adds value to S[i,j] - element of the sparse matrix. Matrix
must be in a Hash-Table mode.

In case S[i,j] already exists in the table, V i added to  its  value.  In
case  S[i,j]  is  non-existent,  it  is  inserted  in  the  table.  Table
automatically grows when necessary.

INPUT PARAMETERS
    S           -   sparse M*N matrix in Hash-Table representation.
                    Exception will be thrown for CRS matrix.
    I           -   row index of the element to modify, 0<=I<M
    J           -   column index of the element to modify, 0<=J<N
    V           -   value to add, must be finite number

OUTPUT PARAMETERS
    S           -   modified matrix

NOTE 1:  when  S[i,j]  is exactly zero after modification, it is  deleted
from the table.

  -- ALGLIB PROJECT --
     Copyright 14.10.2011 by Bochkanov Sergey
*************************************************************************/
void sparseadd(const sparsematrix &s, const ae_int_t i, const ae_int_t j, const double v);


/*************************************************************************
This function modifies S[i,j] - element of the sparse matrix.

For Hash-based storage format:
* this function can be called at any moment - during matrix initialization
  or later
* new value can be zero or non-zero.  In case new value of S[i,j] is zero,
  this element is deleted from the table.
* this  function  has  no  effect when called with zero V for non-existent
  element.

For CRS-bases storage format:
* this function can be called ONLY DURING MATRIX INITIALIZATION
* new value MUST be non-zero. Exception will be thrown for zero V.
* elements must be initialized in correct order -  from top row to bottom,
  within row - from left to right.

For SKS storage: NOT SUPPORTED! Use SparseRewriteExisting() to  work  with
SKS matrices.

INPUT PARAMETERS
    S           -   sparse M*N matrix in Hash-Table or CRS representation.
    I           -   row index of the element to modify, 0<=I<M
    J           -   column index of the element to modify, 0<=J<N
    V           -   value to set, must be finite number, can be zero

OUTPUT PARAMETERS
    S           -   modified matrix

  -- ALGLIB PROJECT --
     Copyright 14.10.2011 by Bochkanov Sergey
*************************************************************************/
void sparseset(const sparsematrix &s, const ae_int_t i, const ae_int_t j, const double v);


/*************************************************************************
This function returns S[i,j] - element of the sparse matrix.  Matrix  can
be in any mode (Hash-Table, CRS, SKS), but this function is less efficient
for CRS matrices. Hash-Table and SKS matrices can find  element  in  O(1)
time, while  CRS  matrices need O(log(RS)) time, where RS is an number of
non-zero elements in a row.

INPUT PARAMETERS
    S           -   sparse M*N matrix in Hash-Table representation.
                    Exception will be thrown for CRS matrix.
    I           -   row index of the element to modify, 0<=I<M
    J           -   column index of the element to modify, 0<=J<N

RESULT
    value of S[I,J] or zero (in case no element with such index is found)

  -- ALGLIB PROJECT --
     Copyright 14.10.2011 by Bochkanov Sergey
*************************************************************************/
double sparseget(const sparsematrix &s, const ae_int_t i, const ae_int_t j);


/*************************************************************************
This function returns I-th diagonal element of the sparse matrix.

Matrix can be in any mode (Hash-Table or CRS storage), but this  function
is most efficient for CRS matrices - it requires less than 50 CPU  cycles
to extract diagonal element. For Hash-Table matrices we still  have  O(1)
query time, but function is many times slower.

INPUT PARAMETERS
    S           -   sparse M*N matrix in Hash-Table representation.
                    Exception will be thrown for CRS matrix.
    I           -   index of the element to modify, 0<=I<min(M,N)

RESULT
    value of S[I,I] or zero (in case no element with such index is found)

  -- ALGLIB PROJECT --
     Copyright 14.10.2011 by Bochkanov Sergey
*************************************************************************/
double sparsegetdiagonal(const sparsematrix &s, const ae_int_t i);


/*************************************************************************
This function calculates matrix-vector product  S*x.  Matrix  S  must  be
stored in CRS or SKS format (exception will be thrown otherwise).

INPUT PARAMETERS
    S           -   sparse M*N matrix in CRS or SKS format.
    X           -   array[N], input vector. For  performance  reasons  we
                    make only quick checks - we check that array size  is
                    at least N, but we do not check for NAN's or INF's.
    Y           -   output buffer, possibly preallocated. In case  buffer
                    size is too small to store  result,  this  buffer  is
                    automatically resized.

OUTPUT PARAMETERS
    Y           -   array[M], S*x

NOTE: this function throws exception when called for non-CRS/SKS  matrix.
You must convert your matrix with SparseConvertToCRS/SKS()  before  using
this function.

  -- ALGLIB PROJECT --
     Copyright 14.10.2011 by Bochkanov Sergey
*************************************************************************/
void sparsemv(const sparsematrix &s, const real_1d_array &x, real_1d_array &y);


/*************************************************************************
This function calculates matrix-vector product  S^T*x. Matrix S  must  be
stored in CRS or SKS format (exception will be thrown otherwise).

INPUT PARAMETERS
    S           -   sparse M*N matrix in CRS or SKS format.
    X           -   array[M], input vector. For  performance  reasons  we
                    make only quick checks - we check that array size  is
                    at least M, but we do not check for NAN's or INF's.
    Y           -   output buffer, possibly preallocated. In case  buffer
                    size is too small to store  result,  this  buffer  is
                    automatically resized.

OUTPUT PARAMETERS
    Y           -   array[N], S^T*x

NOTE: this function throws exception when called for non-CRS/SKS  matrix.
You must convert your matrix with SparseConvertToCRS/SKS()  before  using
this function.

  -- ALGLIB PROJECT --
     Copyright 14.10.2011 by Bochkanov Sergey
*************************************************************************/
void sparsemtv(const sparsematrix &s, const real_1d_array &x, real_1d_array &y);


/*************************************************************************
This function simultaneously calculates two matrix-vector products:
    S*x and S^T*x.
S must be square (non-rectangular) matrix stored in  CRS  or  SKS  format
(exception will be thrown otherwise).

INPUT PARAMETERS
    S           -   sparse N*N matrix in CRS or SKS format.
    X           -   array[N], input vector. For  performance  reasons  we
                    make only quick checks - we check that array size  is
                    at least N, but we do not check for NAN's or INF's.
    Y0          -   output buffer, possibly preallocated. In case  buffer
                    size is too small to store  result,  this  buffer  is
                    automatically resized.
    Y1          -   output buffer, possibly preallocated. In case  buffer
                    size is too small to store  result,  this  buffer  is
                    automatically resized.

OUTPUT PARAMETERS
    Y0          -   array[N], S*x
    Y1          -   array[N], S^T*x

NOTE: this function throws exception when called for non-CRS/SKS  matrix.
You must convert your matrix with SparseConvertToCRS/SKS()  before  using
this function.

  -- ALGLIB PROJECT --
     Copyright 14.10.2011 by Bochkanov Sergey
*************************************************************************/
void sparsemv2(const sparsematrix &s, const real_1d_array &x, real_1d_array &y0, real_1d_array &y1);


/*************************************************************************
This function calculates matrix-vector product  S*x, when S is  symmetric
matrix. Matrix S  must be stored in CRS or SKS format  (exception will be
thrown otherwise).

INPUT PARAMETERS
    S           -   sparse M*M matrix in CRS or SKS format.
    IsUpper     -   whether upper or lower triangle of S is given:
                    * if upper triangle is given,  only   S[i,j] for j>=i
                      are used, and lower triangle is ignored (it can  be
                      empty - these elements are not referenced at all).
                    * if lower triangle is given,  only   S[i,j] for j<=i
                      are used, and upper triangle is ignored.
    X           -   array[N], input vector. For  performance  reasons  we
                    make only quick checks - we check that array size  is
                    at least N, but we do not check for NAN's or INF's.
    Y           -   output buffer, possibly preallocated. In case  buffer
                    size is too small to store  result,  this  buffer  is
                    automatically resized.

OUTPUT PARAMETERS
    Y           -   array[M], S*x

NOTE: this function throws exception when called for non-CRS/SKS  matrix.
You must convert your matrix with SparseConvertToCRS/SKS()  before  using
this function.

  -- ALGLIB PROJECT --
     Copyright 14.10.2011 by Bochkanov Sergey
*************************************************************************/
void sparsesmv(const sparsematrix &s, const bool isupper, const real_1d_array &x, real_1d_array &y);


/*************************************************************************
This function calculates vector-matrix-vector product x'*S*x, where  S is
symmetric matrix. Matrix S must be stored in CRS or SKS format (exception
will be thrown otherwise).

INPUT PARAMETERS
    S           -   sparse M*M matrix in CRS or SKS format.
    IsUpper     -   whether upper or lower triangle of S is given:
                    * if upper triangle is given,  only   S[i,j] for j>=i
                      are used, and lower triangle is ignored (it can  be
                      empty - these elements are not referenced at all).
                    * if lower triangle is given,  only   S[i,j] for j<=i
                      are used, and upper triangle is ignored.
    X           -   array[N], input vector. For  performance  reasons  we
                    make only quick checks - we check that array size  is
                    at least N, but we do not check for NAN's or INF's.

RESULT
    x'*S*x

NOTE: this function throws exception when called for non-CRS/SKS  matrix.
You must convert your matrix with SparseConvertToCRS/SKS()  before  using
this function.

  -- ALGLIB PROJECT --
     Copyright 27.01.2014 by Bochkanov Sergey
*************************************************************************/
double sparsevsmv(const sparsematrix &s, const bool isupper, const real_1d_array &x);


/*************************************************************************
This function calculates matrix-matrix product  S*A.  Matrix  S  must  be
stored in CRS or SKS format (exception will be thrown otherwise).

INPUT PARAMETERS
    S           -   sparse M*N matrix in CRS or SKS format.
    A           -   array[N][K], input dense matrix. For  performance reasons
                    we make only quick checks - we check that array size
                    is at least N, but we do not check for NAN's or INF's.
    K           -   number of columns of matrix (A).
    B           -   output buffer, possibly preallocated. In case  buffer
                    size is too small to store  result,  this  buffer  is
                    automatically resized.

OUTPUT PARAMETERS
    B           -   array[M][K], S*A

NOTE: this function throws exception when called for non-CRS/SKS  matrix.
You must convert your matrix with SparseConvertToCRS/SKS()  before  using
this function.

  -- ALGLIB PROJECT --
     Copyright 14.10.2011 by Bochkanov Sergey
*************************************************************************/
void sparsemm(const sparsematrix &s, const real_2d_array &a, const ae_int_t k, real_2d_array &b);


/*************************************************************************
This function calculates matrix-matrix product  S^T*A. Matrix S  must  be
stored in CRS or SKS format (exception will be thrown otherwise).

INPUT PARAMETERS
    S           -   sparse M*N matrix in CRS or SKS format.
    A           -   array[M][K], input dense matrix. For performance reasons
                    we make only quick checks - we check that array size  is
                    at least M, but we do not check for NAN's or INF's.
    K           -   number of columns of matrix (A).
    B           -   output buffer, possibly preallocated. In case  buffer
                    size is too small to store  result,  this  buffer  is
                    automatically resized.

OUTPUT PARAMETERS
    B           -   array[N][K], S^T*A

NOTE: this function throws exception when called for non-CRS/SKS  matrix.
You must convert your matrix with SparseConvertToCRS/SKS()  before  using
this function.

  -- ALGLIB PROJECT --
     Copyright 14.10.2011 by Bochkanov Sergey
*************************************************************************/
void sparsemtm(const sparsematrix &s, const real_2d_array &a, const ae_int_t k, real_2d_array &b);


/*************************************************************************
This function simultaneously calculates two matrix-matrix products:
    S*A and S^T*A.
S  must  be  square (non-rectangular) matrix stored in CRS or  SKS  format
(exception will be thrown otherwise).

INPUT PARAMETERS
    S           -   sparse N*N matrix in CRS or SKS format.
    A           -   array[N][K], input dense matrix. For performance reasons
                    we make only quick checks - we check that array size  is
                    at least N, but we do not check for NAN's or INF's.
    K           -   number of columns of matrix (A).
    B0          -   output buffer, possibly preallocated. In case  buffer
                    size is too small to store  result,  this  buffer  is
                    automatically resized.
    B1          -   output buffer, possibly preallocated. In case  buffer
                    size is too small to store  result,  this  buffer  is
                    automatically resized.

OUTPUT PARAMETERS
    B0          -   array[N][K], S*A
    B1          -   array[N][K], S^T*A

NOTE: this function throws exception when called for non-CRS/SKS  matrix.
You must convert your matrix with SparseConvertToCRS/SKS()  before  using
this function.

  -- ALGLIB PROJECT --
     Copyright 14.10.2011 by Bochkanov Sergey
*************************************************************************/
void sparsemm2(const sparsematrix &s, const real_2d_array &a, const ae_int_t k, real_2d_array &b0, real_2d_array &b1);


/*************************************************************************
This function calculates matrix-matrix product  S*A, when S  is  symmetric
matrix. Matrix S must be stored in CRS or SKS format  (exception  will  be
thrown otherwise).

INPUT PARAMETERS
    S           -   sparse M*M matrix in CRS or SKS format.
    IsUpper     -   whether upper or lower triangle of S is given:
                    * if upper triangle is given,  only   S[i,j] for j>=i
                      are used, and lower triangle is ignored (it can  be
                      empty - these elements are not referenced at all).
                    * if lower triangle is given,  only   S[i,j] for j<=i
                      are used, and upper triangle is ignored.
    A           -   array[N][K], input dense matrix. For performance reasons
                    we make only quick checks - we check that array size is
                    at least N, but we do not check for NAN's or INF's.
    K           -   number of columns of matrix (A).
    B           -   output buffer, possibly preallocated. In case  buffer
                    size is too small to store  result,  this  buffer  is
                    automatically resized.

OUTPUT PARAMETERS
    B           -   array[M][K], S*A

NOTE: this function throws exception when called for non-CRS/SKS  matrix.
You must convert your matrix with SparseConvertToCRS/SKS()  before  using
this function.

  -- ALGLIB PROJECT --
     Copyright 14.10.2011 by Bochkanov Sergey
*************************************************************************/
void sparsesmm(const sparsematrix &s, const bool isupper, const real_2d_array &a, const ae_int_t k, real_2d_array &b);


/*************************************************************************
This function calculates matrix-vector product op(S)*x, when x is  vector,
S is symmetric triangular matrix, op(S) is transposition or no  operation.
Matrix S must be stored in CRS or SKS format  (exception  will  be  thrown
otherwise).

INPUT PARAMETERS
    S           -   sparse square matrix in CRS or SKS format.
    IsUpper     -   whether upper or lower triangle of S is used:
                    * if upper triangle is given,  only   S[i,j] for  j>=i
                      are used, and lower triangle is  ignored (it can  be
                      empty - these elements are not referenced at all).
                    * if lower triangle is given,  only   S[i,j] for  j<=i
                      are used, and upper triangle is ignored.
    IsUnit      -   unit or non-unit diagonal:
                    * if True, diagonal elements of triangular matrix  are
                      considered equal to 1.0. Actual elements  stored  in
                      S are not referenced at all.
                    * if False, diagonal stored in S is used
    OpType      -   operation type:
                    * if 0, S*x is calculated
                    * if 1, (S^T)*x is calculated (transposition)
    X           -   array[N] which stores input  vector.  For  performance
                    reasons we make only quick  checks  -  we  check  that
                    array  size  is  at  least  N, but we do not check for
                    NAN's or INF's.
    Y           -   possibly  preallocated  input   buffer.  Automatically
                    resized if its size is too small.

OUTPUT PARAMETERS
    Y           -   array[N], op(S)*x

NOTE: this function throws exception when called for non-CRS/SKS  matrix.
You must convert your matrix with SparseConvertToCRS/SKS()  before  using
this function.

  -- ALGLIB PROJECT --
     Copyright 20.01.2014 by Bochkanov Sergey
*************************************************************************/
void sparsetrmv(const sparsematrix &s, const bool isupper, const bool isunit, const ae_int_t optype, const real_1d_array &x, real_1d_array &y);


/*************************************************************************
This function solves linear system op(S)*y=x  where  x  is  vector,  S  is
symmetric  triangular  matrix,  op(S)  is  transposition  or no operation.
Matrix S must be stored in CRS or SKS format  (exception  will  be  thrown
otherwise).

INPUT PARAMETERS
    S           -   sparse square matrix in CRS or SKS format.
    IsUpper     -   whether upper or lower triangle of S is used:
                    * if upper triangle is given,  only   S[i,j] for  j>=i
                      are used, and lower triangle is  ignored (it can  be
                      empty - these elements are not referenced at all).
                    * if lower triangle is given,  only   S[i,j] for  j<=i
                      are used, and upper triangle is ignored.
    IsUnit      -   unit or non-unit diagonal:
                    * if True, diagonal elements of triangular matrix  are
                      considered equal to 1.0. Actual elements  stored  in
                      S are not referenced at all.
                    * if False, diagonal stored in S is used. It  is  your
                      responsibility  to  make  sure  that   diagonal   is
                      non-zero.
    OpType      -   operation type:
                    * if 0, S*x is calculated
                    * if 1, (S^T)*x is calculated (transposition)
    X           -   array[N] which stores input  vector.  For  performance
                    reasons we make only quick  checks  -  we  check  that
                    array  size  is  at  least  N, but we do not check for
                    NAN's or INF's.

OUTPUT PARAMETERS
    X           -   array[N], inv(op(S))*x

NOTE: this function throws exception when called for  non-CRS/SKS  matrix.
      You must convert your matrix  with  SparseConvertToCRS/SKS()  before
      using this function.

NOTE: no assertion or tests are done during algorithm  operation.   It  is
      your responsibility to provide invertible matrix to algorithm.

  -- ALGLIB PROJECT --
     Copyright 20.01.2014 by Bochkanov Sergey
*************************************************************************/
void sparsetrsv(const sparsematrix &s, const bool isupper, const bool isunit, const ae_int_t optype, const real_1d_array &x);


/*************************************************************************
This procedure resizes Hash-Table matrix. It can be called when you  have
deleted too many elements from the matrix, and you want to  free unneeded
memory.

  -- ALGLIB PROJECT --
     Copyright 14.10.2011 by Bochkanov Sergey
*************************************************************************/
void sparseresizematrix(const sparsematrix &s);


/*************************************************************************
This  function  is  used  to enumerate all elements of the sparse matrix.
Before  first  call  user  initializes  T0 and T1 counters by zero. These
counters are used to remember current position in a  matrix;  after  each
call they are updated by the function.

Subsequent calls to this function return non-zero elements of the  sparse
matrix, one by one. If you enumerate CRS matrix, matrix is traversed from
left to right, from top to bottom. In case you enumerate matrix stored as
Hash table, elements are returned in random order.

EXAMPLE
    > T0=0
    > T1=0
    > while SparseEnumerate(S,T0,T1,I,J,V) do
    >     ....do something with I,J,V

INPUT PARAMETERS
    S           -   sparse M*N matrix in Hash-Table or CRS representation.
    T0          -   internal counter
    T1          -   internal counter

OUTPUT PARAMETERS
    T0          -   new value of the internal counter
    T1          -   new value of the internal counter
    I           -   row index of non-zero element, 0<=I<M.
    J           -   column index of non-zero element, 0<=J<N
    V           -   value of the T-th element

RESULT
    True in case of success (next non-zero element was retrieved)
    False in case all non-zero elements were enumerated

NOTE: you may call SparseRewriteExisting() during enumeration, but it  is
      THE  ONLY  matrix  modification  function  you  can  call!!!  Other
      matrix modification functions should not be called during enumeration!

