/usr/include/libalglib/solvers.h is in libalglib-dev 3.10.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 | /*************************************************************************
ALGLIB 3.10.0 (source code generated 2015-08-19)
Copyright (c) Sergey Bochkanov (ALGLIB project).
>>> SOURCE LICENSE >>>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation (www.fsf.org); either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
A copy of the GNU General Public License is available at
http://www.fsf.org/licensing/licenses
>>> END OF LICENSE >>>
*************************************************************************/
#ifndef _solvers_pkg_h
#define _solvers_pkg_h
#include "ap.h"
#include "alglibinternal.h"
#include "linalg.h"
#include "alglibmisc.h"
/////////////////////////////////////////////////////////////////////////
//
// THIS SECTION CONTAINS COMPUTATIONAL CORE DECLARATIONS (DATATYPES)
//
/////////////////////////////////////////////////////////////////////////
namespace alglib_impl
{
typedef struct
{
double r1;
double rinf;
} densesolverreport;
typedef struct
{
double r2;
ae_matrix cx;
ae_int_t n;
ae_int_t k;
} densesolverlsreport;
typedef struct
{
normestimatorstate nes;
ae_vector rx;
ae_vector b;
ae_int_t n;
ae_int_t m;
ae_int_t prectype;
ae_vector ui;
ae_vector uip1;
ae_vector vi;
ae_vector vip1;
ae_vector omegai;
ae_vector omegaip1;
double alphai;
double alphaip1;
double betai;
double betaip1;
double phibari;
double phibarip1;
double phii;
double rhobari;
double rhobarip1;
double rhoi;
double ci;
double si;
double theta;
double lambdai;
ae_vector d;
double anorm;
double bnorm2;
double dnorm;
double r2;
ae_vector x;
ae_vector mv;
ae_vector mtv;
double epsa;
double epsb;
double epsc;
ae_int_t maxits;
ae_bool xrep;
ae_bool xupdated;
ae_bool needmv;
ae_bool needmtv;
ae_bool needmv2;
ae_bool needvmv;
ae_bool needprec;
ae_int_t repiterationscount;
ae_int_t repnmv;
ae_int_t repterminationtype;
ae_bool running;
ae_vector tmpd;
ae_vector tmpx;
rcommstate rstate;
} linlsqrstate;
typedef struct
{
ae_int_t iterationscount;
ae_int_t nmv;
ae_int_t terminationtype;
} linlsqrreport;
typedef struct
{
ae_vector rx;
ae_vector b;
ae_int_t n;
ae_int_t prectype;
ae_vector cx;
ae_vector cr;
ae_vector cz;
ae_vector p;
ae_vector r;
ae_vector z;
double alpha;
double beta;
double r2;
double meritfunction;
ae_vector x;
ae_vector mv;
ae_vector pv;
double vmv;
ae_vector startx;
double epsf;
ae_int_t maxits;
ae_int_t itsbeforerestart;
ae_int_t itsbeforerupdate;
ae_bool xrep;
ae_bool xupdated;
ae_bool needmv;
ae_bool needmtv;
ae_bool needmv2;
ae_bool needvmv;
ae_bool needprec;
ae_int_t repiterationscount;
ae_int_t repnmv;
ae_int_t repterminationtype;
ae_bool running;
ae_vector tmpd;
rcommstate rstate;
} lincgstate;
typedef struct
{
ae_int_t iterationscount;
ae_int_t nmv;
ae_int_t terminationtype;
double r2;
} lincgreport;
typedef struct
{
ae_int_t n;
ae_int_t m;
double epsf;
ae_int_t maxits;
ae_bool xrep;
double stpmax;
ae_vector x;
double f;
ae_vector fi;
ae_matrix j;
ae_bool needf;
ae_bool needfij;
ae_bool xupdated;
rcommstate rstate;
ae_int_t repiterationscount;
ae_int_t repnfunc;
ae_int_t repnjac;
ae_int_t repterminationtype;
ae_vector xbase;
double fbase;
double fprev;
ae_vector candstep;
ae_vector rightpart;
ae_vector cgbuf;
} nleqstate;
typedef struct
{
ae_int_t iterationscount;
ae_int_t nfunc;
ae_int_t njac;
ae_int_t terminationtype;
} nleqreport;
typedef struct
{
double maxerr;
} polynomialsolverreport;
}
/////////////////////////////////////////////////////////////////////////
//
// THIS SECTION CONTAINS C++ INTERFACE
//
/////////////////////////////////////////////////////////////////////////
namespace alglib
{
/*************************************************************************
*************************************************************************/
class _densesolverreport_owner
{
public:
_densesolverreport_owner();
_densesolverreport_owner(const _densesolverreport_owner &rhs);
_densesolverreport_owner& operator=(const _densesolverreport_owner &rhs);
virtual ~_densesolverreport_owner();
alglib_impl::densesolverreport* c_ptr();
alglib_impl::densesolverreport* c_ptr() const;
protected:
alglib_impl::densesolverreport *p_struct;
};
class densesolverreport : public _densesolverreport_owner
{
public:
densesolverreport();
densesolverreport(const densesolverreport &rhs);
densesolverreport& operator=(const densesolverreport &rhs);
virtual ~densesolverreport();
double &r1;
double &rinf;
};
/*************************************************************************
*************************************************************************/
class _densesolverlsreport_owner
{
public:
_densesolverlsreport_owner();
_densesolverlsreport_owner(const _densesolverlsreport_owner &rhs);
_densesolverlsreport_owner& operator=(const _densesolverlsreport_owner &rhs);
virtual ~_densesolverlsreport_owner();
alglib_impl::densesolverlsreport* c_ptr();
alglib_impl::densesolverlsreport* c_ptr() const;
protected:
alglib_impl::densesolverlsreport *p_struct;
};
class densesolverlsreport : public _densesolverlsreport_owner
{
public:
densesolverlsreport();
densesolverlsreport(const densesolverlsreport &rhs);
densesolverlsreport& operator=(const densesolverlsreport &rhs);
virtual ~densesolverlsreport();
double &r2;
real_2d_array cx;
ae_int_t &n;
ae_int_t &k;
};
/*************************************************************************
This object stores state of the LinLSQR method.
You should use ALGLIB functions to work with this object.
*************************************************************************/
class _linlsqrstate_owner
{
public:
_linlsqrstate_owner();
_linlsqrstate_owner(const _linlsqrstate_owner &rhs);
_linlsqrstate_owner& operator=(const _linlsqrstate_owner &rhs);
virtual ~_linlsqrstate_owner();
alglib_impl::linlsqrstate* c_ptr();
alglib_impl::linlsqrstate* c_ptr() const;
protected:
alglib_impl::linlsqrstate *p_struct;
};
class linlsqrstate : public _linlsqrstate_owner
{
public:
linlsqrstate();
linlsqrstate(const linlsqrstate &rhs);
linlsqrstate& operator=(const linlsqrstate &rhs);
virtual ~linlsqrstate();
};
/*************************************************************************
*************************************************************************/
class _linlsqrreport_owner
{
public:
_linlsqrreport_owner();
_linlsqrreport_owner(const _linlsqrreport_owner &rhs);
_linlsqrreport_owner& operator=(const _linlsqrreport_owner &rhs);
virtual ~_linlsqrreport_owner();
alglib_impl::linlsqrreport* c_ptr();
alglib_impl::linlsqrreport* c_ptr() const;
protected:
alglib_impl::linlsqrreport *p_struct;
};
class linlsqrreport : public _linlsqrreport_owner
{
public:
linlsqrreport();
linlsqrreport(const linlsqrreport &rhs);
linlsqrreport& operator=(const linlsqrreport &rhs);
virtual ~linlsqrreport();
ae_int_t &iterationscount;
ae_int_t &nmv;
ae_int_t &terminationtype;
};
/*************************************************************************
This object stores state of the linear CG method.
You should use ALGLIB functions to work with this object.
Never try to access its fields directly!