  -- ALGLIB PROJECT --
     Copyright 14.03.2012 by Bochkanov Sergey
*************************************************************************/
bool sparseenumerate(const sparsematrix &s, ae_int_t &t0, ae_int_t &t1, ae_int_t &i, ae_int_t &j, double &v);


/*************************************************************************
This function rewrites existing (non-zero) element. It  returns  True   if
element  exists  or  False,  when  it  is  called for non-existing  (zero)
element.

This function works with any kind of the matrix.

The purpose of this function is to provide convenient thread-safe  way  to
modify  sparse  matrix.  Such  modification  (already  existing element is
rewritten) is guaranteed to be thread-safe without any synchronization, as
long as different threads modify different elements.

INPUT PARAMETERS
    S           -   sparse M*N matrix in any kind of representation
                    (Hash, SKS, CRS).
    I           -   row index of non-zero element to modify, 0<=I<M
    J           -   column index of non-zero element to modify, 0<=J<N
    V           -   value to rewrite, must be finite number

OUTPUT PARAMETERS
    S           -   modified matrix
RESULT
    True in case when element exists
    False in case when element doesn't exist or it is zero

  -- ALGLIB PROJECT --
     Copyright 14.03.2012 by Bochkanov Sergey
*************************************************************************/
bool sparserewriteexisting(const sparsematrix &s, const ae_int_t i, const ae_int_t j, const double v);


/*************************************************************************
This function returns I-th row of the sparse matrix. Matrix must be stored
in CRS or SKS format.

INPUT PARAMETERS:
    S           -   sparse M*N matrix in CRS format
    I           -   row index, 0<=I<M
    IRow        -   output buffer, can be  preallocated.  In  case  buffer
                    size  is  too  small  to  store  I-th   row,   it   is
                    automatically reallocated.

OUTPUT PARAMETERS:
    IRow        -   array[M], I-th row.

NOTE: this function has O(N) running time, where N is a  column  count. It
      allocates and fills N-element  array,  even  although  most  of  its
      elemets are zero.

NOTE: If you have O(non-zeros-per-row) time and memory  requirements,  use
      SparseGetCompressedRow() function. It  returns  data  in  compressed
      format.

NOTE: when  incorrect  I  (outside  of  [0,M-1]) or  matrix (non  CRS/SKS)
      is passed, this function throws exception.

  -- ALGLIB PROJECT --
     Copyright 10.12.2014 by Bochkanov Sergey
*************************************************************************/
void sparsegetrow(const sparsematrix &s, const ae_int_t i, real_1d_array &irow);


/*************************************************************************
This function returns I-th row of the sparse matrix IN COMPRESSED FORMAT -
only non-zero elements are returned (with their indexes). Matrix  must  be
stored in CRS or SKS format.

INPUT PARAMETERS:
    S           -   sparse M*N matrix in CRS format
    I           -   row index, 0<=I<M
    ColIdx      -   output buffer for column indexes, can be preallocated.
                    In case buffer size is too small to store I-th row, it
                    is automatically reallocated.
    Vals        -   output buffer for values, can be preallocated. In case
                    buffer size is too small to  store  I-th  row,  it  is
                    automatically reallocated.

OUTPUT PARAMETERS:
    ColIdx      -   column   indexes   of  non-zero  elements,  sorted  by
                    ascending. Symbolically non-zero elements are  counted
                    (i.e. if you allocated place for element, but  it  has
                    zero numerical value - it is counted).
    Vals        -   values. Vals[K] stores value of  matrix  element  with
                    indexes (I,ColIdx[K]). Symbolically non-zero  elements
                    are counted (i.e. if you allocated place for  element,
                    but it has zero numerical value - it is counted).
    NZCnt       -   number of symbolically non-zero elements per row.

NOTE: when  incorrect  I  (outside  of  [0,M-1]) or  matrix (non  CRS/SKS)
      is passed, this function throws exception.

NOTE: this function may allocate additional, unnecessary place for  ColIdx
      and Vals arrays. It is dictated by  performance  reasons  -  on  SKS
      matrices it is faster  to  allocate  space  at  the  beginning  with
      some "extra"-space, than performing two passes over matrix  -  first
      time to calculate exact space required for data, second  time  -  to
      store data itself.

  -- ALGLIB PROJECT --
     Copyright 10.12.2014 by Bochkanov Sergey
*************************************************************************/
void sparsegetcompressedrow(const sparsematrix &s, const ae_int_t i, integer_1d_array &colidx, real_1d_array &vals, ae_int_t &nzcnt);


/*************************************************************************
This function performs efficient in-place  transpose  of  SKS  matrix.  No
additional memory is allocated during transposition.

This function supports only skyline storage format (SKS).

INPUT PARAMETERS
    S       -   sparse matrix in SKS format.

OUTPUT PARAMETERS
    S           -   sparse matrix, transposed.

  -- ALGLIB PROJECT --
     Copyright 16.01.2014 by Bochkanov Sergey
*************************************************************************/
void sparsetransposesks(const sparsematrix &s);


/*************************************************************************
This  function  performs  in-place  conversion  to  desired sparse storage
format.

INPUT PARAMETERS
    S0      -   sparse matrix in any format.
    Fmt     -   desired storage format  of  the  output,  as  returned  by
                SparseGetMatrixType() function:
                * 0 for hash-based storage
                * 1 for CRS
                * 2 for SKS

OUTPUT PARAMETERS
    S0          -   sparse matrix in requested format.

NOTE: in-place conversion wastes a lot of memory which is  used  to  store
      temporaries.  If  you  perform  a  lot  of  repeated conversions, we
      recommend to use out-of-place buffered  conversion  functions,  like
      SparseCopyToBuf(), which can reuse already allocated memory.

  -- ALGLIB PROJECT --
     Copyright 16.01.2014 by Bochkanov Sergey
*************************************************************************/
void sparseconvertto(const sparsematrix &s0, const ae_int_t fmt);


/*************************************************************************
This  function  performs out-of-place conversion to desired sparse storage
format. S0 is copied to S1 and converted on-the-fly. Memory  allocated  in
S1 is reused to maximum extent possible.

INPUT PARAMETERS
    S0      -   sparse matrix in any format.
    Fmt     -   desired storage format  of  the  output,  as  returned  by
                SparseGetMatrixType() function:
                * 0 for hash-based storage
                * 1 for CRS
                * 2 for SKS

OUTPUT PARAMETERS
    S1          -   sparse matrix in requested format.

  -- ALGLIB PROJECT --
     Copyright 16.01.2014 by Bochkanov Sergey
*************************************************************************/
void sparsecopytobuf(const sparsematrix &s0, const ae_int_t fmt, const sparsematrix &s1);


/*************************************************************************
This function performs in-place conversion to Hash table storage.

INPUT PARAMETERS
    S           -   sparse matrix in CRS format.

OUTPUT PARAMETERS
    S           -   sparse matrix in Hash table format.

NOTE: this  function  has   no  effect  when  called with matrix which  is
      already in Hash table mode.

NOTE: in-place conversion involves allocation of temporary arrays. If  you
      perform a lot of repeated in- place  conversions,  it  may  lead  to
      memory fragmentation. Consider using out-of-place SparseCopyToHashBuf()
      function in this case.

  -- ALGLIB PROJECT --
     Copyright 20.07.2012 by Bochkanov Sergey
*************************************************************************/
void sparseconverttohash(const sparsematrix &s);


/*************************************************************************
This  function  performs  out-of-place  conversion  to  Hash table storage
format. S0 is copied to S1 and converted on-the-fly.

INPUT PARAMETERS
    S0          -   sparse matrix in any format.

OUTPUT PARAMETERS
    S1          -   sparse matrix in Hash table format.

NOTE: if S0 is stored as Hash-table, it is just copied without conversion.

NOTE: this function de-allocates memory  occupied  by  S1 before  starting
      conversion. If you perform a  lot  of  repeated  conversions, it may
      lead to memory fragmentation. In this case we recommend you  to  use
      SparseCopyToHashBuf() function which re-uses memory in S1 as much as
      possible.

  -- ALGLIB PROJECT --
     Copyright 20.07.2012 by Bochkanov Sergey
*************************************************************************/
void sparsecopytohash(const sparsematrix &s0, sparsematrix &s1);


/*************************************************************************
This  function  performs  out-of-place  conversion  to  Hash table storage
format. S0 is copied to S1 and converted on-the-fly. Memory  allocated  in
S1 is reused to maximum extent possible.

INPUT PARAMETERS
    S0          -   sparse matrix in any format.

OUTPUT PARAMETERS
    S1          -   sparse matrix in Hash table format.

NOTE: if S0 is stored as Hash-table, it is just copied without conversion.

  -- ALGLIB PROJECT --
     Copyright 20.07.2012 by Bochkanov Sergey
*************************************************************************/
void sparsecopytohashbuf(const sparsematrix &s0, const sparsematrix &s1);


/*************************************************************************
This function converts matrix to CRS format.

Some  algorithms  (linear  algebra ones, for example) require matrices in
CRS format. This function allows to perform in-place conversion.

INPUT PARAMETERS
    S           -   sparse M*N matrix in any format

OUTPUT PARAMETERS
    S           -   matrix in CRS format

NOTE: this   function  has  no  effect  when  called with matrix which is
      already in CRS mode.

NOTE: this function allocates temporary memory to store a   copy  of  the
      matrix. If you perform a lot of repeated conversions, we  recommend
      you  to  use  SparseCopyToCRSBuf()  function,   which   can   reuse
      previously allocated memory.

  -- ALGLIB PROJECT --
     Copyright 14.10.2011 by Bochkanov Sergey
*************************************************************************/
void sparseconverttocrs(const sparsematrix &s);


/*************************************************************************
This  function  performs  out-of-place  conversion  to  CRS format.  S0 is
copied to S1 and converted on-the-fly.

INPUT PARAMETERS
    S0          -   sparse matrix in any format.

OUTPUT PARAMETERS
    S1          -   sparse matrix in CRS format.

NOTE: if S0 is stored as CRS, it is just copied without conversion.

NOTE: this function de-allocates memory occupied by S1 before starting CRS
      conversion. If you perform a lot of repeated CRS conversions, it may
      lead to memory fragmentation. In this case we recommend you  to  use
      SparseCopyToCRSBuf() function which re-uses memory in S1 as much  as
      possible.

  -- ALGLIB PROJECT --
     Copyright 20.07.2012 by Bochkanov Sergey
*************************************************************************/
void sparsecopytocrs(const sparsematrix &s0, sparsematrix &s1);


/*************************************************************************
This  function  performs  out-of-place  conversion  to  CRS format.  S0 is
copied to S1 and converted on-the-fly. Memory allocated in S1 is reused to
maximum extent possible.

INPUT PARAMETERS
    S0          -   sparse matrix in any format.
    S1          -   matrix which may contain some pre-allocated memory, or
                    can be just uninitialized structure.

OUTPUT PARAMETERS
    S1          -   sparse matrix in CRS format.

NOTE: if S0 is stored as CRS, it is just copied without conversion.

  -- ALGLIB PROJECT --
     Copyright 20.07.2012 by Bochkanov Sergey
*************************************************************************/
void sparsecopytocrsbuf(const sparsematrix &s0, const sparsematrix &s1);


/*************************************************************************
This function performs in-place conversion to SKS format.

INPUT PARAMETERS
    S           -   sparse matrix in any format.

OUTPUT PARAMETERS
    S           -   sparse matrix in SKS format.

NOTE: this  function  has   no  effect  when  called with matrix which  is
      already in SKS mode.

NOTE: in-place conversion involves allocation of temporary arrays. If  you
      perform a lot of repeated in- place  conversions,  it  may  lead  to
      memory fragmentation. Consider using out-of-place SparseCopyToSKSBuf()
      function in this case.

  -- ALGLIB PROJECT --
     Copyright 15.01.2014 by Bochkanov Sergey
*************************************************************************/
void sparseconverttosks(const sparsematrix &s);


/*************************************************************************
This  function  performs  out-of-place  conversion  to SKS storage format.
S0 is copied to S1 and converted on-the-fly.

INPUT PARAMETERS
    S0          -   sparse matrix in any format.

OUTPUT PARAMETERS
    S1          -   sparse matrix in SKS format.

NOTE: if S0 is stored as SKS, it is just copied without conversion.

NOTE: this function de-allocates memory  occupied  by  S1 before  starting
      conversion. If you perform a  lot  of  repeated  conversions, it may
      lead to memory fragmentation. In this case we recommend you  to  use
      SparseCopyToSKSBuf() function which re-uses memory in S1 as much  as
      possible.

  -- ALGLIB PROJECT --
     Copyright 20.07.2012 by Bochkanov Sergey
*************************************************************************/
void sparsecopytosks(const sparsematrix &s0, sparsematrix &s1);


/*************************************************************************
This  function  performs  out-of-place  conversion  to SKS format.  S0  is
copied to S1 and converted on-the-fly. Memory  allocated  in S1 is  reused
to maximum extent possible.

INPUT PARAMETERS
    S0          -   sparse matrix in any format.

OUTPUT PARAMETERS
    S1          -   sparse matrix in SKS format.

NOTE: if S0 is stored as SKS, it is just copied without conversion.

  -- ALGLIB PROJECT --
     Copyright 20.07.2012 by Bochkanov Sergey
*************************************************************************/
void sparsecopytosksbuf(const sparsematrix &s0, const sparsematrix &s1);


/*************************************************************************
This function returns type of the matrix storage format.

INPUT PARAMETERS:
    S           -   sparse matrix.

RESULT:
    sparse storage format used by matrix:
        0   -   Hash-table
        1   -   CRS (compressed row storage)
        2   -   SKS (skyline)

NOTE: future  versions  of  ALGLIB  may  include additional sparse storage
      formats.


  -- ALGLIB PROJECT --
     Copyright 20.07.2012 by Bochkanov Sergey
*************************************************************************/
ae_int_t sparsegetmatrixtype(const sparsematrix &s);


/*************************************************************************
This function checks matrix storage format and returns True when matrix is
stored using Hash table representation.

INPUT PARAMETERS:
    S   -   sparse matrix.

RESULT:
    True if matrix type is Hash table
    False if matrix type is not Hash table

  -- ALGLIB PROJECT --
     Copyright 20.07.2012 by Bochkanov Sergey
*************************************************************************/
bool sparseishash(const sparsematrix &s);


/*************************************************************************
This function checks matrix storage format and returns True when matrix is
stored using CRS representation.

INPUT PARAMETERS:
    S   -   sparse matrix.

RESULT:
    True if matrix type is CRS
    False if matrix type is not CRS

  -- ALGLIB PROJECT --
     Copyright 20.07.2012 by Bochkanov Sergey
*************************************************************************/
bool sparseiscrs(const sparsematrix &s);


/*************************************************************************
This function checks matrix storage format and returns True when matrix is
stored using SKS representation.

INPUT PARAMETERS:
    S   -   sparse matrix.

RESULT:
    True if matrix type is SKS
    False if matrix type is not SKS

  -- ALGLIB PROJECT --
     Copyright 20.07.2012 by Bochkanov Sergey
*************************************************************************/
bool sparseissks(const sparsematrix &s);


/*************************************************************************
The function frees all memory occupied by  sparse  matrix.  Sparse  matrix
structure becomes unusable after this call.

OUTPUT PARAMETERS
    S   -   sparse matrix to delete

  -- ALGLIB PROJECT --
     Copyright 24.07.2012 by Bochkanov Sergey
*************************************************************************/
void sparsefree(sparsematrix &s);


/*************************************************************************
The function returns number of rows of a sparse matrix.

RESULT: number of rows of a sparse matrix.

  -- ALGLIB PROJECT --
     Copyright 23.08.2012 by Bochkanov Sergey
*************************************************************************/
ae_int_t sparsegetnrows(const sparsematrix &s);


/*************************************************************************
The function returns number of columns of a sparse matrix.

RESULT: number of columns of a sparse matrix.

  -- ALGLIB PROJECT --
     Copyright 23.08.2012 by Bochkanov Sergey
*************************************************************************/
ae_int_t sparsegetncols(const sparsematrix &s);


/*************************************************************************
The function returns number of strictly upper triangular non-zero elements
in  the  matrix.  It  counts  SYMBOLICALLY non-zero elements, i.e. entries
in the sparse matrix data structure. If some element  has  zero  numerical
value, it is still counted.

This function has different cost for different types of matrices:
* for hash-based matrices it involves complete pass over entire hash-table
  with O(NNZ) cost, where NNZ is number of non-zero elements
* for CRS and SKS matrix types cost of counting is O(N) (N - matrix size).

RESULT: number of non-zero elements strictly above main diagonal

  -- ALGLIB PROJECT --
     Copyright 12.02.2014 by Bochkanov Sergey
*************************************************************************/
ae_int_t sparsegetuppercount(const sparsematrix &s);


/*************************************************************************
The function returns number of strictly lower triangular non-zero elements
in  the  matrix.  It  counts  SYMBOLICALLY non-zero elements, i.e. entries
in the sparse matrix data structure. If some element  has  zero  numerical
value, it is still counted.

This function has different cost for different types of matrices:
* for hash-based matrices it involves complete pass over entire hash-table
  with O(NNZ) cost, where NNZ is number of non-zero elements
* for CRS and SKS matrix types cost of counting is O(N) (N - matrix size).

RESULT: number of non-zero elements strictly below main diagonal

  -- ALGLIB PROJECT --
     Copyright 12.02.2014 by Bochkanov Sergey
*************************************************************************/
ae_int_t sparsegetlowercount(const sparsematrix &s);

/*************************************************************************
LU decomposition of a general real matrix with row pivoting

A is represented as A = P*L*U, where:
* L is lower unitriangular matrix
* U is upper triangular matrix
* P = P0*P1*...*PK, K=min(M,N)-1,
  Pi - permutation matrix for I and Pivots[I]

This is cache-oblivous implementation of LU decomposition.
It is optimized for square matrices. As for rectangular matrices:
* best case - M>>N
* worst case - N>>M, small M, large N, matrix does not fit in CPU cache

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes two  important  improvements  of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  ! * multicore support
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
  ! * about 2-3x faster than ALGLIB for C++ without MKL
  ! * about 7-10x faster than "pure C#" edition of ALGLIB
  ! Difference in performance will be more striking  on  newer  CPU's with
  ! support for newer SIMD instructions. Generally,  MKL  accelerates  any
  ! problem whose size is at least 128, with best  efficiency achieved for
  ! N's larger than 512.
  !
  ! Commercial edition of ALGLIB also supports multithreaded  acceleration
  ! of this function. We should note that LU decomposition  is  harder  to
  ! parallelize than, say, matrix-matrix  product  -  this  algorithm  has
  ! many internal synchronization points which can not be avoided. However
  ! parallelism starts to be profitable starting  from  N=1024,  achieving
  ! near-linear speedup for N=4096 or higher.
  !
  ! In order to use multicore features you have to:
  ! * use commercial version of ALGLIB
  ! * call  this  function  with  "smp_"  prefix,  which  indicates  that
  !   multicore code will be used (for multicore support)
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

INPUT PARAMETERS:
    A       -   array[0..M-1, 0..N-1].
    M       -   number of rows in matrix A.
    N       -   number of columns in matrix A.


OUTPUT PARAMETERS:
    A       -   matrices L and U in compact form:
                * L is stored under main diagonal
                * U is stored on and above main diagonal
    Pivots  -   permutation matrix in compact form.
                array[0..Min(M-1,N-1)].

  -- ALGLIB routine --
     10.01.2010
     Bochkanov Sergey
*************************************************************************/
void rmatrixlu(real_2d_array &a, const ae_int_t m, const ae_int_t n, integer_1d_array &pivots);
void smp_rmatrixlu(real_2d_array &a, const ae_int_t m, const ae_int_t n, integer_1d_array &pivots);


/*************************************************************************
LU decomposition of a general complex matrix with row pivoting

A is represented as A = P*L*U, where:
* L is lower unitriangular matrix
* U is upper triangular matrix
* P = P0*P1*...*PK, K=min(M,N)-1,
  Pi - permutation matrix for I and Pivots[I]

This is cache-oblivous implementation of LU decomposition. It is optimized
for square matrices. As for rectangular matrices:
* best case - M>>N
* worst case - N>>M, small M, large N, matrix does not fit in CPU cache

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes two  important  improvements  of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  ! * multicore support
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
  ! * about 2-3x faster than ALGLIB for C++ without MKL
  ! * about 7-10x faster than "pure C#" edition of ALGLIB
  ! Difference in performance will be more striking  on  newer  CPU's with
  ! support for newer SIMD instructions. Generally,  MKL  accelerates  any
  ! problem whose size is at least 128, with best  efficiency achieved for
  ! N's larger than 512.
  !
  ! Commercial edition of ALGLIB also supports multithreaded  acceleration
  ! of this function. We should note that LU decomposition  is  harder  to
  ! parallelize than, say, matrix-matrix  product  -  this  algorithm  has
  ! many internal synchronization points which can not be avoided. However
  ! parallelism starts to be profitable starting  from  N=1024,  achieving
  ! near-linear speedup for N=4096 or higher.
  !
  ! In order to use multicore features you have to:
  ! * use commercial version of ALGLIB
  ! * call  this  function  with  "smp_"  prefix,  which  indicates  that
  !   multicore code will be used (for multicore support)
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

INPUT PARAMETERS:
    A       -   array[0..M-1, 0..N-1].
    M       -   number of rows in matrix A.
    N       -   number of columns in matrix A.


OUTPUT PARAMETERS:
    A       -   matrices L and U in compact form:
                * L is stored under main diagonal
                * U is stored on and above main diagonal
    Pivots  -   permutation matrix in compact form.
                array[0..Min(M-1,N-1)].

  -- ALGLIB routine --
     10.01.2010
     Bochkanov Sergey
*************************************************************************/
void cmatrixlu(complex_2d_array &a, const ae_int_t m, const ae_int_t n, integer_1d_array &pivots);
void smp_cmatrixlu(complex_2d_array &a, const ae_int_t m, const ae_int_t n, integer_1d_array &pivots);


/*************************************************************************
Cache-oblivious Cholesky decomposition

The algorithm computes Cholesky decomposition  of  a  Hermitian  positive-
definite matrix. The result of an algorithm is a representation  of  A  as
A=U'*U  or A=L*L' (here X' detones conj(X^T)).

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes two  important  improvements  of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  ! * multicore support
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
  ! * about 2-3x faster than ALGLIB for C++ without MKL
  ! * about 7-10x faster than "pure C#" edition of ALGLIB
  ! Difference in performance will be more striking  on  newer  CPU's with
  ! support for newer SIMD instructions. Generally,  MKL  accelerates  any
  ! problem whose size is at least 128, with best  efficiency achieved for
  ! N's larger than 512.
  !
  ! Commercial edition of ALGLIB also supports multithreaded  acceleration
  ! of this function. We should note that Cholesky decomposition is harder
  ! to parallelize than, say, matrix-matrix product - this  algorithm  has
  ! several synchronization points which  can  not  be  avoided.  However,
  ! parallelism starts to be profitable starting from N=500.
  !
  ! In order to use multicore features you have to:
  ! * use commercial version of ALGLIB
  ! * call  this  function  with  "smp_"  prefix,  which  indicates  that
  !   multicore code will be used (for multicore support)
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

INPUT PARAMETERS:
    A       -   upper or lower triangle of a factorized matrix.
                array with elements [0..N-1, 0..N-1].
    N       -   size of matrix A.
    IsUpper -   if IsUpper=True, then A contains an upper triangle of
                a symmetric matrix, otherwise A contains a lower one.

OUTPUT PARAMETERS:
    A       -   the result of factorization. If IsUpper=True, then
                the upper triangle contains matrix U, so that A = U'*U,
                and the elements below the main diagonal are not modified.
                Similarly, if IsUpper = False.

RESULT:
    If  the  matrix  is  positive-definite,  the  function  returns  True.
    Otherwise, the function returns False. Contents of A is not determined
    in such case.

  -- ALGLIB routine --
     15.12.2009
     Bochkanov Sergey
*************************************************************************/
bool hpdmatrixcholesky(complex_2d_array &a, const ae_int_t n, const bool isupper);
bool smp_hpdmatrixcholesky(complex_2d_array &a, const ae_int_t n, const bool isupper);


/*************************************************************************
Cache-oblivious Cholesky decomposition

The algorithm computes Cholesky decomposition  of  a  symmetric  positive-
definite matrix. The result of an algorithm is a representation  of  A  as
A=U^T*U  or A=L*L^T

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes two  important  improvements  of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  ! * multicore support
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
  ! * about 2-3x faster than ALGLIB for C++ without MKL
  ! * about 7-10x faster than "pure C#" edition of ALGLIB
  ! Difference in performance will be more striking  on  newer  CPU's with
  ! support for newer SIMD instructions. Generally,  MKL  accelerates  any
  ! problem whose size is at least 128, with best  efficiency achieved for
  ! N's larger than 512.
  !
  ! Commercial edition of ALGLIB also supports multithreaded  acceleration
  ! of this function. We should note that Cholesky decomposition is harder
  ! to parallelize than, say, matrix-matrix product - this  algorithm  has
  ! several synchronization points which  can  not  be  avoided.  However,
  ! parallelism starts to be profitable starting from N=500.
  !
  ! In order to use multicore features you have to:
  ! * use commercial version of ALGLIB
  ! * call  this  function  with  "smp_"  prefix,  which  indicates  that
  !   multicore code will be used (for multicore support)
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

INPUT PARAMETERS:
    A       -   upper or lower triangle of a factorized matrix.
                array with elements [0..N-1, 0..N-1].
    N       -   size of matrix A.
    IsUpper -   if IsUpper=True, then A contains an upper triangle of
                a symmetric matrix, otherwise A contains a lower one.

OUTPUT PARAMETERS:
    A       -   the result of factorization. If IsUpper=True, then
                the upper triangle contains matrix U, so that A = U^T*U,
                and the elements below the main diagonal are not modified.
                Similarly, if IsUpper = False.

RESULT:
    If  the  matrix  is  positive-definite,  the  function  returns  True.
    Otherwise, the function returns False. Contents of A is not determined
    in such case.

  -- ALGLIB routine --
     15.12.2009
     Bochkanov Sergey
*************************************************************************/
bool spdmatrixcholesky(real_2d_array &a, const ae_int_t n, const bool isupper);
bool smp_spdmatrixcholesky(real_2d_array &a, const ae_int_t n, const bool isupper);


/*************************************************************************
Update of Cholesky decomposition: rank-1 update to original A.  "Buffered"
version which uses preallocated buffer which is saved  between  subsequent
function calls.

This function uses internally allocated buffer which is not saved  between
subsequent  calls.  So,  if  you  perform  a lot  of  subsequent  updates,
we  recommend   you   to   use   "buffered"   version   of  this function:
SPDMatrixCholeskyUpdateAdd1Buf().

INPUT PARAMETERS:
    A       -   upper or lower Cholesky factor.
                array with elements [0..N-1, 0..N-1].
                Exception is thrown if array size is too small.
    N       -   size of matrix A, N>0
    IsUpper -   if IsUpper=True, then A contains  upper  Cholesky  factor;
                otherwise A contains a lower one.
    U       -   array[N], rank-1 update to A: A_mod = A + u*u'
                Exception is thrown if array size is too small.
    BufR    -   possibly preallocated  buffer;  automatically  resized  if
                needed. It is recommended to  reuse  this  buffer  if  you
                perform a lot of subsequent decompositions.

OUTPUT PARAMETERS:
    A       -   updated factorization.  If  IsUpper=True,  then  the  upper
                triangle contains matrix U, and the elements below the main
                diagonal are not modified. Similarly, if IsUpper = False.

NOTE: this function always succeeds, so it does not return completion code

NOTE: this function checks sizes of input arrays, but it does  NOT  checks
      for presence of infinities or NAN's.

  -- ALGLIB --
     03.02.2014
     Sergey Bochkanov
*************************************************************************/
void spdmatrixcholeskyupdateadd1(const real_2d_array &a, const ae_int_t n, const bool isupper, const real_1d_array &u);


/*************************************************************************
Update of Cholesky decomposition: "fixing" some variables.

This function uses internally allocated buffer which is not saved  between
subsequent  calls.  So,  if  you  perform  a lot  of  subsequent  updates,
we  recommend   you   to   use   "buffered"   version   of  this function:
SPDMatrixCholeskyUpdateFixBuf().

"FIXING" EXPLAINED:

    Suppose we have N*N positive definite matrix A. "Fixing" some variable
    means filling corresponding row/column of  A  by  zeros,  and  setting
    diagonal element to 1.

    For example, if we fix 2nd variable in 4*4 matrix A, it becomes Af:

        ( A00  A01  A02  A03 )      ( Af00  0   Af02 Af03 )
        ( A10  A11  A12  A13 )      (  0    1    0    0   )
        ( A20  A21  A22  A23 )  =>  ( Af20  0   Af22 Af23 )
        ( A30  A31  A32  A33 )      ( Af30  0   Af32 Af33 )

    If we have Cholesky decomposition of A, it must be recalculated  after
    variables were  fixed.  However,  it  is  possible  to  use  efficient
    algorithm, which needs O(K*N^2)  time  to  "fix"  K  variables,  given
    Cholesky decomposition of original, "unfixed" A.

INPUT PARAMETERS:
    A       -   upper or lower Cholesky factor.
                array with elements [0..N-1, 0..N-1].
                Exception is thrown if array size is too small.
    N       -   size of matrix A, N>0
    IsUpper -   if IsUpper=True, then A contains  upper  Cholesky  factor;
                otherwise A contains a lower one.
    Fix     -   array[N], I-th element is True if I-th  variable  must  be
                fixed. Exception is thrown if array size is too small.
    BufR    -   possibly preallocated  buffer;  automatically  resized  if
                needed. It is recommended to  reuse  this  buffer  if  you
                perform a lot of subsequent decompositions.

OUTPUT PARAMETERS:
    A       -   updated factorization.  If  IsUpper=True,  then  the  upper
                triangle contains matrix U, and the elements below the main
                diagonal are not modified. Similarly, if IsUpper = False.

NOTE: this function always succeeds, so it does not return completion code

NOTE: this function checks sizes of input arrays, but it does  NOT  checks
      for presence of infinities or NAN's.

NOTE: this  function  is  efficient  only  for  moderate amount of updated
      variables - say, 0.1*N or 0.3*N. For larger amount of  variables  it
      will  still  work,  but  you  may  get   better   performance   with
      straightforward Cholesky.

  -- ALGLIB --
     03.02.2014
     Sergey Bochkanov
*************************************************************************/
void spdmatrixcholeskyupdatefix(const real_2d_array &a, const ae_int_t n, const bool isupper, const boolean_1d_array &fix);


/*************************************************************************
Update of Cholesky decomposition: rank-1 update to original A.  "Buffered"
version which uses preallocated buffer which is saved  between  subsequent
function calls.

See comments for SPDMatrixCholeskyUpdateAdd1() for more information.

INPUT PARAMETERS:
    A       -   upper or lower Cholesky factor.
                array with elements [0..N-1, 0..N-1].
                Exception is thrown if array size is too small.
    N       -   size of matrix A, N>0
    IsUpper -   if IsUpper=True, then A contains  upper  Cholesky  factor;
                otherwise A contains a lower one.
    U       -   array[N], rank-1 update to A: A_mod = A + u*u'
                Exception is thrown if array size is too small.
    BufR    -   possibly preallocated  buffer;  automatically  resized  if
                needed. It is recommended to  reuse  this  buffer  if  you
                perform a lot of subsequent decompositions.

OUTPUT PARAMETERS:
    A       -   updated factorization.  If  IsUpper=True,  then  the  upper
                triangle contains matrix U, and the elements below the main
                diagonal are not modified. Similarly, if IsUpper = False.

  -- ALGLIB --
     03.02.2014
     Sergey Bochkanov
*************************************************************************/
void spdmatrixcholeskyupdateadd1buf(const real_2d_array &a, const ae_int_t n, const bool isupper, const real_1d_array &u, real_1d_array &bufr);


/*************************************************************************
Update of Cholesky  decomposition:  "fixing"  some  variables.  "Buffered"
version which uses preallocated buffer which is saved  between  subsequent
function calls.

See comments for SPDMatrixCholeskyUpdateFix() for more information.

INPUT PARAMETERS:
    A       -   upper or lower Cholesky factor.
                array with elements [0..N-1, 0..N-1].
                Exception is thrown if array size is too small.
    N       -   size of matrix A, N>0
    IsUpper -   if IsUpper=True, then A contains  upper  Cholesky  factor;
                otherwise A contains a lower one.
    Fix     -   array[N], I-th element is True if I-th  variable  must  be
                fixed. Exception is thrown if array size is too small.
    BufR    -   possibly preallocated  buffer;  automatically  resized  if
                needed. It is recommended to  reuse  this  buffer  if  you
                perform a lot of subsequent decompositions.

OUTPUT PARAMETERS:
    A       -   updated factorization.  If  IsUpper=True,  then  the  upper
                triangle contains matrix U, and the elements below the main
                diagonal are not modified. Similarly, if IsUpper = False.

  -- ALGLIB --
     03.02.2014
     Sergey Bochkanov
*************************************************************************/
void spdmatrixcholeskyupdatefixbuf(const real_2d_array &a, const ae_int_t n, const bool isupper, const boolean_1d_array &fix, real_1d_array &bufr);


/*************************************************************************
Sparse Cholesky decomposition for skyline matrixm using in-place algorithm
without allocating additional storage.

The algorithm computes Cholesky decomposition  of  a  symmetric  positive-
definite sparse matrix. The result of an algorithm is a representation  of
A as A=U^T*U or A=L*L^T

This  function  is  a  more  efficient alternative to general, but  slower
SparseCholeskyX(), because it does not  create  temporary  copies  of  the
target. It performs factorization in-place, which gives  best  performance
on low-profile matrices. Its drawback, however, is that it can not perform
profile-reducing permutation of input matrix.

INPUT PARAMETERS:
    A       -   sparse matrix in skyline storage (SKS) format.
    N       -   size of matrix A (can be smaller than actual size of A)
    IsUpper -   if IsUpper=True, then factorization is performed on  upper
                triangle. Another triangle is ignored (it may contant some
                data, but it is not changed).


OUTPUT PARAMETERS:
    A       -   the result of factorization, stored in SKS. If IsUpper=True,
                then the upper  triangle  contains  matrix  U,  such  that
                A = U^T*U. Lower triangle is not changed.
                Similarly, if IsUpper = False. In this case L is returned,
                and we have A = L*(L^T).
                Note that THIS function does not  perform  permutation  of
                rows to reduce bandwidth.

RESULT:
    If  the  matrix  is  positive-definite,  the  function  returns  True.
    Otherwise, the function returns False. Contents of A is not determined
    in such case.

NOTE: for  performance  reasons  this  function  does NOT check that input
      matrix  includes  only  finite  values. It is your responsibility to
      make sure that there are no infinite or NAN values in the matrix.

  -- ALGLIB routine --
     16.01.2014
     Bochkanov Sergey
*************************************************************************/
bool sparsecholeskyskyline(const sparsematrix &a, const ae_int_t n, const bool isupper);

/*************************************************************************
Estimate of a matrix condition number (1-norm)

The algorithm calculates a lower bound of the condition number. In this case,
the algorithm does not return a lower bound of the condition number, but an
inverse number (to avoid an overflow in case of a singular matrix).

Input parameters:
    A   -   matrix. Array whose indexes range within [0..N-1, 0..N-1].
    N   -   size of matrix A.

Result: 1/LowerBound(cond(A))

NOTE:
    if k(A) is very large, then matrix is  assumed  degenerate,  k(A)=INF,
    0.0 is returned in such cases.
*************************************************************************/
double rmatrixrcond1(const real_2d_array &a, const ae_int_t n);


/*************************************************************************
Estimate of a matrix condition number (infinity-norm).

The algorithm calculates a lower bound of the condition number. In this case,
the algorithm does not return a lower bound of the condition number, but an
inverse number (to avoid an overflow in case of a singular matrix).

Input parameters:
    A   -   matrix. Array whose indexes range within [0..N-1, 0..N-1].
    N   -   size of matrix A.

Result: 1/LowerBound(cond(A))

NOTE:
    if k(A) is very large, then matrix is  assumed  degenerate,  k(A)=INF,
    0.0 is returned in such cases.
*************************************************************************/
double rmatrixrcondinf(const real_2d_array &a, const ae_int_t n);


/*************************************************************************
Condition number estimate of a symmetric positive definite matrix.

The algorithm calculates a lower bound of the condition number. In this case,
the algorithm does not return a lower bound of the condition number, but an
inverse number (to avoid an overflow in case of a singular matrix).

It should be noted that 1-norm and inf-norm of condition numbers of symmetric
matrices are equal, so the algorithm doesn't take into account the
differences between these types of norms.

Input parameters:
    A       -   symmetric positive definite matrix which is given by its
                upper or lower triangle depending on the value of
                IsUpper. Array with elements [0..N-1, 0..N-1].
    N       -   size of matrix A.
    IsUpper -   storage format.

Result:
    1/LowerBound(cond(A)), if matrix A is positive definite,
   -1, if matrix A is not positive definite, and its condition number
    could not be found by this algorithm.

NOTE:
    if k(A) is very large, then matrix is  assumed  degenerate,  k(A)=INF,
    0.0 is returned in such cases.
*************************************************************************/
double spdmatrixrcond(const real_2d_array &a, const ae_int_t n, const bool isupper);


/*************************************************************************
Triangular matrix: estimate of a condition number (1-norm)

The algorithm calculates a lower bound of the condition number. In this case,
the algorithm does not return a lower bound of the condition number, but an
inverse number (to avoid an overflow in case of a singular matrix).

Input parameters:
    A       -   matrix. Array[0..N-1, 0..N-1].
    N       -   size of A.
    IsUpper -   True, if the matrix is upper triangular.
    IsUnit  -   True, if the matrix has a unit diagonal.

Result: 1/LowerBound(cond(A))

NOTE:
    if k(A) is very large, then matrix is  assumed  degenerate,  k(A)=INF,
    0.0 is returned in such cases.
*************************************************************************/
double rmatrixtrrcond1(const real_2d_array &a, const ae_int_t n, const bool isupper, const bool isunit);


/*************************************************************************
Triangular matrix: estimate of a matrix condition number (infinity-norm).

The algorithm calculates a lower bound of the condition number. In this case,
the algorithm does not return a lower bound of the condition number, but an
inverse number (to avoid an overflow in case of a singular matrix).

Input parameters:
    A   -   matrix. Array whose indexes range within [0..N-1, 0..N-1].
    N   -   size of matrix A.
    IsUpper -   True, if the matrix is upper triangular.
    IsUnit  -   True, if the matrix has a unit diagonal.

Result: 1/LowerBound(cond(A))

NOTE:
    if k(A) is very large, then matrix is  assumed  degenerate,  k(A)=INF,
    0.0 is returned in such cases.
*************************************************************************/
double rmatrixtrrcondinf(const real_2d_array &a, const ae_int_t n, const bool isupper, const bool isunit);


/*************************************************************************
Condition number estimate of a Hermitian positive definite matrix.

The algorithm calculates a lower bound of the condition number. In this case,
the algorithm does not return a lower bound of the condition number, but an
inverse number (to avoid an overflow in case of a singular matrix).

It should be noted that 1-norm and inf-norm of condition numbers of symmetric
matrices are equal, so the algorithm doesn't take into account the
differences between these types of norms.

Input parameters:
    A       -   Hermitian positive definite matrix which is given by its
                upper or lower triangle depending on the value of
                IsUpper. Array with elements [0..N-1, 0..N-1].
    N       -   size of matrix A.
    IsUpper -   storage format.