*************************************************************************/
class _lincgstate_owner
{
public:
_lincgstate_owner();
_lincgstate_owner(const _lincgstate_owner &rhs);
_lincgstate_owner& operator=(const _lincgstate_owner &rhs);
virtual ~_lincgstate_owner();
alglib_impl::lincgstate* c_ptr();
alglib_impl::lincgstate* c_ptr() const;
protected:
alglib_impl::lincgstate *p_struct;
};
class lincgstate : public _lincgstate_owner
{
public:
lincgstate();
lincgstate(const lincgstate &rhs);
lincgstate& operator=(const lincgstate &rhs);
virtual ~lincgstate();
};
/*************************************************************************
*************************************************************************/
class _lincgreport_owner
{
public:
_lincgreport_owner();
_lincgreport_owner(const _lincgreport_owner &rhs);
_lincgreport_owner& operator=(const _lincgreport_owner &rhs);
virtual ~_lincgreport_owner();
alglib_impl::lincgreport* c_ptr();
alglib_impl::lincgreport* c_ptr() const;
protected:
alglib_impl::lincgreport *p_struct;
};
class lincgreport : public _lincgreport_owner
{
public:
lincgreport();
lincgreport(const lincgreport &rhs);
lincgreport& operator=(const lincgreport &rhs);
virtual ~lincgreport();
ae_int_t &iterationscount;
ae_int_t &nmv;
ae_int_t &terminationtype;
double &r2;
};
/*************************************************************************
*************************************************************************/
class _nleqstate_owner
{
public:
_nleqstate_owner();
_nleqstate_owner(const _nleqstate_owner &rhs);
_nleqstate_owner& operator=(const _nleqstate_owner &rhs);
virtual ~_nleqstate_owner();
alglib_impl::nleqstate* c_ptr();
alglib_impl::nleqstate* c_ptr() const;
protected:
alglib_impl::nleqstate *p_struct;
};
class nleqstate : public _nleqstate_owner
{
public:
nleqstate();
nleqstate(const nleqstate &rhs);
nleqstate& operator=(const nleqstate &rhs);
virtual ~nleqstate();
ae_bool &needf;
ae_bool &needfij;
ae_bool &xupdated;
double &f;
real_1d_array fi;
real_2d_array j;
real_1d_array x;
};
/*************************************************************************
*************************************************************************/
class _nleqreport_owner
{
public:
_nleqreport_owner();
_nleqreport_owner(const _nleqreport_owner &rhs);
_nleqreport_owner& operator=(const _nleqreport_owner &rhs);
virtual ~_nleqreport_owner();
alglib_impl::nleqreport* c_ptr();
alglib_impl::nleqreport* c_ptr() const;
protected:
alglib_impl::nleqreport *p_struct;
};
class nleqreport : public _nleqreport_owner
{
public:
nleqreport();
nleqreport(const nleqreport &rhs);
nleqreport& operator=(const nleqreport &rhs);
virtual ~nleqreport();
ae_int_t &iterationscount;
ae_int_t &nfunc;
ae_int_t &njac;
ae_int_t &terminationtype;
};
/*************************************************************************
*************************************************************************/
class _polynomialsolverreport_owner
{
public:
_polynomialsolverreport_owner();
_polynomialsolverreport_owner(const _polynomialsolverreport_owner &rhs);
_polynomialsolverreport_owner& operator=(const _polynomialsolverreport_owner &rhs);
virtual ~_polynomialsolverreport_owner();
alglib_impl::polynomialsolverreport* c_ptr();
alglib_impl::polynomialsolverreport* c_ptr() const;
protected:
alglib_impl::polynomialsolverreport *p_struct;
};
class polynomialsolverreport : public _polynomialsolverreport_owner
{
public:
polynomialsolverreport();
polynomialsolverreport(const polynomialsolverreport &rhs);
polynomialsolverreport& operator=(const polynomialsolverreport &rhs);
virtual ~polynomialsolverreport();
double &maxerr;
};
/*************************************************************************
Dense solver for A*x=b with N*N real matrix A and N*1 real vectorx x and
b. This is "slow-but-feature rich" version of the linear solver. Faster
version is RMatrixSolveFast() function.
Algorithm features:
* automatic detection of degenerate cases
* condition number estimation
* iterative refinement
* O(N^3) complexity
IMPORTANT: ! this function is NOT the most efficient linear solver provided
! by ALGLIB. It estimates condition number of linear system
! and performs iterative refinement, which results in
! significant performance penalty when compared with "fast"
! version which just performs LU decomposition and calls
! triangular solver.
!
! This performance penalty is especially visible in the
! multithreaded mode, because both condition number estimation
! and iterative refinement are inherently sequential
! calculations. It also very significant on small matrices.
!
! Thus, if you need high performance and if you are pretty sure
! that your system is well conditioned, we strongly recommend
! you to use faster solver, RMatrixSolveFast() function.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions. Generally, MKL accelerates any
! problem whose size is at least 128, with best efficiency achieved for
! N's larger than 512.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. We should note that LU decomposition is harder to
! parallelize than, say, matrix-matrix product - this algorithm has
! many internal synchronization points which can not be avoided. However
! parallelism starts to be profitable starting from N=1024, achieving
! near-linear speedup for N=4096 or higher.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
INPUT PARAMETERS
A - array[0..N-1,0..N-1], system matrix
N - size of A
B - array[0..N-1], right part
OUTPUT PARAMETERS
Info - return code:
* -3 matrix is very badly conditioned or exactly singular.
* -1 N<=0 was passed
* 1 task is solved (but matrix A may be ill-conditioned,
check R1/RInf parameters for condition numbers).
Rep - additional report, following fields are set:
* rep.r1 condition number in 1-norm
* rep.rinf condition number in inf-norm
X - array[N], it contains:
* info>0 => solution
* info=-3 => filled by zeros
-- ALGLIB --
Copyright 27.01.2010 by Bochkanov Sergey
*************************************************************************/
void rmatrixsolve(const real_2d_array &a, const ae_int_t n, const real_1d_array &b, ae_int_t &info, densesolverreport &rep, real_1d_array &x);
void smp_rmatrixsolve(const real_2d_array &a, const ae_int_t n, const real_1d_array &b, ae_int_t &info, densesolverreport &rep, real_1d_array &x);
/*************************************************************************
Dense solver.
This subroutine solves a system A*x=b, where A is NxN non-denegerate
real matrix, x and b are vectors. This is a "fast" version of linear
solver which does NOT provide any additional functions like condition
number estimation or iterative refinement.
Algorithm features:
* efficient algorithm O(N^3) complexity
* no performance overhead from additional functionality
If you need condition number estimation or iterative refinement, use more
feature-rich version - RMatrixSolve().
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions. Generally, MKL accelerates any
! problem whose size is at least 128, with best efficiency achieved for
! N's larger than 512.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. We should note that LU decomposition is harder to
! parallelize than, say, matrix-matrix product - this algorithm has
! many internal synchronization points which can not be avoided. However
! parallelism starts to be profitable starting from N=1024, achieving
! near-linear speedup for N=4096 or higher.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
INPUT PARAMETERS
A - array[0..N-1,0..N-1], system matrix
N - size of A
B - array[0..N-1], right part
OUTPUT PARAMETERS
Info - return code:
* -3 matrix is exactly singular (ill conditioned matrices
are not recognized).
* -1 N<=0 was passed
* 1 task is solved
B - array[N]:
* info>0 => overwritten by solution
* info=-3 => filled by zeros
-- ALGLIB --
Copyright 16.03.2015 by Bochkanov Sergey
*************************************************************************/
void rmatrixsolvefast(const real_2d_array &a, const ae_int_t n, const real_1d_array &b, ae_int_t &info);
void smp_rmatrixsolvefast(const real_2d_array &a, const ae_int_t n, const real_1d_array &b, ae_int_t &info);
/*************************************************************************
Dense solver.
Similar to RMatrixSolve() but solves task with multiple right parts (where
b and x are NxM matrices). This is "slow-but-robust" version of linear
solver with additional functionality like condition number estimation.
There also exists faster version - RMatrixSolveMFast().
Algorithm features:
* automatic detection of degenerate cases
* condition number estimation
* optional iterative refinement
* O(N^3+M*N^2) complexity
IMPORTANT: ! this function is NOT the most efficient linear solver provided
! by ALGLIB. It estimates condition number of linear system
! and performs iterative refinement, which results in
! significant performance penalty when compared with "fast"
! version which just performs LU decomposition and calls
! triangular solver.
!
! This performance penalty is especially visible in the
! multithreaded mode, because both condition number estimation
! and iterative refinement are inherently sequential
! calculations. It also very significant on small matrices.
!