Result:
    1/LowerBound(cond(A)), if matrix A is positive definite,
   -1, if matrix A is not positive definite, and its condition number
    could not be found by this algorithm.

NOTE:
    if k(A) is very large, then matrix is  assumed  degenerate,  k(A)=INF,
    0.0 is returned in such cases.
*************************************************************************/
double hpdmatrixrcond(const complex_2d_array &a, const ae_int_t n, const bool isupper);


/*************************************************************************
Estimate of a matrix condition number (1-norm)

The algorithm calculates a lower bound of the condition number. In this case,
the algorithm does not return a lower bound of the condition number, but an
inverse number (to avoid an overflow in case of a singular matrix).

Input parameters:
    A   -   matrix. Array whose indexes range within [0..N-1, 0..N-1].
    N   -   size of matrix A.

Result: 1/LowerBound(cond(A))

NOTE:
    if k(A) is very large, then matrix is  assumed  degenerate,  k(A)=INF,
    0.0 is returned in such cases.
*************************************************************************/
double cmatrixrcond1(const complex_2d_array &a, const ae_int_t n);


/*************************************************************************
Estimate of a matrix condition number (infinity-norm).

The algorithm calculates a lower bound of the condition number. In this case,
the algorithm does not return a lower bound of the condition number, but an
inverse number (to avoid an overflow in case of a singular matrix).

Input parameters:
    A   -   matrix. Array whose indexes range within [0..N-1, 0..N-1].
    N   -   size of matrix A.

Result: 1/LowerBound(cond(A))

NOTE:
    if k(A) is very large, then matrix is  assumed  degenerate,  k(A)=INF,
    0.0 is returned in such cases.
*************************************************************************/
double cmatrixrcondinf(const complex_2d_array &a, const ae_int_t n);


/*************************************************************************
Estimate of the condition number of a matrix given by its LU decomposition (1-norm)

The algorithm calculates a lower bound of the condition number. In this case,
the algorithm does not return a lower bound of the condition number, but an
inverse number (to avoid an overflow in case of a singular matrix).

Input parameters:
    LUA         -   LU decomposition of a matrix in compact form. Output of
                    the RMatrixLU subroutine.
    N           -   size of matrix A.

Result: 1/LowerBound(cond(A))

NOTE:
    if k(A) is very large, then matrix is  assumed  degenerate,  k(A)=INF,
    0.0 is returned in such cases.
*************************************************************************/
double rmatrixlurcond1(const real_2d_array &lua, const ae_int_t n);


/*************************************************************************
Estimate of the condition number of a matrix given by its LU decomposition
(infinity norm).

The algorithm calculates a lower bound of the condition number. In this case,
the algorithm does not return a lower bound of the condition number, but an
inverse number (to avoid an overflow in case of a singular matrix).

Input parameters:
    LUA     -   LU decomposition of a matrix in compact form. Output of
                the RMatrixLU subroutine.
    N       -   size of matrix A.

Result: 1/LowerBound(cond(A))

NOTE:
    if k(A) is very large, then matrix is  assumed  degenerate,  k(A)=INF,
    0.0 is returned in such cases.
*************************************************************************/
double rmatrixlurcondinf(const real_2d_array &lua, const ae_int_t n);


/*************************************************************************
Condition number estimate of a symmetric positive definite matrix given by
Cholesky decomposition.

The algorithm calculates a lower bound of the condition number. In this
case, the algorithm does not return a lower bound of the condition number,
but an inverse number (to avoid an overflow in case of a singular matrix).

It should be noted that 1-norm and inf-norm condition numbers of symmetric
matrices are equal, so the algorithm doesn't take into account the
differences between these types of norms.

Input parameters:
    CD  - Cholesky decomposition of matrix A,
          output of SMatrixCholesky subroutine.
    N   - size of matrix A.

Result: 1/LowerBound(cond(A))

NOTE:
    if k(A) is very large, then matrix is  assumed  degenerate,  k(A)=INF,
    0.0 is returned in such cases.
*************************************************************************/
double spdmatrixcholeskyrcond(const real_2d_array &a, const ae_int_t n, const bool isupper);


/*************************************************************************
Condition number estimate of a Hermitian positive definite matrix given by
Cholesky decomposition.

The algorithm calculates a lower bound of the condition number. In this
case, the algorithm does not return a lower bound of the condition number,
but an inverse number (to avoid an overflow in case of a singular matrix).

It should be noted that 1-norm and inf-norm condition numbers of symmetric
matrices are equal, so the algorithm doesn't take into account the
differences between these types of norms.

Input parameters:
    CD  - Cholesky decomposition of matrix A,
          output of SMatrixCholesky subroutine.
    N   - size of matrix A.

Result: 1/LowerBound(cond(A))

NOTE:
    if k(A) is very large, then matrix is  assumed  degenerate,  k(A)=INF,
    0.0 is returned in such cases.
*************************************************************************/
double hpdmatrixcholeskyrcond(const complex_2d_array &a, const ae_int_t n, const bool isupper);


/*************************************************************************
Estimate of the condition number of a matrix given by its LU decomposition (1-norm)

The algorithm calculates a lower bound of the condition number. In this case,
the algorithm does not return a lower bound of the condition number, but an
inverse number (to avoid an overflow in case of a singular matrix).

Input parameters:
    LUA         -   LU decomposition of a matrix in compact form. Output of
                    the CMatrixLU subroutine.
    N           -   size of matrix A.

Result: 1/LowerBound(cond(A))

NOTE:
    if k(A) is very large, then matrix is  assumed  degenerate,  k(A)=INF,
    0.0 is returned in such cases.
*************************************************************************/
double cmatrixlurcond1(const complex_2d_array &lua, const ae_int_t n);


/*************************************************************************
Estimate of the condition number of a matrix given by its LU decomposition
(infinity norm).

The algorithm calculates a lower bound of the condition number. In this case,
the algorithm does not return a lower bound of the condition number, but an
inverse number (to avoid an overflow in case of a singular matrix).

Input parameters:
    LUA     -   LU decomposition of a matrix in compact form. Output of
                the CMatrixLU subroutine.
    N       -   size of matrix A.

Result: 1/LowerBound(cond(A))

NOTE:
    if k(A) is very large, then matrix is  assumed  degenerate,  k(A)=INF,
    0.0 is returned in such cases.
*************************************************************************/
double cmatrixlurcondinf(const complex_2d_array &lua, const ae_int_t n);


/*************************************************************************
Triangular matrix: estimate of a condition number (1-norm)

The algorithm calculates a lower bound of the condition number. In this case,
the algorithm does not return a lower bound of the condition number, but an
inverse number (to avoid an overflow in case of a singular matrix).

Input parameters:
    A       -   matrix. Array[0..N-1, 0..N-1].
    N       -   size of A.
    IsUpper -   True, if the matrix is upper triangular.
    IsUnit  -   True, if the matrix has a unit diagonal.

Result: 1/LowerBound(cond(A))

NOTE:
    if k(A) is very large, then matrix is  assumed  degenerate,  k(A)=INF,
    0.0 is returned in such cases.
*************************************************************************/
double cmatrixtrrcond1(const complex_2d_array &a, const ae_int_t n, const bool isupper, const bool isunit);


/*************************************************************************
Triangular matrix: estimate of a matrix condition number (infinity-norm).

The algorithm calculates a lower bound of the condition number. In this case,
the algorithm does not return a lower bound of the condition number, but an
inverse number (to avoid an overflow in case of a singular matrix).

Input parameters:
    A   -   matrix. Array whose indexes range within [0..N-1, 0..N-1].
    N   -   size of matrix A.
    IsUpper -   True, if the matrix is upper triangular.
    IsUnit  -   True, if the matrix has a unit diagonal.

Result: 1/LowerBound(cond(A))

NOTE:
    if k(A) is very large, then matrix is  assumed  degenerate,  k(A)=INF,
    0.0 is returned in such cases.
*************************************************************************/
double cmatrixtrrcondinf(const complex_2d_array &a, const ae_int_t n, const bool isupper, const bool isunit);

/*************************************************************************
Inversion of a matrix given by its LU decomposition.

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes two  important  improvements  of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  ! * multicore support
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
  ! * about 2-3x faster than ALGLIB for C++ without MKL
  ! * about 7-10x faster than "pure C#" edition of ALGLIB
  ! Difference in performance will be more striking  on  newer  CPU's with
  ! support for newer SIMD instructions. Generally,  MKL  accelerates  any
  ! problem whose size is at least 128, with best  efficiency achieved for
  ! N's larger than 512.
  !
  ! Commercial edition of ALGLIB also supports multithreaded  acceleration
  ! of this function. We should note that matrix inversion  is  harder  to
  ! parallelize than, say, matrix-matrix  product  -  this  algorithm  has
  ! many internal synchronization points which can not be avoided. However
  ! parallelism starts to be profitable starting  from  N=1024,  achieving
  ! near-linear speedup for N=4096 or higher.
  !
  ! In order to use multicore features you have to:
  ! * use commercial version of ALGLIB
  ! * call  this  function  with  "smp_"  prefix,  which  indicates  that
  !   multicore code will be used (for multicore support)
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

INPUT PARAMETERS:
    A       -   LU decomposition of the matrix
                (output of RMatrixLU subroutine).
    Pivots  -   table of permutations
                (the output of RMatrixLU subroutine).
    N       -   size of matrix A (optional) :
                * if given, only principal NxN submatrix is processed  and
                  overwritten. other elements are unchanged.
                * if not given,  size  is  automatically  determined  from
                  matrix size (A must be square matrix)

OUTPUT PARAMETERS:
    Info    -   return code:
                * -3    A is singular, or VERY close to singular.
                        it is filled by zeros in such cases.
                *  1    task is solved (but matrix A may be ill-conditioned,
                        check R1/RInf parameters for condition numbers).
    Rep     -   solver report, see below for more info
    A       -   inverse of matrix A.
                Array whose indexes range within [0..N-1, 0..N-1].

SOLVER REPORT

Subroutine sets following fields of the Rep structure:
* R1        reciprocal of condition number: 1/cond(A), 1-norm.
* RInf      reciprocal of condition number: 1/cond(A), inf-norm.

  -- ALGLIB routine --
     05.02.2010
     Bochkanov Sergey
*************************************************************************/
void rmatrixluinverse(real_2d_array &a, const integer_1d_array &pivots, const ae_int_t n, ae_int_t &info, matinvreport &rep);
void smp_rmatrixluinverse(real_2d_array &a, const integer_1d_array &pivots, const ae_int_t n, ae_int_t &info, matinvreport &rep);
void rmatrixluinverse(real_2d_array &a, const integer_1d_array &pivots, ae_int_t &info, matinvreport &rep);
void smp_rmatrixluinverse(real_2d_array &a, const integer_1d_array &pivots, ae_int_t &info, matinvreport &rep);


/*************************************************************************
Inversion of a general matrix.

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes two  important  improvements  of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  ! * multicore support
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
  ! * about 2-3x faster than ALGLIB for C++ without MKL
  ! * about 7-10x faster than "pure C#" edition of ALGLIB
  ! Difference in performance will be more striking  on  newer  CPU's with
  ! support for newer SIMD instructions. Generally,  MKL  accelerates  any
  ! problem whose size is at least 128, with best  efficiency achieved for
  ! N's larger than 512.
  !
  ! Commercial edition of ALGLIB also supports multithreaded  acceleration
  ! of this function. We should note that matrix inversion  is  harder  to
  ! parallelize than, say, matrix-matrix  product  -  this  algorithm  has
  ! many internal synchronization points which can not be avoided. However
  ! parallelism starts to be profitable starting  from  N=1024,  achieving
  ! near-linear speedup for N=4096 or higher.
  !
  ! In order to use multicore features you have to:
  ! * use commercial version of ALGLIB
  ! * call  this  function  with  "smp_"  prefix,  which  indicates  that
  !   multicore code will be used (for multicore support)
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

Input parameters:
    A       -   matrix.
    N       -   size of matrix A (optional) :
                * if given, only principal NxN submatrix is processed  and
                  overwritten. other elements are unchanged.
                * if not given,  size  is  automatically  determined  from
                  matrix size (A must be square matrix)

Output parameters:
    Info    -   return code, same as in RMatrixLUInverse
    Rep     -   solver report, same as in RMatrixLUInverse
    A       -   inverse of matrix A, same as in RMatrixLUInverse

Result:
    True, if the matrix is not singular.
    False, if the matrix is singular.

  -- ALGLIB --
     Copyright 2005-2010 by Bochkanov Sergey
*************************************************************************/
void rmatrixinverse(real_2d_array &a, const ae_int_t n, ae_int_t &info, matinvreport &rep);
void smp_rmatrixinverse(real_2d_array &a, const ae_int_t n, ae_int_t &info, matinvreport &rep);
void rmatrixinverse(real_2d_array &a, ae_int_t &info, matinvreport &rep);
void smp_rmatrixinverse(real_2d_array &a, ae_int_t &info, matinvreport &rep);


/*************************************************************************
Inversion of a matrix given by its LU decomposition.

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes two  important  improvements  of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  ! * multicore support
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
  ! * about 2-3x faster than ALGLIB for C++ without MKL
  ! * about 7-10x faster than "pure C#" edition of ALGLIB
  ! Difference in performance will be more striking  on  newer  CPU's with
  ! support for newer SIMD instructions. Generally,  MKL  accelerates  any
  ! problem whose size is at least 128, with best  efficiency achieved for
  ! N's larger than 512.
  !
  ! Commercial edition of ALGLIB also supports multithreaded  acceleration
  ! of this function. We should note that matrix inversion  is  harder  to
  ! parallelize than, say, matrix-matrix  product  -  this  algorithm  has
  ! many internal synchronization points which can not be avoided. However
  ! parallelism starts to be profitable starting  from  N=1024,  achieving
  ! near-linear speedup for N=4096 or higher.
  !
  ! In order to use multicore features you have to:
  ! * use commercial version of ALGLIB
  ! * call  this  function  with  "smp_"  prefix,  which  indicates  that
  !   multicore code will be used (for multicore support)
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

INPUT PARAMETERS:
    A       -   LU decomposition of the matrix
                (output of CMatrixLU subroutine).
    Pivots  -   table of permutations
                (the output of CMatrixLU subroutine).
    N       -   size of matrix A (optional) :
                * if given, only principal NxN submatrix is processed  and
                  overwritten. other elements are unchanged.
                * if not given,  size  is  automatically  determined  from
                  matrix size (A must be square matrix)

OUTPUT PARAMETERS:
    Info    -   return code, same as in RMatrixLUInverse
    Rep     -   solver report, same as in RMatrixLUInverse
    A       -   inverse of matrix A, same as in RMatrixLUInverse

  -- ALGLIB routine --
     05.02.2010
     Bochkanov Sergey
*************************************************************************/
void cmatrixluinverse(complex_2d_array &a, const integer_1d_array &pivots, const ae_int_t n, ae_int_t &info, matinvreport &rep);
void smp_cmatrixluinverse(complex_2d_array &a, const integer_1d_array &pivots, const ae_int_t n, ae_int_t &info, matinvreport &rep);
void cmatrixluinverse(complex_2d_array &a, const integer_1d_array &pivots, ae_int_t &info, matinvreport &rep);
void smp_cmatrixluinverse(complex_2d_array &a, const integer_1d_array &pivots, ae_int_t &info, matinvreport &rep);


/*************************************************************************
Inversion of a general matrix.

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes two  important  improvements  of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  ! * multicore support
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
  ! * about 2-3x faster than ALGLIB for C++ without MKL
  ! * about 7-10x faster than "pure C#" edition of ALGLIB
  ! Difference in performance will be more striking  on  newer  CPU's with
  ! support for newer SIMD instructions. Generally,  MKL  accelerates  any
  ! problem whose size is at least 128, with best  efficiency achieved for
  ! N's larger than 512.
  !
  ! Commercial edition of ALGLIB also supports multithreaded  acceleration
  ! of this function. We should note that matrix inversion  is  harder  to
  ! parallelize than, say, matrix-matrix  product  -  this  algorithm  has
  ! many internal synchronization points which can not be avoided. However
  ! parallelism starts to be profitable starting  from  N=1024,  achieving
  ! near-linear speedup for N=4096 or higher.
  !
  ! In order to use multicore features you have to:
  ! * use commercial version of ALGLIB
  ! * call  this  function  with  "smp_"  prefix,  which  indicates  that
  !   multicore code will be used (for multicore support)
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

Input parameters:
    A       -   matrix
    N       -   size of matrix A (optional) :
                * if given, only principal NxN submatrix is processed  and
                  overwritten. other elements are unchanged.
                * if not given,  size  is  automatically  determined  from
                  matrix size (A must be square matrix)

Output parameters:
    Info    -   return code, same as in RMatrixLUInverse
    Rep     -   solver report, same as in RMatrixLUInverse
    A       -   inverse of matrix A, same as in RMatrixLUInverse

  -- ALGLIB --
     Copyright 2005 by Bochkanov Sergey
*************************************************************************/
void cmatrixinverse(complex_2d_array &a, const ae_int_t n, ae_int_t &info, matinvreport &rep);
void smp_cmatrixinverse(complex_2d_array &a, const ae_int_t n, ae_int_t &info, matinvreport &rep);
void cmatrixinverse(complex_2d_array &a, ae_int_t &info, matinvreport &rep);
void smp_cmatrixinverse(complex_2d_array &a, ae_int_t &info, matinvreport &rep);


/*************************************************************************
Inversion of a symmetric positive definite matrix which is given
by Cholesky decomposition.

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes two  important  improvements  of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  ! * multicore support
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
  ! * about 2-3x faster than ALGLIB for C++ without MKL
  ! * about 7-10x faster than "pure C#" edition of ALGLIB
  ! Difference in performance will be more striking  on  newer  CPU's with
  ! support for newer SIMD instructions. Generally,  MKL  accelerates  any
  ! problem whose size is at least 128, with best  efficiency achieved for
  ! N's larger than 512.
  !
  ! Commercial edition of ALGLIB also supports multithreaded  acceleration
  ! of  this  function.  However,  Cholesky  inversion  is  a  "difficult"
  ! algorithm  -  it  has  lots  of  internal synchronization points which
  ! prevents efficient  parallelization  of  algorithm.  Only  very  large
  ! problems (N=thousands) can be efficiently parallelized.
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

Input parameters:
    A       -   Cholesky decomposition of the matrix to be inverted:
                A=U�*U or A = L*L'.
                Output of  SPDMatrixCholesky subroutine.
    N       -   size of matrix A (optional) :
                * if given, only principal NxN submatrix is processed  and
                  overwritten. other elements are unchanged.
                * if not given,  size  is  automatically  determined  from
                  matrix size (A must be square matrix)
    IsUpper -   storage type (optional):
                * if True, symmetric  matrix  A  is  given  by  its  upper
                  triangle, and the lower triangle isn�t  used/changed  by
                  function
                * if False,  symmetric matrix  A  is  given  by  its lower
                  triangle, and the  upper triangle isn�t used/changed  by
                  function
                * if not given, lower half is used.

Output parameters:
    Info    -   return code, same as in RMatrixLUInverse
    Rep     -   solver report, same as in RMatrixLUInverse
    A       -   inverse of matrix A, same as in RMatrixLUInverse

  -- ALGLIB routine --
     10.02.2010
     Bochkanov Sergey
*************************************************************************/
void spdmatrixcholeskyinverse(real_2d_array &a, const ae_int_t n, const bool isupper, ae_int_t &info, matinvreport &rep);
void smp_spdmatrixcholeskyinverse(real_2d_array &a, const ae_int_t n, const bool isupper, ae_int_t &info, matinvreport &rep);
void spdmatrixcholeskyinverse(real_2d_array &a, ae_int_t &info, matinvreport &rep);
void smp_spdmatrixcholeskyinverse(real_2d_array &a, ae_int_t &info, matinvreport &rep);


/*************************************************************************
Inversion of a symmetric positive definite matrix.