! Thus, if you need high performance and if you are pretty sure
! that your system is well conditioned, we strongly recommend
! you to use faster solver, RMatrixSolveMFast() function.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions. Generally, MKL accelerates any
! problem whose size is at least 128, with best efficiency achieved for
! N's larger than 512.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. We should note that LU decomposition is harder to
! parallelize than, say, matrix-matrix product - this algorithm has
! many internal synchronization points which can not be avoided. However
! parallelism starts to be profitable starting from N=1024, achieving
! near-linear speedup for N=4096 or higher.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
INPUT PARAMETERS
A - array[0..N-1,0..N-1], system matrix
N - size of A
B - array[0..N-1,0..M-1], right part
M - right part size
RFS - iterative refinement switch:
* True - refinement is used.
Less performance, more precision.
* False - refinement is not used.
More performance, less precision.
OUTPUT PARAMETERS
Info - return code:
* -3 A is ill conditioned or singular.
X is filled by zeros in such cases.
* -1 N<=0 was passed
* 1 task is solved (but matrix A may be ill-conditioned,
check R1/RInf parameters for condition numbers).
Rep - additional report, following fields are set:
* rep.r1 condition number in 1-norm
* rep.rinf condition number in inf-norm
X - array[N], it contains:
* info>0 => solution
* info=-3 => filled by zeros
-- ALGLIB --
Copyright 27.01.2010 by Bochkanov Sergey
*************************************************************************/
void rmatrixsolvem(const real_2d_array &a, const ae_int_t n, const real_2d_array &b, const ae_int_t m, const bool rfs, ae_int_t &info, densesolverreport &rep, real_2d_array &x);
void smp_rmatrixsolvem(const real_2d_array &a, const ae_int_t n, const real_2d_array &b, const ae_int_t m, const bool rfs, ae_int_t &info, densesolverreport &rep, real_2d_array &x);
/*************************************************************************
Dense solver.
Similar to RMatrixSolve() but solves task with multiple right parts (where
b and x are NxM matrices). This is "fast" version of linear solver which
does NOT offer additional functions like condition number estimation or
iterative refinement.
Algorithm features:
* O(N^3+M*N^2) complexity
* no additional functionality, highest performance
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions. Generally, MKL accelerates any
! problem whose size is at least 128, with best efficiency achieved for
! N's larger than 512.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. We should note that LU decomposition is harder to
! parallelize than, say, matrix-matrix product - this algorithm has
! many internal synchronization points which can not be avoided. However
! parallelism starts to be profitable starting from N=1024, achieving
! near-linear speedup for N=4096 or higher.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
INPUT PARAMETERS
A - array[0..N-1,0..N-1], system matrix
N - size of A
B - array[0..N-1,0..M-1], right part
M - right part size
RFS - iterative refinement switch:
* True - refinement is used.
Less performance, more precision.
* False - refinement is not used.
More performance, less precision.
OUTPUT PARAMETERS
Info - return code:
* -3 matrix is exactly singular (ill conditioned matrices
are not recognized).
X is filled by zeros in such cases.
* -1 N<=0 was passed
* 1 task is solved
Rep - additional report, following fields are set:
* rep.r1 condition number in 1-norm
* rep.rinf condition number in inf-norm
B - array[N]:
* info>0 => overwritten by solution
* info=-3 => filled by zeros
-- ALGLIB --
Copyright 27.01.2010 by Bochkanov Sergey
*************************************************************************/
void rmatrixsolvemfast(const real_2d_array &a, const ae_int_t n, const real_2d_array &b, const ae_int_t m, ae_int_t &info);
void smp_rmatrixsolvemfast(const real_2d_array &a, const ae_int_t n, const real_2d_array &b, const ae_int_t m, ae_int_t &info);
/*************************************************************************
Dense solver.
This subroutine solves a system A*x=b, where A is NxN non-denegerate
real matrix given by its LU decomposition, x and b are real vectors. This
is "slow-but-robust" version of the linear LU-based solver. Faster version
is RMatrixLUSolveFast() function.
Algorithm features:
* automatic detection of degenerate cases
* O(N^2) complexity
* condition number estimation
No iterative refinement is provided because exact form of original matrix
is not known to subroutine. Use RMatrixSolve or RMatrixMixedSolve if you
need iterative refinement.
IMPORTANT: ! this function is NOT the most efficient linear solver provided
! by ALGLIB. It estimates condition number of linear system,
! which results in 10-15x performance penalty when compared
! with "fast" version which just calls triangular solver.
!
! This performance penalty is insignificant when compared with
! cost of large LU decomposition. However, if you call this
! function many times for the same left side, this overhead
! BECOMES significant. It also becomes significant for small-
! scale problems.
!
! In such cases we strongly recommend you to use faster solver,
! RMatrixLUSolveFast() function.
INPUT PARAMETERS
LUA - array[N,N], LU decomposition, RMatrixLU result
P - array[N], pivots array, RMatrixLU result
N - size of A
B - array[N], right part
OUTPUT PARAMETERS
Info - return code:
* -3 matrix is very badly conditioned or exactly singular.
* -1 N<=0 was passed
* 1 task is solved (but matrix A may be ill-conditioned,
check R1/RInf parameters for condition numbers).
Rep - additional report, following fields are set:
* rep.r1 condition number in 1-norm
* rep.rinf condition number in inf-norm
X - array[N], it contains:
* info>0 => solution
* info=-3 => filled by zeros
-- ALGLIB --
Copyright 27.01.2010 by Bochkanov Sergey
*************************************************************************/
void rmatrixlusolve(const real_2d_array &lua, const integer_1d_array &p, const ae_int_t n, const real_1d_array &b, ae_int_t &info, densesolverreport &rep, real_1d_array &x);
/*************************************************************************
Dense solver.
This subroutine solves a system A*x=b, where A is NxN non-denegerate
real matrix given by its LU decomposition, x and b are real vectors. This
is "fast-without-any-checks" version of the linear LU-based solver. Slower
but more robust version is RMatrixLUSolve() function.
Algorithm features:
* O(N^2) complexity
* fast algorithm without ANY additional checks, just triangular solver
INPUT PARAMETERS
LUA - array[0..N-1,0..N-1], LU decomposition, RMatrixLU result
P - array[0..N-1], pivots array, RMatrixLU result
N - size of A
B - array[0..N-1], right part
OUTPUT PARAMETERS
Info - return code:
* -3 matrix is exactly singular (ill conditioned matrices
are not recognized).
X is filled by zeros in such cases.
* -1 N<=0 was passed
* 1 task is solved
B - array[N]:
* info>0 => overwritten by solution
* info=-3 => filled by zeros
-- ALGLIB --
Copyright 18.03.2015 by Bochkanov Sergey
*************************************************************************/
void rmatrixlusolvefast(const real_2d_array &lua, const integer_1d_array &p, const ae_int_t n, const real_1d_array &b, ae_int_t &info);
/*************************************************************************
Dense solver.
Similar to RMatrixLUSolve() but solves task with multiple right parts
(where b and x are NxM matrices). This is "robust-but-slow" version of
LU-based solver which performs additional checks for non-degeneracy of
inputs (condition number estimation). If you need best performance, use
"fast-without-any-checks" version, RMatrixLUSolveMFast().
Algorithm features:
* automatic detection of degenerate cases
* O(M*N^2) complexity
* condition number estimation
No iterative refinement is provided because exact form of original matrix
is not known to subroutine. Use RMatrixSolve or RMatrixMixedSolve if you
need iterative refinement.
IMPORTANT: ! this function is NOT the most efficient linear solver provided
! by ALGLIB. It estimates condition number of linear system,
! which results in significant performance penalty when
! compared with "fast" version which just calls triangular
! solver.
!
! This performance penalty is especially apparent when you use
! ALGLIB parallel capabilities (condition number estimation is
! inherently sequential). It also becomes significant for
! small-scale problems.
!
! In such cases we strongly recommend you to use faster solver,
! RMatrixLUSolveMFast() function.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions. Generally, MKL accelerates any
! problem whose size is at least 128, with best efficiency achieved for
! N's larger than 512.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. Triangular solver is relatively easy to parallelize.
! However, parallelization will be efficient only for large number of
! right parts M.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
INPUT PARAMETERS
LUA - array[N,N], LU decomposition, RMatrixLU result
P - array[N], pivots array, RMatrixLU result
N - size of A
B - array[0..N-1,0..M-1], right part
M - right part size
OUTPUT PARAMETERS
Info - return code:
* -3 matrix is very badly conditioned or exactly singular.