Given an upper or lower triangle of a symmetric positive definite matrix,
the algorithm generates matrix A^-1 and saves the upper or lower triangle
depending on the input.

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes two  important  improvements  of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  ! * multicore support
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
  ! * about 2-3x faster than ALGLIB for C++ without MKL
  ! * about 7-10x faster than "pure C#" edition of ALGLIB
  ! Difference in performance will be more striking  on  newer  CPU's with
  ! support for newer SIMD instructions. Generally,  MKL  accelerates  any
  ! problem whose size is at least 128, with best  efficiency achieved for
  ! N's larger than 512.
  !
  ! Commercial edition of ALGLIB also supports multithreaded  acceleration
  ! of  this  function.  However,  Cholesky  inversion  is  a  "difficult"
  ! algorithm  -  it  has  lots  of  internal synchronization points which
  ! prevents efficient  parallelization  of  algorithm.  Only  very  large
  ! problems (N=thousands) can be efficiently parallelized.
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

Input parameters:
    A       -   matrix to be inverted (upper or lower triangle).
                Array with elements [0..N-1,0..N-1].
    N       -   size of matrix A (optional) :
                * if given, only principal NxN submatrix is processed  and
                  overwritten. other elements are unchanged.
                * if not given,  size  is  automatically  determined  from
                  matrix size (A must be square matrix)
    IsUpper -   storage type (optional):
                * if True, symmetric  matrix  A  is  given  by  its  upper
                  triangle, and the lower triangle isn�t  used/changed  by
                  function
                * if False,  symmetric matrix  A  is  given  by  its lower
                  triangle, and the  upper triangle isn�t used/changed  by
                  function
                * if not given,  both lower and upper  triangles  must  be
                  filled.

Output parameters:
    Info    -   return code, same as in RMatrixLUInverse
    Rep     -   solver report, same as in RMatrixLUInverse
    A       -   inverse of matrix A, same as in RMatrixLUInverse

  -- ALGLIB routine --
     10.02.2010
     Bochkanov Sergey
*************************************************************************/
void spdmatrixinverse(real_2d_array &a, const ae_int_t n, const bool isupper, ae_int_t &info, matinvreport &rep);
void smp_spdmatrixinverse(real_2d_array &a, const ae_int_t n, const bool isupper, ae_int_t &info, matinvreport &rep);
void spdmatrixinverse(real_2d_array &a, ae_int_t &info, matinvreport &rep);
void smp_spdmatrixinverse(real_2d_array &a, ae_int_t &info, matinvreport &rep);


/*************************************************************************
Inversion of a Hermitian positive definite matrix which is given
by Cholesky decomposition.

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes two  important  improvements  of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  ! * multicore support
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
  ! * about 2-3x faster than ALGLIB for C++ without MKL
  ! * about 7-10x faster than "pure C#" edition of ALGLIB
  ! Difference in performance will be more striking  on  newer  CPU's with
  ! support for newer SIMD instructions. Generally,  MKL  accelerates  any
  ! problem whose size is at least 128, with best  efficiency achieved for
  ! N's larger than 512.
  !
  ! Commercial edition of ALGLIB also supports multithreaded  acceleration
  ! of  this  function.  However,  Cholesky  inversion  is  a  "difficult"
  ! algorithm  -  it  has  lots  of  internal synchronization points which
  ! prevents efficient  parallelization  of  algorithm.  Only  very  large
  ! problems (N=thousands) can be efficiently parallelized.
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

Input parameters:
    A       -   Cholesky decomposition of the matrix to be inverted:
                A=U�*U or A = L*L'.
                Output of  HPDMatrixCholesky subroutine.
    N       -   size of matrix A (optional) :
                * if given, only principal NxN submatrix is processed  and
                  overwritten. other elements are unchanged.
                * if not given,  size  is  automatically  determined  from
                  matrix size (A must be square matrix)
    IsUpper -   storage type (optional):
                * if True, symmetric  matrix  A  is  given  by  its  upper
                  triangle, and the lower triangle isn�t  used/changed  by
                  function
                * if False,  symmetric matrix  A  is  given  by  its lower
                  triangle, and the  upper triangle isn�t used/changed  by
                  function
                * if not given, lower half is used.

Output parameters:
    Info    -   return code, same as in RMatrixLUInverse
    Rep     -   solver report, same as in RMatrixLUInverse
    A       -   inverse of matrix A, same as in RMatrixLUInverse

  -- ALGLIB routine --
     10.02.2010
     Bochkanov Sergey
*************************************************************************/
void hpdmatrixcholeskyinverse(complex_2d_array &a, const ae_int_t n, const bool isupper, ae_int_t &info, matinvreport &rep);
void smp_hpdmatrixcholeskyinverse(complex_2d_array &a, const ae_int_t n, const bool isupper, ae_int_t &info, matinvreport &rep);
void hpdmatrixcholeskyinverse(complex_2d_array &a, ae_int_t &info, matinvreport &rep);
void smp_hpdmatrixcholeskyinverse(complex_2d_array &a, ae_int_t &info, matinvreport &rep);


/*************************************************************************
Inversion of a Hermitian positive definite matrix.

Given an upper or lower triangle of a Hermitian positive definite matrix,
the algorithm generates matrix A^-1 and saves the upper or lower triangle
depending on the input.

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes two  important  improvements  of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  ! * multicore support
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
  ! * about 2-3x faster than ALGLIB for C++ without MKL
  ! * about 7-10x faster than "pure C#" edition of ALGLIB
  ! Difference in performance will be more striking  on  newer  CPU's with
  ! support for newer SIMD instructions. Generally,  MKL  accelerates  any
  ! problem whose size is at least 128, with best  efficiency achieved for
  ! N's larger than 512.
  !
  ! Commercial edition of ALGLIB also supports multithreaded  acceleration
  ! of  this  function.  However,  Cholesky  inversion  is  a  "difficult"
  ! algorithm  -  it  has  lots  of  internal synchronization points which
  ! prevents efficient  parallelization  of  algorithm.  Only  very  large
  ! problems (N=thousands) can be efficiently parallelized.
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

Input parameters:
    A       -   matrix to be inverted (upper or lower triangle).
                Array with elements [0..N-1,0..N-1].
    N       -   size of matrix A (optional) :
                * if given, only principal NxN submatrix is processed  and
                  overwritten. other elements are unchanged.
                * if not given,  size  is  automatically  determined  from
                  matrix size (A must be square matrix)
    IsUpper -   storage type (optional):
                * if True, symmetric  matrix  A  is  given  by  its  upper
                  triangle, and the lower triangle isn�t  used/changed  by
                  function
                * if False,  symmetric matrix  A  is  given  by  its lower
                  triangle, and the  upper triangle isn�t used/changed  by
                  function
                * if not given,  both lower and upper  triangles  must  be
                  filled.

Output parameters:
    Info    -   return code, same as in RMatrixLUInverse
    Rep     -   solver report, same as in RMatrixLUInverse
    A       -   inverse of matrix A, same as in RMatrixLUInverse

  -- ALGLIB routine --
     10.02.2010
     Bochkanov Sergey
*************************************************************************/
void hpdmatrixinverse(complex_2d_array &a, const ae_int_t n, const bool isupper, ae_int_t &info, matinvreport &rep);
void smp_hpdmatrixinverse(complex_2d_array &a, const ae_int_t n, const bool isupper, ae_int_t &info, matinvreport &rep);
void hpdmatrixinverse(complex_2d_array &a, ae_int_t &info, matinvreport &rep);
void smp_hpdmatrixinverse(complex_2d_array &a, ae_int_t &info, matinvreport &rep);


/*************************************************************************
Triangular matrix inverse (real)

The subroutine inverts the following types of matrices:
    * upper triangular
    * upper triangular with unit diagonal
    * lower triangular
    * lower triangular with unit diagonal

In case of an upper (lower) triangular matrix,  the  inverse  matrix  will
also be upper (lower) triangular, and after the end of the algorithm,  the
inverse matrix replaces the source matrix. The elements  below (above) the
main diagonal are not changed by the algorithm.

If  the matrix  has a unit diagonal, the inverse matrix also  has  a  unit
diagonal, and the diagonal elements are not passed to the algorithm.

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes two  important  improvements  of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  ! * multicore support
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
  ! * about 2-3x faster than ALGLIB for C++ without MKL
  ! * about 7-10x faster than "pure C#" edition of ALGLIB
  ! Difference in performance will be more striking  on  newer  CPU's with
  ! support for newer SIMD instructions. Generally,  MKL  accelerates  any
  ! problem whose size is at least 128, with best  efficiency achieved for
  ! N's larger than 512.
  !
  ! Commercial edition of ALGLIB also supports multithreaded  acceleration
  ! of this function. We should note that triangular inverse is harder  to
  ! parallelize than, say, matrix-matrix  product  -  this  algorithm  has
  ! many internal synchronization points which can not be avoided. However
  ! parallelism starts to be profitable starting  from  N=1024,  achieving
  ! near-linear speedup for N=4096 or higher.
  !
  ! In order to use multicore features you have to:
  ! * use commercial version of ALGLIB
  ! * call  this  function  with  "smp_"  prefix,  which  indicates  that
  !   multicore code will be used (for multicore support)
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

Input parameters:
    A       -   matrix, array[0..N-1, 0..N-1].
    N       -   size of matrix A (optional) :
                * if given, only principal NxN submatrix is processed  and
                  overwritten. other elements are unchanged.
                * if not given,  size  is  automatically  determined  from
                  matrix size (A must be square matrix)
    IsUpper -   True, if the matrix is upper triangular.
    IsUnit  -   diagonal type (optional):
                * if True, matrix has unit diagonal (a[i,i] are NOT used)
                * if False, matrix diagonal is arbitrary
                * if not given, False is assumed

Output parameters:
    Info    -   same as for RMatrixLUInverse
    Rep     -   same as for RMatrixLUInverse
    A       -   same as for RMatrixLUInverse.

  -- ALGLIB --
     Copyright 05.02.2010 by Bochkanov Sergey
*************************************************************************/
void rmatrixtrinverse(real_2d_array &a, const ae_int_t n, const bool isupper, const bool isunit, ae_int_t &info, matinvreport &rep);
void smp_rmatrixtrinverse(real_2d_array &a, const ae_int_t n, const bool isupper, const bool isunit, ae_int_t &info, matinvreport &rep);
void rmatrixtrinverse(real_2d_array &a, const bool isupper, ae_int_t &info, matinvreport &rep);
void smp_rmatrixtrinverse(real_2d_array &a, const bool isupper, ae_int_t &info, matinvreport &rep);


/*************************************************************************
Triangular matrix inverse (complex)

The subroutine inverts the following types of matrices:
    * upper triangular
    * upper triangular with unit diagonal
    * lower triangular
    * lower triangular with unit diagonal

In case of an upper (lower) triangular matrix,  the  inverse  matrix  will
also be upper (lower) triangular, and after the end of the algorithm,  the
inverse matrix replaces the source matrix. The elements  below (above) the
main diagonal are not changed by the algorithm.

If  the matrix  has a unit diagonal, the inverse matrix also  has  a  unit
diagonal, and the diagonal elements are not passed to the algorithm.

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes two  important  improvements  of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  ! * multicore support
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
  ! * about 2-3x faster than ALGLIB for C++ without MKL
  ! * about 7-10x faster than "pure C#" edition of ALGLIB
  ! Difference in performance will be more striking  on  newer  CPU's with
  ! support for newer SIMD instructions. Generally,  MKL  accelerates  any
  ! problem whose size is at least 128, with best  efficiency achieved for
  ! N's larger than 512.
  !
  ! Commercial edition of ALGLIB also supports multithreaded  acceleration
  ! of this function. We should note that triangular inverse is harder  to
  ! parallelize than, say, matrix-matrix  product  -  this  algorithm  has
  ! many internal synchronization points which can not be avoided. However
  ! parallelism starts to be profitable starting  from  N=1024,  achieving
  ! near-linear speedup for N=4096 or higher.
  !
  ! In order to use multicore features you have to:
  ! * use commercial version of ALGLIB
  ! * call  this  function  with  "smp_"  prefix,  which  indicates  that
  !   multicore code will be used (for multicore support)
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

Input parameters:
    A       -   matrix, array[0..N-1, 0..N-1].
    N       -   size of matrix A (optional) :
                * if given, only principal NxN submatrix is processed  and
                  overwritten. other elements are unchanged.
                * if not given,  size  is  automatically  determined  from
                  matrix size (A must be square matrix)
    IsUpper -   True, if the matrix is upper triangular.
    IsUnit  -   diagonal type (optional):
                * if True, matrix has unit diagonal (a[i,i] are NOT used)
                * if False, matrix diagonal is arbitrary
                * if not given, False is assumed

Output parameters:
    Info    -   same as for RMatrixLUInverse
    Rep     -   same as for RMatrixLUInverse
    A       -   same as for RMatrixLUInverse.

  -- ALGLIB --
     Copyright 05.02.2010 by Bochkanov Sergey
*************************************************************************/
void cmatrixtrinverse(complex_2d_array &a, const ae_int_t n, const bool isupper, const bool isunit, ae_int_t &info, matinvreport &rep);
void smp_cmatrixtrinverse(complex_2d_array &a, const ae_int_t n, const bool isupper, const bool isunit, ae_int_t &info, matinvreport &rep);
void cmatrixtrinverse(complex_2d_array &a, const bool isupper, ae_int_t &info, matinvreport &rep);
void smp_cmatrixtrinverse(complex_2d_array &a, const bool isupper, ae_int_t &info, matinvreport &rep);



/*************************************************************************
This procedure initializes matrix norm estimator.

USAGE:
1. User initializes algorithm state with NormEstimatorCreate() call
2. User calls NormEstimatorEstimateSparse() (or NormEstimatorIteration())
3. User calls NormEstimatorResults() to get solution.

INPUT PARAMETERS:
    M       -   number of rows in the matrix being estimated, M>0
    N       -   number of columns in the matrix being estimated, N>0
    NStart  -   number of random starting vectors
                recommended value - at least 5.
    NIts    -   number of iterations to do with best starting vector
                recommended value - at least 5.

OUTPUT PARAMETERS:
    State   -   structure which stores algorithm state


NOTE: this algorithm is effectively deterministic, i.e. it always  returns
same result when repeatedly called for the same matrix. In fact, algorithm
uses randomized starting vectors, but internal  random  numbers  generator
always generates same sequence of the random values (it is a  feature, not
bug).

Algorithm can be made non-deterministic with NormEstimatorSetSeed(0) call.

  -- ALGLIB --
     Copyright 06.12.2011 by Bochkanov Sergey
*************************************************************************/
void normestimatorcreate(const ae_int_t m, const ae_int_t n, const ae_int_t nstart, const ae_int_t nits, normestimatorstate &state);


/*************************************************************************
This function changes seed value used by algorithm. In some cases we  need
deterministic processing, i.e. subsequent calls must return equal results,
in other cases we need non-deterministic algorithm which returns different
results for the same matrix on every pass.

Setting zero seed will lead to non-deterministic algorithm, while non-zero
value will make our algorithm deterministic.

INPUT PARAMETERS:
    State       -   norm estimator state, must be initialized with a  call
                    to NormEstimatorCreate()
    SeedVal     -   seed value, >=0. Zero value = non-deterministic algo.

  -- ALGLIB --
     Copyright 06.12.2011 by Bochkanov Sergey
*************************************************************************/
void normestimatorsetseed(const normestimatorstate &state, const ae_int_t seedval);


/*************************************************************************
This function estimates norm of the sparse M*N matrix A.

INPUT PARAMETERS:
    State       -   norm estimator state, must be initialized with a  call
                    to NormEstimatorCreate()
    A           -   sparse M*N matrix, must be converted to CRS format
                    prior to calling this function.

After this function  is  over  you can call NormEstimatorResults() to get
estimate of the norm(A).

  -- ALGLIB --
     Copyright 06.12.2011 by Bochkanov Sergey
*************************************************************************/
void normestimatorestimatesparse(const normestimatorstate &state, const sparsematrix &a);


/*************************************************************************
Matrix norm estimation results

INPUT PARAMETERS:
    State   -   algorithm state

OUTPUT PARAMETERS:
    Nrm     -   estimate of the matrix norm, Nrm>=0

  -- ALGLIB --
     Copyright 06.12.2011 by Bochkanov Sergey
*************************************************************************/
void normestimatorresults(const normestimatorstate &state, double &nrm);

/*************************************************************************
Determinant calculation of the matrix given by its LU decomposition.

Input parameters:
    A       -   LU decomposition of the matrix (output of
                RMatrixLU subroutine).
    Pivots  -   table of permutations which were made during
                the LU decomposition.
                Output of RMatrixLU subroutine.
    N       -   (optional) size of matrix A:
                * if given, only principal NxN submatrix is processed and
                  overwritten. other elements are unchanged.
                * if not given, automatically determined from matrix size
                  (A must be square matrix)

Result: matrix determinant.

  -- ALGLIB --
     Copyright 2005 by Bochkanov Sergey
*************************************************************************/
double rmatrixludet(const real_2d_array &a, const integer_1d_array &pivots, const ae_int_t n);
double rmatrixludet(const real_2d_array &a, const integer_1d_array &pivots);


/*************************************************************************
Calculation of the determinant of a general matrix

Input parameters:
    A       -   matrix, array[0..N-1, 0..N-1]
    N       -   (optional) size of matrix A:
                * if given, only principal NxN submatrix is processed and
                  overwritten. other elements are unchanged.
                * if not given, automatically determined from matrix size
                  (A must be square matrix)

Result: determinant of matrix A.

  -- ALGLIB --
     Copyright 2005 by Bochkanov Sergey
*************************************************************************/
double rmatrixdet(const real_2d_array &a, const ae_int_t n);
double rmatrixdet(const real_2d_array &a);


/*************************************************************************
Determinant calculation of the matrix given by its LU decomposition.

Input parameters:
    A       -   LU decomposition of the matrix (output of
                RMatrixLU subroutine).
    Pivots  -   table of permutations which were made during
                the LU decomposition.
                Output of RMatrixLU subroutine.
    N       -   (optional) size of matrix A:
                * if given, only principal NxN submatrix is processed and
                  overwritten. other elements are unchanged.
                * if not given, automatically determined from matrix size
                  (A must be square matrix)

Result: matrix determinant.

  -- ALGLIB --
     Copyright 2005 by Bochkanov Sergey
*************************************************************************/
alglib::complex cmatrixludet(const complex_2d_array &a, const integer_1d_array &pivots, const ae_int_t n);
alglib::complex cmatrixludet(const complex_2d_array &a, const integer_1d_array &pivots);


/*************************************************************************
Calculation of the determinant of a general matrix

Input parameters:
    A       -   matrix, array[0..N-1, 0..N-1]
    N       -   (optional) size of matrix A:
                * if given, only principal NxN submatrix is processed and
                  overwritten. other elements are unchanged.
                * if not given, automatically determined from matrix size
                  (A must be square matrix)

Result: determinant of matrix A.

  -- ALGLIB --
     Copyright 2005 by Bochkanov Sergey
*************************************************************************/
alglib::complex cmatrixdet(const complex_2d_array &a, const ae_int_t n);
alglib::complex cmatrixdet(const complex_2d_array &a);


/*************************************************************************
Determinant calculation of the matrix given by the Cholesky decomposition.

Input parameters:
    A       -   Cholesky decomposition,
                output of SMatrixCholesky subroutine.
    N       -   (optional) size of matrix A:
                * if given, only principal NxN submatrix is processed and
                  overwritten. other elements are unchanged.
                * if not given, automatically determined from matrix size
                  (A must be square matrix)

As the determinant is equal to the product of squares of diagonal elements,
it�s not necessary to specify which triangle - lower or upper - the matrix
is stored in.

Result:
    matrix determinant.

  -- ALGLIB --
     Copyright 2005-2008 by Bochkanov Sergey
*************************************************************************/
double spdmatrixcholeskydet(const real_2d_array &a, const ae_int_t n);
double spdmatrixcholeskydet(const real_2d_array &a);


/*************************************************************************
Determinant calculation of the symmetric positive definite matrix.

Input parameters:
    A       -   matrix. Array with elements [0..N-1, 0..N-1].
    N       -   (optional) size of matrix A:
                * if given, only principal NxN submatrix is processed and
                  overwritten. other elements are unchanged.
                * if not given, automatically determined from matrix size
                  (A must be square matrix)
    IsUpper -   (optional) storage type:
                * if True, symmetric matrix  A  is  given  by  its  upper
                  triangle, and the lower triangle isn�t used/changed  by
                  function
                * if False, symmetric matrix  A  is  given  by  its lower
                  triangle, and the upper triangle isn�t used/changed  by
                  function
                * if not given, both lower and upper  triangles  must  be
                  filled.

Result:
    determinant of matrix A.
    If matrix A is not positive definite, exception is thrown.

  -- ALGLIB --
     Copyright 2005-2008 by Bochkanov Sergey
*************************************************************************/
double spdmatrixdet(const real_2d_array &a, const ae_int_t n, const bool isupper);
double spdmatrixdet(const real_2d_array &a);

/*************************************************************************
Algorithm for solving the following generalized symmetric positive-definite
eigenproblem:
    A*x = lambda*B*x (1) or
    A*B*x = lambda*x (2) or
    B*A*x = lambda*x (3).
where A is a symmetric matrix, B - symmetric positive-definite matrix.
The problem is solved by reducing it to an ordinary  symmetric  eigenvalue
problem.

Input parameters:
    A           -   symmetric matrix which is given by its upper or lower
                    triangular part.
                    Array whose indexes range within [0..N-1, 0..N-1].
    N           -   size of matrices A and B.
    IsUpperA    -   storage format of matrix A.
    B           -   symmetric positive-definite matrix which is given by
                    its upper or lower triangular part.
                    Array whose indexes range within [0..N-1, 0..N-1].
    IsUpperB    -   storage format of matrix B.
    ZNeeded     -   if ZNeeded is equal to:
                     * 0, the eigenvectors are not returned;
                     * 1, the eigenvectors are returned.
    ProblemType -   if ProblemType is equal to:
                     * 1, the following problem is solved: A*x = lambda*B*x;
                     * 2, the following problem is solved: A*B*x = lambda*x;
                     * 3, the following problem is solved: B*A*x = lambda*x.

Output parameters:
    D           -   eigenvalues in ascending order.
                    Array whose index ranges within [0..N-1].
    Z           -   if ZNeeded is equal to:
                     * 0, Z hasn�t changed;
                     * 1, Z contains eigenvectors.
                    Array whose indexes range within [0..N-1, 0..N-1].
                    The eigenvectors are stored in matrix columns. It should
                    be noted that the eigenvectors in such problems do not
                    form an orthogonal system.

Result:
    True, if the problem was solved successfully.
    False, if the error occurred during the Cholesky decomposition of matrix
    B (the matrix isn�t positive-definite) or during the work of the iterative
    algorithm for solving the symmetric eigenproblem.

See also the GeneralizedSymmetricDefiniteEVDReduce subroutine.

  -- ALGLIB --
     Copyright 1.28.2006 by Bochkanov Sergey
*************************************************************************/
bool smatrixgevd(const real_2d_array &a, const ae_int_t n, const bool isuppera, const real_2d_array &b, const bool isupperb, const ae_int_t zneeded, const ae_int_t problemtype, real_1d_array &d, real_2d_array &z);


/*************************************************************************
Algorithm for reduction of the following generalized symmetric positive-
definite eigenvalue problem:
    A*x = lambda*B*x (1) or
    A*B*x = lambda*x (2) or
    B*A*x = lambda*x (3)
to the symmetric eigenvalues problem C*y = lambda*y (eigenvalues of this and
the given problems are the same, and the eigenvectors of the given problem
could be obtained by multiplying the obtained eigenvectors by the
transformation matrix x = R*y).

Here A is a symmetric matrix, B - symmetric positive-definite matrix.

Input parameters:
    A           -   symmetric matrix which is given by its upper or lower
                    triangular part.
                    Array whose indexes range within [0..N-1, 0..N-1].
    N           -   size of matrices A and B.
    IsUpperA    -   storage format of matrix A.
    B           -   symmetric positive-definite matrix which is given by
                    its upper or lower triangular part.
                    Array whose indexes range within [0..N-1, 0..N-1].
    IsUpperB    -   storage format of matrix B.
    ProblemType -   if ProblemType is equal to:
                     * 1, the following problem is solved: A*x = lambda*B*x;
                     * 2, the following problem is solved: A*B*x = lambda*x;
                     * 3, the following problem is solved: B*A*x = lambda*x.

Output parameters:
    A           -   symmetric matrix which is given by its upper or lower
                    triangle depending on IsUpperA. Contains matrix C.
                    Array whose indexes range within [0..N-1, 0..N-1].
    R           -   upper triangular or low triangular transformation matrix
                    which is used to obtain the eigenvectors of a given problem
                    as the product of eigenvectors of C (from the right) and
                    matrix R (from the left). If the matrix is upper
                    triangular, the elements below the main diagonal
                    are equal to 0 (and vice versa). Thus, we can perform
                    the multiplication without taking into account the
                    internal structure (which is an easier though less
                    effective way).
                    Array whose indexes range within [0..N-1, 0..N-1].
    IsUpperR    -   type of matrix R (upper or lower triangular).

Result:
    True, if the problem was reduced successfully.
    False, if the error occurred during the Cholesky decomposition of
        matrix B (the matrix is not positive-definite).

  -- ALGLIB --
     Copyright 1.28.2006 by Bochkanov Sergey
*************************************************************************/
bool smatrixgevdreduce(real_2d_array &a, const ae_int_t n, const bool isuppera, const real_2d_array &b, const bool isupperb, const ae_int_t problemtype, real_2d_array &r, bool &isupperr);

/*************************************************************************
Inverse matrix update by the Sherman-Morrison formula

The algorithm updates matrix A^-1 when adding a number to an element
of matrix A.

Input parameters:
    InvA    -   inverse of matrix A.
                Array whose indexes range within [0..N-1, 0..N-1].
    N       -   size of matrix A.
    UpdRow  -   row where the element to be updated is stored.
    UpdColumn - column where the element to be updated is stored.
    UpdVal  -   a number to be added to the element.


Output parameters:
    InvA    -   inverse of modified matrix A.

  -- ALGLIB --
     Copyright 2005 by Bochkanov Sergey
*************************************************************************/
void rmatrixinvupdatesimple(real_2d_array &inva, const ae_int_t n, const ae_int_t updrow, const ae_int_t updcolumn, const double updval);


/*************************************************************************
Inverse matrix update by the Sherman-Morrison formula

The algorithm updates matrix A^-1 when adding a vector to a row
of matrix A.

Input parameters:
    InvA    -   inverse of matrix A.
                Array whose indexes range within [0..N-1, 0..N-1].
    N       -   size of matrix A.
    UpdRow  -   the row of A whose vector V was added.
                0 <= Row <= N-1
    V       -   the vector to be added to a row.
                Array whose index ranges within [0..N-1].

Output parameters:
    InvA    -   inverse of modified matrix A.

  -- ALGLIB --
     Copyright 2005 by Bochkanov Sergey
*************************************************************************/
void rmatrixinvupdaterow(real_2d_array &inva, const ae_int_t n, const ae_int_t updrow, const real_1d_array &v);


/*************************************************************************
Inverse matrix update by the Sherman-Morrison formula

The algorithm updates matrix A^-1 when adding a vector to a column
of matrix A.

Input parameters:
    InvA        -   inverse of matrix A.
                    Array whose indexes range within [0..N-1, 0..N-1].
    N           -   size of matrix A.
    UpdColumn   -   the column of A whose vector U was added.
                    0 <= UpdColumn <= N-1
    U           -   the vector to be added to a column.
                    Array whose index ranges within [0..N-1].

Output parameters:
    InvA        -   inverse of modified matrix A.

  -- ALGLIB --
     Copyright 2005 by Bochkanov Sergey
*************************************************************************/
void rmatrixinvupdatecolumn(real_2d_array &inva, const ae_int_t n, const ae_int_t updcolumn, const real_1d_array &u);


/*************************************************************************
Inverse matrix update by the Sherman-Morrison formula

The algorithm computes the inverse of matrix A+u*v� by using the given matrix
A^-1 and the vectors u and v.

Input parameters:
    InvA    -   inverse of matrix A.
                Array whose indexes range within [0..N-1, 0..N-1].
    N       -   size of matrix A.
    U       -   the vector modifying the matrix.
                Array whose index ranges within [0..N-1].
    V       -   the vector modifying the matrix.
                Array whose index ranges within [0..N-1].

Output parameters:
    InvA - inverse of matrix A + u*v'.

  -- ALGLIB --
     Copyright 2005 by Bochkanov Sergey
*************************************************************************/
void rmatrixinvupdateuv(real_2d_array &inva, const ae_int_t n, const real_1d_array &u, const real_1d_array &v);

/*************************************************************************
Subroutine performing the Schur decomposition of a general matrix by using
the QR algorithm with multiple shifts.

COMMERCIAL EDITION OF ALGLIB:

  ! Commercial version of ALGLIB includes one  important  improvement   of
  ! this function, which can be used from C++ and C#:
  ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
  !
  ! Intel MKL gives approximately constant  (with  respect  to  number  of
  ! worker threads) acceleration factor which depends on CPU  being  used,
  ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
  ! comparison.
  !
  ! Multithreaded acceleration is NOT supported for this function.
  !
  ! We recommend you to read 'Working with commercial version' section  of
  ! ALGLIB Reference Manual in order to find out how to  use  performance-
  ! related features provided by commercial edition of ALGLIB.

The source matrix A is represented as S'*A*S = T, where S is an orthogonal
matrix (Schur vectors), T - upper quasi-triangular matrix (with blocks of
sizes 1x1 and 2x2 on the main diagonal).

Input parameters:
    A   -   matrix to be decomposed.
            Array whose indexes range within [0..N-1, 0..N-1].
    N   -   size of A, N>=0.


Output parameters:
    A   -   contains matrix T.
            Array whose indexes range within [0..N-1, 0..N-1].
    S   -   contains Schur vectors.
            Array whose indexes range within [0..N-1, 0..N-1].

Note 1:
    The block structure of matrix T can be easily recognized: since all
    the elements below the blocks are zeros, the elements a[i+1,i] which
    are equal to 0 show the block border.

Note 2:
    The algorithm performance depends on the value of the internal parameter
    NS of the InternalSchurDecomposition subroutine which defines the number
    of shifts in the QR algorithm (similarly to the block width in block-matrix
    algorithms in linear algebra). If you require maximum performance on
    your machine, it is recommended to adjust this parameter manually.

Result:
    True,
        if the algorithm has converged and parameters A and S contain the result.
    False,
        if the algorithm has not converged.

Algorithm implemented on the basis of the DHSEQR subroutine (LAPACK 3.0 library).
*************************************************************************/
bool rmatrixschur(real_2d_array &a, const ae_int_t n, real_2d_array &s);
}

/////////////////////////////////////////////////////////////////////////
//
// THIS SECTION CONTAINS COMPUTATIONAL CORE DECLARATIONS (FUNCTIONS)
//
/////////////////////////////////////////////////////////////////////////
namespace alglib_impl
{
void ablassplitlength(/* Real    */ ae_matrix* a,
     ae_int_t n,
     ae_int_t* n1,
     ae_int_t* n2,
     ae_state *_state);
void ablascomplexsplitlength(/* Complex */ ae_matrix* a,
     ae_int_t n,
     ae_int_t* n1,
     ae_int_t* n2,
     ae_state *_state);
ae_int_t ablasblocksize(/* Real    */ ae_matrix* a, ae_state *_state);
ae_int_t ablascomplexblocksize(/* Complex */ ae_matrix* a,
     ae_state *_state);
ae_int_t ablasmicroblocksize(ae_state *_state);
void cmatrixtranspose(ae_int_t m,
     ae_int_t n,
     /* Complex */ ae_matrix* a,
     ae_int_t ia,
     ae_int_t ja,
     /* Complex */ ae_matrix* b,
     ae_int_t ib,
     ae_int_t jb,
     ae_state *_state);
void rmatrixtranspose(ae_int_t m,
     ae_int_t n,
     /* Real    */ ae_matrix* a,
     ae_int_t ia,
     ae_int_t ja,
     /* Real    */ ae_matrix* b,
     ae_int_t ib,
     ae_int_t jb,
     ae_state *_state);
void rmatrixenforcesymmetricity(/* Real    */ ae_matrix* a,
     ae_int_t n,
     ae_bool isupper,
     ae_state *_state);
void cmatrixcopy(ae_int_t m,
     ae_int_t n,
     /* Complex */ ae_matrix* a,
     ae_int_t ia,
     ae_int_t ja,
     /* Complex */ ae_matrix* b,
     ae_int_t ib,
     ae_int_t jb,
     ae_state *_state);
void rmatrixcopy(ae_int_t m,
     ae_int_t n,
     /* Real    */ ae_matrix* a,
     ae_int_t ia,
     ae_int_t ja,
     /* Real    */ ae_matrix* b,
     ae_int_t ib,
     ae_int_t jb,
     ae_state *_state);
void cmatrixrank1(ae_int_t m,
     ae_int_t n,
     /* Complex */ ae_matrix* a,
     ae_int_t ia,
     ae_int_t ja,
     /* Complex */ ae_vector* u,
     ae_int_t iu,
     /* Complex */ ae_vector* v,
     ae_int_t iv,
     ae_state *_state);
void rmatrixrank1(ae_int_t m,
     ae_int_t n,
     /* Real    */ ae_matrix* a,
     ae_int_t ia,
     ae_int_t ja,
     /* Real    */ ae_vector* u,
     ae_int_t iu,
     /* Real    */ ae_vector* v,
     ae_int_t iv,
     ae_state *_state);
void cmatrixmv(ae_int_t m,
     ae_int_t n,
     /* Complex */ ae_matrix* a,
     ae_int_t ia,
     ae_int_t ja,
     ae_int_t opa,
     /* Complex */ ae_vector* x,
     ae_int_t ix,
     /* Complex */ ae_vector* y,
     ae_int_t iy,
     ae_state *_state);
void rmatrixmv(ae_int_t m,
     ae_int_t n,
     /* Real    */ ae_matrix* a,
     ae_int_t ia,
     ae_int_t ja,
     ae_int_t opa,
     /* Real    */ ae_vector* x,
     ae_int_t ix,
     /* Real    */ ae_vector* y,
     ae_int_t iy,
     ae_state *_state);
void cmatrixrighttrsm(ae_int_t m,
     ae_int_t n,
     /* Complex */ ae_matrix* a,
     ae_int_t i1,
     ae_int_t j1,
     ae_bool isupper,
     ae_bool isunit,
     ae_int_t optype,
     /* Complex */ ae_matrix* x,
     ae_int_t i2,
     ae_int_t j2,
     ae_state *_state);
void _pexec_cmatrixrighttrsm(ae_int_t m,
    ae_int_t n,
    /* Complex */ ae_matrix* a,
    ae_int_t i1,
    ae_int_t j1,
    ae_bool isupper,
    ae_bool isunit,
    ae_int_t optype,
    /* Complex */ ae_matrix* x,
    ae_int_t i2,
    ae_int_t j2, ae_state *_state);
void cmatrixlefttrsm(ae_int_t m,
     ae_int_t n,
     /* Complex */ ae_matrix* a,
     ae_int_t i1,
     ae_int_t j1,
     ae_bool isupper,
     ae_bool isunit,
     ae_int_t optype,
     /* Complex */ ae_matrix* x,
     ae_int_t i2,
     ae_int_t j2,
     ae_state *_state);
void _pexec_cmatrixlefttrsm(ae_int_t m,
    ae_int_t n,
    /* Complex */ ae_matrix* a,
    ae_int_t i1,
    ae_int_t j1,
    ae_bool isupper,
    ae_bool isunit,
    ae_int_t optype,
    /* Complex */ ae_matrix* x,
    ae_int_t i2,
    ae_int_t j2, ae_state *_state);
void rmatrixrighttrsm(ae_int_t m,
     ae_int_t n,
     /* Real    */ ae_matrix* a,
     ae_int_t i1,
     ae_int_t j1,
     ae_bool isupper,
     ae_bool isunit,
     ae_int_t optype,
     /* Real    */ ae_matrix* x,
     ae_int_t i2,
     ae_int_t j2,
     ae_state *_state);
void _pexec_rmatrixrighttrsm(ae_int_t m,
    ae_int_t n,
    /* Real    */ ae_matrix* a,
    ae_int_t i1,
    ae_int_t j1,
    ae_bool isupper,
    ae_bool isunit,
    ae_int_t optype,
    /* Real    */ ae_matrix* x,
    ae_int_t i2,
    ae_int_t j2, ae_state *_state);
void rmatrixlefttrsm(ae_int_t m,
     ae_int_t n,
     /* Real    */ ae_matrix* a,
     ae_int_t i1,
     ae_int_t j1,
     ae_bool isupper,
     ae_bool isunit,
     ae_int_t optype,
     /* Real    */ ae_matrix* x,
     ae_int_t i2,
     ae_int_t j2,
     ae_state *_state);
void _pexec_rmatrixlefttrsm(ae_int_t m,
    ae_int_t n,
    /* Real    */ ae_matrix* a,
    ae_int_t i1,
    ae_int_t j1,
    ae_bool isupper,
    ae_bool isunit,
    ae_int_t optype,
    /* Real    */ ae_matrix* x,
    ae_int_t i2,
    ae_int_t j2, ae_state *_state);
void cmatrixherk(ae_int_t n,
     ae_int_t k,
     double alpha,
     /* Complex */ ae_matrix* a,
     ae_int_t ia,
     ae_int_t ja,
     ae_int_t optypea,
     double beta,
     /* Complex */ ae_matrix* c,
     ae_int_t ic,
     ae_int_t jc,
     ae_bool isupper,
     ae_state *_state);
void _pexec_cmatrixherk(ae_int_t n,
    ae_int_t k,
    double alpha,
    /* Complex */ ae_matrix* a,
    ae_int_t ia,
    ae_int_t ja,
    ae_int_t optypea,
    double beta,
    /* Complex */ ae_matrix* c,
    ae_int_t ic,
    ae_int_t jc,
    ae_bool isupper, ae_state *_state);
void rmatrixsyrk(ae_int_t n,
     ae_int_t k,
     double alpha,
     /* Real    */ ae_matrix* a,
     ae_int_t ia,
     ae_int_t ja,
     ae_int_t optypea,
     double beta,
     /* Real    */ ae_matrix* c,
     ae_int_t ic,
     ae_int_t jc,
     ae_bool isupper,
     ae_state *_state);
void _pexec_rmatrixsyrk(ae_int_t n,
    ae_int_t k,
    double alpha,
    /* Real    */ ae_matrix* a,
    ae_int_t ia,
    ae_int_t ja,
    ae_int_t optypea,
    double beta,
    /* Real    */ ae_matrix* c,
    ae_int_t ic,
    ae_int_t jc,
    ae_bool isupper, ae_state *_state);
void cmatrixgemm(ae_int_t m,
     ae_int_t n,
     ae_int_t k,
     ae_complex alpha,
     /* Complex */ ae_matrix* a,
     ae_int_t ia,
     ae_int_t ja,
     ae_int_t optypea,
     /* Complex */ ae_matrix* b,
     ae_int_t ib,
     ae_int_t jb,
     ae_int_t optypeb,
     ae_complex beta,
     /* Complex */ ae_matrix* c,
     ae_int_t ic,
     ae_int_t jc,
     ae_state *_state);
void _pexec_cmatrixgemm(ae_int_t m,
    ae_int_t n,
    ae_int_t k,
    ae_complex alpha,
    /* Complex */ ae_matrix* a,
    ae_int_t ia,
    ae_int_t ja,
    ae_int_t optypea,
    /* Complex */ ae_matrix* b,
    ae_int_t ib,
    ae_int_t jb,
    ae_int_t optypeb,
    ae_complex beta,
    /* Complex */ ae_matrix* c,
    ae_int_t ic,
    ae_int_t jc, ae_state *_state);
void rmatrixgemm(ae_int_t m,
     ae_int_t n,
     ae_int_t k,
     double alpha,
     /* Real    */ ae_matrix* a,
     ae_int_t ia,
     ae_int_t ja,
     ae_int_t optypea,
     /* Real    */ ae_matrix* b,
     ae_int_t ib,
     ae_int_t jb,
     ae_int_t optypeb,
     double beta,
     /* Real    */ ae_matrix* c,
     ae_int_t ic,
     ae_int_t jc,
     ae_state *_state);
void _pexec_rmatrixgemm(ae_int_t m,
    ae_int_t n,
    ae_int_t k,
    double alpha,
    /* Real    */ ae_matrix* a,
    ae_int_t ia,
    ae_int_t ja,
    ae_int_t optypea,
    /* Real    */ ae_matrix* b,
    ae_int_t ib,
    ae_int_t jb,
    ae_int_t optypeb,
    double beta,
    /* Real    */ ae_matrix* c,
    ae_int_t ic,
    ae_int_t jc, ae_state *_state);
void cmatrixsyrk(ae_int_t n,
     ae_int_t k,
     double alpha,
     /* Complex */ ae_matrix* a,
     ae_int_t ia,
     ae_int_t ja,
     ae_int_t optypea,
     double beta,
     /* Complex */ ae_matrix* c,
     ae_int_t ic,
     ae_int_t jc,
     ae_bool isupper,
     ae_state *_state);
void _pexec_cmatrixsyrk(ae_int_t n,
    ae_int_t k,
    double alpha,
    /* Complex */ ae_matrix* a,
    ae_int_t ia,
    ae_int_t ja,
    ae_int_t optypea,
    double beta,
    /* Complex */ ae_matrix* c,
    ae_int_t ic,
    ae_int_t jc,
    ae_bool isupper, ae_state *_state);
void rmatrixqr(/* Real    */ ae_matrix* a,
     ae_int_t m,
     ae_int_t n,
     /* Real    */ ae_vector* tau,
     ae_state *_state);
void _pexec_rmatrixqr(/* Real    */ ae_matrix* a,
    ae_int_t m,
    ae_int_t n,
    /* Real    */ ae_vector* tau, ae_state *_state);
void rmatrixlq(/* Real    */ ae_matrix* a,
     ae_int_t m,
     ae_int_t n,
     /* Real    */ ae_vector* tau,
     ae_state *_state);
void _pexec_rmatrixlq(/* Real    */ ae_matrix* a,
    ae_int_t m,
    ae_int_t n,
    /* Real    */ ae_vector* tau, ae_state *_state);
void cmatrixqr(/* Complex */ ae_matrix* a,
     ae_int_t m,
     ae_int_t n,
     /* Complex */ ae_vector* tau,
     ae_state *_state);
void _pexec_cmatrixqr(/* Complex */ ae_matrix* a,
    ae_int_t m,
    ae_int_t n,
    /* Complex */ ae_vector* tau, ae_state *_state);
void cmatrixlq(/* Complex */ ae_matrix* a,
     ae_int_t m,
     ae_int_t n,
     /* Complex */ ae_vector* tau,
     ae_state *_state);
void _pexec_cmatrixlq(/* Complex */ ae_matrix* a,
    ae_int_t m,
    ae_int_t n,
    /* Complex */ ae_vector* tau, ae_state *_state);
void rmatrixqrunpackq(/* Real    */ ae_matrix* a,
     ae_int_t m,
     ae_int_t n,
     /* Real    */ ae_vector* tau,
     ae_int_t qcolumns,
     /* Real    */ ae_matrix* q,
     ae_state *_state);
void _pexec_rmatrixqrunpackq(/* Real    */ ae_matrix* a,
    ae_int_t m,
    ae_int_t n,
    /* Real    */ ae_vector* tau,
    ae_int_t qcolumns,
    /* Real    */ ae_matrix* q, ae_state *_state);
void rmatrixqrunpackr(/* Real    */ ae_matrix* a,
     ae_int_t m,
     ae_int_t n,
     /* Real    */ ae_matrix* r,
     ae_state *_state);
void rmatrixlqunpackq(/* Real    */ ae_matrix* a,
     ae_int_t m,
     ae_int_t n,
     /* Real    */ ae_vector* tau,
     ae_int_t qrows,
     /* Real    */ ae_matrix* q,
     ae_state *_state);
void _pexec_rmatrixlqunpackq(/* Real    */ ae_matrix* a,
    ae_int_t m,
    ae_int_t n,
    /* Real    */ ae_vector* tau,
    ae_int_t qrows,
    /* Real    */ ae_matrix* q, ae_state *_state);
void rmatrixlqunpackl(/* Real    */ ae_matrix* a,
     ae_int_t m,
     ae_int_t n,
     /* Real    */ ae_matrix* l,
     ae_state *_state);
void cmatrixqrunpackq(/* Complex */ ae_matrix* a,
     ae_int_t m,
     ae_int_t n,
     /* Complex */ ae_vector* tau,
     ae_int_t qcolumns,
     /* Complex */ ae_matrix* q,
     ae_state *_state);
void _pexec_cmatrixqrunpackq(/* Complex */ ae_matrix* a,
    ae_int_t m,
    ae_int_t n,
    /* Complex */ ae_vector* tau,
    ae_int_t qcolumns,
    /* Complex */ ae_matrix* q, ae_state *_state);
void cmatrixqrunpackr(/* Complex */ ae_matrix* a,
     ae_int_t m,
     ae_int_t n,
     /* Complex */ ae_matrix* r,
     ae_state *_state);
void cmatrixlqunpackq(/* Complex */ ae_matrix* a,
     ae_int_t m,
     ae_int_t n,
     /* Complex */ ae_vector* tau,
     ae_int_t qrows,
     /* Complex */ ae_matrix* q,
     ae_state *_state);
void _pexec_cmatrixlqunpackq(/* Complex */ ae_matrix* a,
    ae_int_t m,
    ae_int_t n,
    /* Complex */ ae_vector* tau,
    ae_int_t qrows,
    /* Complex */ ae_matrix* q, ae_state *_state);
void cmatrixlqunpackl(/* Complex */ ae_matrix* a,
     ae_int_t m,
     ae_int_t n,
     /* Complex */ ae_matrix* l,
     ae_state *_state);
void rmatrixqrbasecase(/* Real    */ ae_matrix* a,
     ae_int_t m,
     ae_int_t n,
     /* Real    */ ae_vector* work,
     /* Real    */ ae_vector* t,
     /* Real    */ ae_vector* tau,
     ae_state *_state);
void rmatrixlqbasecase(/* Real    */ ae_matrix* a,
     ae_int_t m,
     ae_int_t n,
     /* Real    */ ae_vector* work,
     /* Real    */ ae_vector* t,
     /* Real    */ ae_vector* tau,
     ae_state *_state);
void rmatrixbd(/* Real    */ ae_matrix* a,
     ae_int_t m,
     ae_int_t n,
     /* Real    */ ae_vector* tauq,
     /* Real    */ ae_vector* taup,
     ae_state *_state);
void rmatrixbdunpackq(/* Real    */ ae_matrix* qp,
     ae_int_t m,
     ae_int_t n,
     /* Real    */ ae_vector* tauq,
     ae_int_t qcolumns,
     /* Real    */ ae_matrix* q,
     ae_state *_state);
void rmatrixbdmultiplybyq(/* Real    */ ae_matrix* qp,
     ae_int_t m,
     ae_int_t n,
     /* Real    */ ae_vector* tauq,
     /* Real    */ ae_matrix* z,
     ae_int_t zrows,
     ae_int_t zcolumns,
     ae_bool fromtheright,
     ae_bool dotranspose,
     ae_state *_state);
void rmatrixbdunpackpt(/* Real    */ ae_matrix* qp,
     ae_int_t m,
     ae_int_t n,
     /* Real    */ ae_vector* taup,
     ae_int_t ptrows,
     /* Real    */ ae_matrix* pt,
     ae_state *_state);
void rmatrixbdmultiplybyp(/* Real    */ ae_matrix* qp,
     ae_int_t m,
     ae_int_t n,
     /* Real    */ ae_vector* taup,
     /* Real    */ ae_matrix* z,
     ae_int_t zrows,
     ae_int_t zcolumns,
     ae_bool fromtheright,
     ae_bool dotranspose,
     ae_state *_state);
void rmatrixbdunpackdiagonals(/* Real    */ ae_matrix* b,
     ae_int_t m,
     ae_int_t n,
     ae_bool* isupper,
     /* Real    */ ae_vector* d,
     /* Real    */ ae_vector* e,
     ae_state *_state);
void rmatrixhessenberg(/* Real    */ ae_matrix* a,
     ae_int_t n,
     /* Real    */ ae_vector* tau,
     ae_state *_state);
void rmatrixhessenbergunpackq(/* Real    */ ae_matrix* a,
     ae_int_t n,
     /* Real    */ ae_vector* tau,
     /* Real    */ ae_matrix* q,
     ae_state *_state);
void rmatrixhessenbergunpackh(/* Real    */ ae_matrix* a,
     ae_int_t n,
     /* Real    */ ae_matrix* h,
     ae_state *_state);
void smatrixtd(/* Real    */ ae_matrix* a,
     ae_int_t n,
     ae_bool isupper,
     /* Real    */ ae_vector* tau,
     /* Real    */ ae_vector* d,
     /* Real    */ ae_vector* e,
     ae_state *_state);
void smatrixtdunpackq(/* Real    */ ae_matrix* a,
     ae_int_t n,
     ae_bool isupper,
     /* Real    */ ae_vector* tau,
     /* Real    */ ae_matrix* q,
     ae_state *_state);
void hmatrixtd(/* Complex */ ae_matrix* a,
     ae_int_t n,
     ae_bool isupper,
     /* Complex */ ae_vector* tau,
     /* Real    */ ae_vector* d,
     /* Real    */ ae_vector* e,
     ae_state *_state);
void hmatrixtdunpackq(/* Complex */ ae_matrix* a,
     ae_int_t n,
     ae_bool isupper,
     /* Complex */ ae_vector* tau,
     /* Complex */ ae_matrix* q,
     ae_state *_state);
ae_bool rmatrixbdsvd(/* Real    */ ae_vector* d,
     /* Real    */ ae_vector* e,
     ae_int_t n,
     ae_bool isupper,
     ae_bool isfractionalaccuracyrequired,
     /* Real    */ ae_matrix* u,
     ae_int_t nru,
     /* Real    */ ae_matrix* c,
     ae_int_t ncc,
     /* Real    */ ae_matrix* vt,
     ae_int_t ncvt,
     ae_state *_state);
ae_bool bidiagonalsvddecomposition(/* Real    */ ae_vector* d,
     /* Real    */ ae_vector* e,
     ae_int_t n,
     ae_bool isupper,
     ae_bool isfractionalaccuracyrequired,
     /* Real    */ ae_matrix* u,
     ae_int_t nru,
     /* Real    */ ae_matrix* c,
     ae_int_t ncc,
     /* Real    */ ae_matrix* vt,
     ae_int_t ncvt,
     ae_state *_state);
ae_bool rmatrixsvd(/* Real    */ ae_matrix* a,
     ae_int_t m,
     ae_int_t n,
     ae_int_t uneeded,
     ae_int_t vtneeded,
     ae_int_t additionalmemory,
     /* Real    */ ae_vector* w,
     /* Real    */ ae_matrix* u,
     /* Real    */ ae_matrix* vt,
     ae_state *_state);
ae_bool _pexec_rmatrixsvd(/* Real    */ ae_matrix* a,
    ae_int_t m,
    ae_int_t n,
    ae_int_t uneeded,
    ae_int_t vtneeded,
    ae_int_t additionalmemory,
    /* Real    */ ae_vector* w,
    /* Real    */ ae_matrix* u,
    /* Real    */ ae_matrix* vt, ae_state *_state);
ae_bool smatrixevd(/* Real    */ ae_matrix* a,
     ae_int_t n,
     ae_int_t zneeded,
     ae_bool isupper,
     /* Real    */ ae_vector* d,
     /* Real    */ ae_matrix* z,
     ae_state *_state);
ae_bool smatrixevdr(/* Real    */ ae_matrix* a,
     ae_int_t n,
     ae_int_t zneeded,
     ae_bool isupper,
     double b1,
     double b2,
     ae_int_t* m,
     /* Real    */ ae_vector* w,
     /* Real    */ ae_matrix* z,
     ae_state *_state);
ae_bool smatrixevdi(/* Real    */ ae_matrix* a,
     ae_int_t n,
     ae_int_t zneeded,
     ae_bool isupper,
     ae_int_t i1,
     ae_int_t i2,
     /* Real    */ ae_vector* w,
     /* Real    */ ae_matrix* z,
     ae_state *_state);
ae_bool hmatrixevd(/* Complex */ ae_matrix* a,
     ae_int_t n,
     ae_int_t zneeded,
     ae_bool isupper,
     /* Real    */ ae_vector* d,
     /* Complex */ ae_matrix* z,
     ae_state *_state);
ae_bool hmatrixevdr(/* Complex */ ae_matrix* a,
     ae_int_t n,
     ae_int_t zneeded,
     ae_bool isupper,
     double b1,
     double b2,
     ae_int_t* m,
     /* Real    */ ae_vector* w,
     /* Complex */ ae_matrix* z,
     ae_state *_state);
ae_bool hmatrixevdi(/* Complex */ ae_matrix* a,
     ae_int_t n,
     ae_int_t zneeded,
     ae_bool isupper,
     ae_int_t i1,
     ae_int_t i2,
     /* Real    */ ae_vector* w,
     /* Complex */ ae_matrix* z,
     ae_state *_state);
ae_bool smatrixtdevd(/* Real    */ ae_vector* d,
     /* Real    */ ae_vector* e,
     ae_int_t n,
     ae_int_t zneeded,
     /* Real    */ ae_matrix* z,
     ae_state *_state);
ae_bool smatrixtdevdr(/* Real    */ ae_vector* d,
     /* Real    */ ae_vector* e,
     ae_int_t n,
     ae_int_t zneeded,
     double a,
     double b,
     ae_int_t* m,
     /* Real    */ ae_matrix* z,
     ae_state *_state);
ae_bool smatrixtdevdi(/* Real    */ ae_vector* d,
     /* Real    */ ae_vector* e,
     ae_int_t n,
     ae_int_t zneeded,
     ae_int_t i1,
     ae_int_t i2,
     /* Real    */ ae_matrix* z,
     ae_state *_state);
ae_bool rmatrixevd(/* Real    */ ae_matrix* a,
     ae_int_t n,
     ae_int_t vneeded,
     /* Real    */ ae_vector* wr,
     /* Real    */ ae_vector* wi,
     /* Real    */ ae_matrix* vl,
     /* Real    */ ae_matrix* vr,
     ae_state *_state);
void rmatrixrndorthogonal(ae_int_t n,
     /* Real    */ ae_matrix* a,
     ae_state *_state);
void rmatrixrndcond(ae_int_t n,
     double c,
     /* Real    */ ae_matrix* a,
     ae_state *_state);
void cmatrixrndorthogonal(ae_int_t n,
     /* Complex */ ae_matrix* a,
     ae_state *_state);
void cmatrixrndcond(ae_int_t n,
     double c,
     /* Complex */ ae_matrix* a,
     ae_state *_state);
void smatrixrndcond(ae_int_t n,
     double c,
     /* Real    */ ae_matrix* a,
     ae_state *_state);
void spdmatrixrndcond(ae_int_t n,
     double c,
     /* Real    */ ae_matrix* a,
     ae_state *_state);
void hmatrixrndcond(ae_int_t n,
     double c,
     /* Complex */ ae_matrix* a,
     ae_state *_state);
void hpdmatrixrndcond(ae_int_t n,
     double c,
     /* Complex */ ae_matrix* a,
     ae_state *_state);
void rmatrixrndorthogonalfromtheright(/* Real    */ ae_matrix* a,
     ae_int_t m,
     ae_int_t n,
     ae_state *_state);
void rmatrixrndorthogonalfromtheleft(/* Real    */ ae_matrix* a,
     ae_int_t m,
     ae_int_t n,
     ae_state *_state);
void cmatrixrndorthogonalfromtheright(/* Complex */ ae_matrix* a,
     ae_int_t m,
     ae_int_t n,
     ae_state *_state);
void cmatrixrndorthogonalfromtheleft(/* Complex */ ae_matrix* a,
     ae_int_t m,
     ae_int_t n,
     ae_state *_state);
void smatrixrndmultiply(/* Real    */ ae_matrix* a,
     ae_int_t n,
     ae_state *_state);
void hmatrixrndmultiply(/* Complex */ ae_matrix* a,
     ae_int_t n,
     ae_state *_state);
void sparsecreate(ae_int_t m,
     ae_int_t n,
     ae_int_t k,
     sparsematrix* s,
     ae_state *_state);
void sparsecreatebuf(ae_int_t m,
     ae_int_t n,
     ae_int_t k,
     sparsematrix* s,
     ae_state *_state);
void sparsecreatecrs(ae_int_t m,
     ae_int_t n,
     /* Integer */ ae_vector* ner,
     sparsematrix* s,
     ae_state *_state);
void sparsecreatecrsbuf(ae_int_t m,
     ae_int_t n,
     /* Integer */ ae_vector* ner,
     sparsematrix* s,
     ae_state *_state);
void sparsecreatesks(ae_int_t m,
     ae_int_t n,
     /* Integer */ ae_vector* d,
     /* Integer */ ae_vector* u,
     sparsematrix* s,
     ae_state *_state);
void sparsecreatesksbuf(ae_int_t m,
     ae_int_t n,
     /* Integer */ ae_vector* d,
     /* Integer */ ae_vector* u,
     sparsematrix* s,
     ae_state *_state);
void sparsecopy(sparsematrix* s0, sparsematrix* s1, ae_state *_state);
void sparsecopybuf(sparsematrix* s0, sparsematrix* s1, ae_state *_state);
void sparseswap(sparsematrix* s0, sparsematrix* s1, ae_state *_state);
void sparseadd(sparsematrix* s,
     ae_int_t i,
     ae_int_t j,
     double v,
     ae_state *_state);
void sparseset(sparsematrix* s,
     ae_int_t i,
     ae_int_t j,
     double v,
     ae_state *_state);
double sparseget(sparsematrix* s,
     ae_int_t i,
     ae_int_t j,
     ae_state *_state);
double sparsegetdiagonal(sparsematrix* s, ae_int_t i, ae_state *_state);
void sparsemv(sparsematrix* s,
     /* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     ae_state *_state);
void sparsemtv(sparsematrix* s,
     /* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     ae_state *_state);
void sparsemv2(sparsematrix* s,
     /* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y0,
     /* Real    */ ae_vector* y1,
     ae_state *_state);
void sparsesmv(sparsematrix* s,
     ae_bool isupper,
     /* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     ae_state *_state);
double sparsevsmv(sparsematrix* s,
     ae_bool isupper,
     /* Real    */ ae_vector* x,
     ae_state *_state);
void sparsemm(sparsematrix* s,
     /* Real    */ ae_matrix* a,
     ae_int_t k,
     /* Real    */ ae_matrix* b,
     ae_state *_state);
void sparsemtm(sparsematrix* s,
     /* Real    */ ae_matrix* a,
     ae_int_t k,
     /* Real    */ ae_matrix* b,
     ae_state *_state);
void sparsemm2(sparsematrix* s,
     /* Real    */ ae_matrix* a,
     ae_int_t k,
     /* Real    */ ae_matrix* b0,
     /* Real    */ ae_matrix* b1,
     ae_state *_state);
void sparsesmm(sparsematrix* s,
     ae_bool isupper,
     /* Real    */ ae_matrix* a,
     ae_int_t k,
     /* Real    */ ae_matrix* b,
     ae_state *_state);
void sparsetrmv(sparsematrix* s,
     ae_bool isupper,
     ae_bool isunit,
     ae_int_t optype,
     /* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     ae_state *_state);
void sparsetrsv(sparsematrix* s,
     ae_bool isupper,
     ae_bool isunit,
     ae_int_t optype,
     /* Real    */ ae_vector* x,
     ae_state *_state);
void sparseresizematrix(sparsematrix* s, ae_state *_state);
double sparsegetaveragelengthofchain(sparsematrix* s, ae_state *_state);
ae_bool sparseenumerate(sparsematrix* s,
     ae_int_t* t0,
     ae_int_t* t1,
     ae_int_t* i,
     ae_int_t* j,
     double* v,
     ae_state *_state);
ae_bool sparserewriteexisting(sparsematrix* s,
     ae_int_t i,
     ae_int_t j,
     double v,
     ae_state *_state);
void sparsegetrow(sparsematrix* s,
     ae_int_t i,
     /* Real    */ ae_vector* irow,
     ae_state *_state);
void sparsegetcompressedrow(sparsematrix* s,
     ae_int_t i,
     /* Integer */ ae_vector* colidx,
     /* Real    */ ae_vector* vals,
     ae_int_t* nzcnt,
     ae_state *_state);
void sparsetransposesks(sparsematrix* s, ae_state *_state);
void sparseconvertto(sparsematrix* s0, ae_int_t fmt, ae_state *_state);
void sparsecopytobuf(sparsematrix* s0,
     ae_int_t fmt,
     sparsematrix* s1,
     ae_state *_state);
void sparseconverttohash(sparsematrix* s, ae_state *_state);
void sparsecopytohash(sparsematrix* s0,
     sparsematrix* s1,
     ae_state *_state);
void sparsecopytohashbuf(sparsematrix* s0,
     sparsematrix* s1,
     ae_state *_state);
void sparseconverttocrs(sparsematrix* s, ae_state *_state);
void sparsecopytocrs(sparsematrix* s0, sparsematrix* s1, ae_state *_state);
void sparsecopytocrsbuf(sparsematrix* s0,
     sparsematrix* s1,
     ae_state *_state);
void sparseconverttosks(sparsematrix* s, ae_state *_state);
void sparsecopytosks(sparsematrix* s0, sparsematrix* s1, ae_state *_state);
void sparsecopytosksbuf(sparsematrix* s0,
     sparsematrix* s1,
     ae_state *_state);
ae_int_t sparsegetmatrixtype(sparsematrix* s, ae_state *_state);
ae_bool sparseishash(sparsematrix* s, ae_state *_state);
ae_bool sparseiscrs(sparsematrix* s, ae_state *_state);
ae_bool sparseissks(sparsematrix* s, ae_state *_state);
void sparsefree(sparsematrix* s, ae_state *_state);
ae_int_t sparsegetnrows(sparsematrix* s, ae_state *_state);
ae_int_t sparsegetncols(sparsematrix* s, ae_state *_state);
ae_int_t sparsegetuppercount(sparsematrix* s, ae_state *_state);
ae_int_t sparsegetlowercount(sparsematrix* s, ae_state *_state);
void _sparsematrix_init(void* _p, ae_state *_state);
void _sparsematrix_init_copy(void* _dst, void* _src, ae_state *_state);
void _sparsematrix_clear(void* _p);
void _sparsematrix_destroy(void* _p);
void _sparsebuffers_init(void* _p, ae_state *_state);
void _sparsebuffers_init_copy(void* _dst, void* _src, ae_state *_state);
void _sparsebuffers_clear(void* _p);
void _sparsebuffers_destroy(void* _p);
void rmatrixlu(/* Real    */ ae_matrix* a,
     ae_int_t m,
     ae_int_t n,
     /* Integer */ ae_vector* pivots,
     ae_state *_state);
void _pexec_rmatrixlu(/* Real    */ ae_matrix* a,
    ae_int_t m,
    ae_int_t n,
    /* Integer */ ae_vector* pivots, ae_state *_state);
void cmatrixlu(/* Complex */ ae_matrix* a,
     ae_int_t m,
     ae_int_t n,
     /* Integer */ ae_vector* pivots,
     ae_state *_state);
void _pexec_cmatrixlu(/* Complex */ ae_matrix* a,
    ae_int_t m,
    ae_int_t n,
    /* Integer */ ae_vector* pivots, ae_state *_state);
ae_bool hpdmatrixcholesky(/* Complex */ ae_matrix* a,
     ae_int_t n,
     ae_bool isupper,
     ae_state *_state);
ae_bool _pexec_hpdmatrixcholesky(/* Complex */ ae_matrix* a,
    ae_int_t n,
    ae_bool isupper, ae_state *_state);
ae_bool spdmatrixcholesky(/* Real    */ ae_matrix* a,
     ae_int_t n,
     ae_bool isupper,
     ae_state *_state);
ae_bool _pexec_spdmatrixcholesky(/* Real    */ ae_matrix* a,
    ae_int_t n,
    ae_bool isupper, ae_state *_state);
void spdmatrixcholeskyupdateadd1(/* Real    */ ae_matrix* a,
     ae_int_t n,
     ae_bool isupper,
     /* Real    */ ae_vector* u,
     ae_state *_state);
void spdmatrixcholeskyupdatefix(/* Real    */ ae_matrix* a,
     ae_int_t n,
     ae_bool isupper,
     /* Boolean */ ae_vector* fix,
     ae_state *_state);
void spdmatrixcholeskyupdateadd1buf(/* Real    */ ae_matrix* a,
     ae_int_t n,
     ae_bool isupper,
     /* Real    */ ae_vector* u,
     /* Real    */ ae_vector* bufr,
     ae_state *_state);
void spdmatrixcholeskyupdatefixbuf(/* Real    */ ae_matrix* a,
     ae_int_t n,
     ae_bool isupper,
     /* Boolean */ ae_vector* fix,
     /* Real    */ ae_vector* bufr,
     ae_state *_state);
ae_bool sparsecholeskyskyline(sparsematrix* a,
     ae_int_t n,
     ae_bool isupper,
     ae_state *_state);
ae_bool sparsecholeskyx(sparsematrix* a,
     ae_int_t n,
     ae_bool isupper,
     /* Integer */ ae_vector* p0,
     /* Integer */ ae_vector* p1,
     ae_int_t ordering,
     ae_int_t algo,
     ae_int_t fmt,
     sparsebuffers* buf,
     sparsematrix* c,
     ae_state *_state);
void rmatrixlup(/* Real    */ ae_matrix* a,
     ae_int_t m,
     ae_int_t n,
     /* Integer */ ae_vector* pivots,
     ae_state *_state);
void cmatrixlup(/* Complex */ ae_matrix* a,
     ae_int_t m,
     ae_int_t n,
     /* Integer */ ae_vector* pivots,
     ae_state *_state);
void rmatrixplu(/* Real    */ ae_matrix* a,
     ae_int_t m,
     ae_int_t n,
     /* Integer */ ae_vector* pivots,
     ae_state *_state);
void cmatrixplu(/* Complex */ ae_matrix* a,
     ae_int_t m,
     ae_int_t n,
     /* Integer */ ae_vector* pivots,
     ae_state *_state);
ae_bool spdmatrixcholeskyrec(/* Real    */ ae_matrix* a,
     ae_int_t offs,
     ae_int_t n,
     ae_bool isupper,
     /* Real    */ ae_vector* tmp,
     ae_state *_state);
double rmatrixrcond1(/* Real    */ ae_matrix* a,
     ae_int_t n,
     ae_state *_state);
double rmatrixrcondinf(/* Real    */ ae_matrix* a,
     ae_int_t n,
     ae_state *_state);
double spdmatrixrcond(/* Real    */ ae_matrix* a,
     ae_int_t n,
     ae_bool isupper,
     ae_state *_state);
double rmatrixtrrcond1(/* Real    */ ae_matrix* a,
     ae_int_t n,
     ae_bool isupper,
     ae_bool isunit,
     ae_state *_state);
double rmatrixtrrcondinf(/* Real    */ ae_matrix* a,
     ae_int_t n,
     ae_bool isupper,
     ae_bool isunit,
     ae_state *_state);
double hpdmatrixrcond(/* Complex */ ae_matrix* a,
     ae_int_t n,
     ae_bool isupper,
     ae_state *_state);
double cmatrixrcond1(/* Complex */ ae_matrix* a,
     ae_int_t n,
     ae_state *_state);
double cmatrixrcondinf(/* Complex */ ae_matrix* a,
     ae_int_t n,
     ae_state *_state);
double rmatrixlurcond1(/* Real    */ ae_matrix* lua,
     ae_int_t n,
     ae_state *_state);
double rmatrixlurcondinf(/* Real    */ ae_matrix* lua,
     ae_int_t n,
     ae_state *_state);
double spdmatrixcholeskyrcond(/* Real    */ ae_matrix* a,
     ae_int_t n,
     ae_bool isupper,
     ae_state *_state);
double hpdmatrixcholeskyrcond(/* Complex */ ae_matrix* a,
     ae_int_t n,
     ae_bool isupper,
     ae_state *_state);
double cmatrixlurcond1(/* Complex */ ae_matrix* lua,
     ae_int_t n,
     ae_state *_state);
double cmatrixlurcondinf(/* Complex */ ae_matrix* lua,
     ae_int_t n,
     ae_state *_state);
double cmatrixtrrcond1(/* Complex */ ae_matrix* a,
     ae_int_t n,
     ae_bool isupper,
     ae_bool isunit,
     ae_state *_state);
double cmatrixtrrcondinf(/* Complex */ ae_matrix* a,
     ae_int_t n,
     ae_bool isupper,
     ae_bool isunit,
     ae_state *_state);
double rcondthreshold(ae_state *_state);
void rmatrixluinverse(/* Real    */ ae_matrix* a,
     /* Integer */ ae_vector* pivots,
     ae_int_t n,
     ae_int_t* info,
     matinvreport* rep,
     ae_state *_state);
void _pexec_rmatrixluinverse(/* Real    */ ae_matrix* a,
    /* Integer */ ae_vector* pivots,
    ae_int_t n,
    ae_int_t* info,
    matinvreport* rep, ae_state *_state);
void rmatrixinverse(/* Real    */ ae_matrix* a,
     ae_int_t n,
     ae_int_t* info,
     matinvreport* rep,
     ae_state *_state);
void _pexec_rmatrixinverse(/* Real    */ ae_matrix* a,
    ae_int_t n,
    ae_int_t* info,
    matinvreport* rep, ae_state *_state);
void cmatrixluinverse(/* Complex */ ae_matrix* a,
     /* Integer */ ae_vector* pivots,
     ae_int_t n,
     ae_int_t* info,
     matinvreport* rep,
     ae_state *_state);
void _pexec_cmatrixluinverse(/* Complex */ ae_matrix* a,
    /* Integer */ ae_vector* pivots,
    ae_int_t n,
    ae_int_t* info,
    matinvreport* rep, ae_state *_state);
void cmatrixinverse(/* Complex */ ae_matrix* a,
     ae_int_t n,
     ae_int_t* info,
     matinvreport* rep,
     ae_state *_state);
void _pexec_cmatrixinverse(/* Complex */ ae_matrix* a,
    ae_int_t n,
    ae_int_t* info,
    matinvreport* rep, ae_state *_state);
void spdmatrixcholeskyinverse(/* Real    */ ae_matrix* a,
     ae_int_t n,
     ae_bool isupper,
     ae_int_t* info,
     matinvreport* rep,
     ae_state *_state);
void _pexec_spdmatrixcholeskyinverse(/* Real    */ ae_matrix* a,
    ae_int_t n,
    ae_bool isupper,
    ae_int_t* info,
    matinvreport* rep, ae_state *_state);
void spdmatrixinverse(/* Real    */ ae_matrix* a,
     ae_int_t n,
     ae_bool isupper,
     ae_int_t* info,
     matinvreport* rep,
     ae_state *_state);
void _pexec_spdmatrixinverse(/* Real    */ ae_matrix* a,
    ae_int_t n,
    ae_bool isupper,
    ae_int_t* info,
    matinvreport* rep, ae_state *_state);
void hpdmatrixcholeskyinverse(/* Complex */ ae_matrix* a,
     ae_int_t n,
     ae_bool isupper,
     ae_int_t* info,
     matinvreport* rep,
     ae_state *_state);
void _pexec_hpdmatrixcholeskyinverse(/* Complex */ ae_matrix* a,
    ae_int_t n,
    ae_bool isupper,
    ae_int_t* info,
    matinvreport* rep, ae_state *_state);
void hpdmatrixinverse(/* Complex */ ae_matrix* a,
     ae_int_t n,
     ae_bool isupper,
     ae_int_t* info,
     matinvreport* rep,
     ae_state *_state);
void _pexec_hpdmatrixinverse(/* Complex */ ae_matrix* a,
    ae_int_t n,
    ae_bool isupper,
    ae_int_t* info,
    matinvreport* rep, ae_state *_state);
void rmatrixtrinverse(/* Real    */ ae_matrix* a,
     ae_int_t n,
     ae_bool isupper,
     ae_bool isunit,
     ae_int_t* info,
     matinvreport* rep,
     ae_state *_state);
void _pexec_rmatrixtrinverse(/* Real    */ ae_matrix* a,
    ae_int_t n,
    ae_bool isupper,
    ae_bool isunit,
    ae_int_t* info,
    matinvreport* rep, ae_state *_state);
void cmatrixtrinverse(/* Complex */ ae_matrix* a,
     ae_int_t n,
     ae_bool isupper,
     ae_bool isunit,
     ae_int_t* info,
     matinvreport* rep,
     ae_state *_state);
void _pexec_cmatrixtrinverse(/* Complex */ ae_matrix* a,
    ae_int_t n,
    ae_bool isupper,
    ae_bool isunit,
    ae_int_t* info,
    matinvreport* rep, ae_state *_state);
void spdmatrixcholeskyinverserec(/* Real    */ ae_matrix* a,
     ae_int_t offs,
     ae_int_t n,
     ae_bool isupper,
     /* Real    */ ae_vector* tmp,
     ae_state *_state);
void _matinvreport_init(void* _p, ae_state *_state);
void _matinvreport_init_copy(void* _dst, void* _src, ae_state *_state);
void _matinvreport_clear(void* _p);
void _matinvreport_destroy(void* _p);
void fblscholeskysolve(/* Real    */ ae_matrix* cha,
     double sqrtscalea,
     ae_int_t n,
     ae_bool isupper,
     /* Real    */ ae_vector* xb,
     /* Real    */ ae_vector* tmp,
     ae_state *_state);
void fblssolvecgx(/* Real    */ ae_matrix* a,
     ae_int_t m,
     ae_int_t n,
     double alpha,
     /* Real    */ ae_vector* b,
     /* Real    */ ae_vector* x,
     /* Real    */ ae_vector* buf,
     ae_state *_state);
void fblscgcreate(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* b,
     ae_int_t n,
     fblslincgstate* state,
     ae_state *_state);
ae_bool fblscgiteration(fblslincgstate* state, ae_state *_state);
void fblssolvels(/* Real    */ ae_matrix* a,
     /* Real    */ ae_vector* b,
     ae_int_t m,
     ae_int_t n,
     /* Real    */ ae_vector* tmp0,
     /* Real    */ ae_vector* tmp1,
     /* Real    */ ae_vector* tmp2,
     ae_state *_state);
void _fblslincgstate_init(void* _p, ae_state *_state);
void _fblslincgstate_init_copy(void* _dst, void* _src, ae_state *_state);
void _fblslincgstate_clear(void* _p);
void _fblslincgstate_destroy(void* _p);
void normestimatorcreate(ae_int_t m,
     ae_int_t n,
     ae_int_t nstart,
     ae_int_t nits,
     normestimatorstate* state,
     ae_state *_state);
void normestimatorsetseed(normestimatorstate* state,
     ae_int_t seedval,
     ae_state *_state);
ae_bool normestimatoriteration(normestimatorstate* state,
     ae_state *_state);
void normestimatorestimatesparse(normestimatorstate* state,
     sparsematrix* a,
     ae_state *_state);
void normestimatorresults(normestimatorstate* state,
     double* nrm,
     ae_state *_state);
void normestimatorrestart(normestimatorstate* state, ae_state *_state);
void _normestimatorstate_init(void* _p, ae_state *_state);
void _normestimatorstate_init_copy(void* _dst, void* _src, ae_state *_state);
void _normestimatorstate_clear(void* _p);
void _normestimatorstate_destroy(void* _p);
double rmatrixludet(/* Real    */ ae_matrix* a,
     /* Integer */ ae_vector* pivots,
     ae_int_t n,
     ae_state *_state);
double rmatrixdet(/* Real    */ ae_matrix* a,
     ae_int_t n,
     ae_state *_state);
ae_complex cmatrixludet(/* Complex */ ae_matrix* a,
     /* Integer */ ae_vector* pivots,
     ae_int_t n,
     ae_state *_state);
ae_complex cmatrixdet(/* Complex */ ae_matrix* a,
     ae_int_t n,
     ae_state *_state);
double spdmatrixcholeskydet(/* Real    */ ae_matrix* a,
     ae_int_t n,
     ae_state *_state);
double spdmatrixdet(/* Real    */ ae_matrix* a,
     ae_int_t n,
     ae_bool isupper,
     ae_state *_state);
ae_bool smatrixgevd(/* Real    */ ae_matrix* a,
     ae_int_t n,
     ae_bool isuppera,
     /* Real    */ ae_matrix* b,
     ae_bool isupperb,
     ae_int_t zneeded,
     ae_int_t problemtype,
     /* Real    */ ae_vector* d,
     /* Real    */ ae_matrix* z,
     ae_state *_state);
ae_bool smatrixgevdreduce(/* Real    */ ae_matrix* a,
     ae_int_t n,
     ae_bool isuppera,
     /* Real    */ ae_matrix* b,
     ae_bool isupperb,
     ae_int_t problemtype,
     /* Real    */ ae_matrix* r,
     ae_bool* isupperr,
     ae_state *_state);
void rmatrixinvupdatesimple(/* Real    */ ae_matrix* inva,
     ae_int_t n,
     ae_int_t updrow,
     ae_int_t updcolumn,
     double updval,
     ae_state *_state);
void rmatrixinvupdaterow(/* Real    */ ae_matrix* inva,
     ae_int_t n,
     ae_int_t updrow,
     /* Real    */ ae_vector* v,
     ae_state *_state);
void rmatrixinvupdatecolumn(/* Real    */ ae_matrix* inva,
     ae_int_t n,
     ae_int_t updcolumn,
     /* Real    */ ae_vector* u,
     ae_state *_state);
void rmatrixinvupdateuv(/* Real    */ ae_matrix* inva,
     ae_int_t n,
     /* Real    */ ae_vector* u,
     /* Real    */ ae_vector* v,
     ae_state *_state);
ae_bool rmatrixschur(/* Real    */ ae_matrix* a,
     ae_int_t n,
     /* Real    */ ae_matrix* s,
     ae_state *_state);

}
#endif