X is filled by zeros in such cases.
* -1 N<=0 was passed
* 1 task is solved (but matrix A may be ill-conditioned,
check R1/RInf parameters for condition numbers).
Rep - additional report, following fields are set:
* rep.r1 condition number in 1-norm
* rep.rinf condition number in inf-norm
X - array[N,M], it contains:
* info>0 => solution
* info=-3 => filled by zeros
-- ALGLIB --
Copyright 27.01.2010 by Bochkanov Sergey
*************************************************************************/
void rmatrixlusolvem(const real_2d_array &lua, const integer_1d_array &p, const ae_int_t n, const real_2d_array &b, const ae_int_t m, ae_int_t &info, densesolverreport &rep, real_2d_array &x);
void smp_rmatrixlusolvem(const real_2d_array &lua, const integer_1d_array &p, const ae_int_t n, const real_2d_array &b, const ae_int_t m, ae_int_t &info, densesolverreport &rep, real_2d_array &x);
/*************************************************************************
Dense solver.
Similar to RMatrixLUSolve() but solves task with multiple right parts,
where b and x are NxM matrices. This is "fast-without-any-checks" version
of LU-based solver. It does not estimate condition number of a system,
so it is extremely fast. If you need better detection of near-degenerate
cases, use RMatrixLUSolveM() function.
Algorithm features:
* O(M*N^2) complexity
* fast algorithm without ANY additional checks, just triangular solver
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions. Generally, MKL accelerates any
! problem whose size is at least 128, with best efficiency achieved for
! N's larger than 512.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. Triangular solver is relatively easy to parallelize.
! However, parallelization will be efficient only for large number of
! right parts M.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
INPUT PARAMETERS:
LUA - array[0..N-1,0..N-1], LU decomposition, RMatrixLU result
P - array[0..N-1], pivots array, RMatrixLU result
N - size of A
B - array[0..N-1,0..M-1], right part
M - right part size
OUTPUT PARAMETERS:
Info - return code:
* -3 matrix is exactly singular (ill conditioned matrices
are not recognized).
* -1 N<=0 was passed
* 1 task is solved
B - array[N,M]:
* info>0 => overwritten by solution
* info=-3 => filled by zeros
-- ALGLIB --
Copyright 18.03.2015 by Bochkanov Sergey
*************************************************************************/
void rmatrixlusolvemfast(const real_2d_array &lua, const integer_1d_array &p, const ae_int_t n, const real_2d_array &b, const ae_int_t m, ae_int_t &info);
void smp_rmatrixlusolvemfast(const real_2d_array &lua, const integer_1d_array &p, const ae_int_t n, const real_2d_array &b, const ae_int_t m, ae_int_t &info);
/*************************************************************************
Dense solver.
This subroutine solves a system A*x=b, where BOTH ORIGINAL A AND ITS
LU DECOMPOSITION ARE KNOWN. You can use it if for some reasons you have
both A and its LU decomposition.
Algorithm features:
* automatic detection of degenerate cases
* condition number estimation
* iterative refinement
* O(N^2) complexity
INPUT PARAMETERS
A - array[0..N-1,0..N-1], system matrix
LUA - array[0..N-1,0..N-1], LU decomposition, RMatrixLU result
P - array[0..N-1], pivots array, RMatrixLU result
N - size of A
B - array[0..N-1], right part
OUTPUT PARAMETERS
Info - return code:
* -3 matrix is very badly conditioned or exactly singular.
* -1 N<=0 was passed
* 1 task is solved (but matrix A may be ill-conditioned,
check R1/RInf parameters for condition numbers).
Rep - additional report, following fields are set:
* rep.r1 condition number in 1-norm
* rep.rinf condition number in inf-norm
X - array[N], it contains:
* info>0 => solution
* info=-3 => filled by zeros
-- ALGLIB --
Copyright 27.01.2010 by Bochkanov Sergey
*************************************************************************/
void rmatrixmixedsolve(const real_2d_array &a, const real_2d_array &lua, const integer_1d_array &p, const ae_int_t n, const real_1d_array &b, ae_int_t &info, densesolverreport &rep, real_1d_array &x);
/*************************************************************************
Dense solver.
Similar to RMatrixMixedSolve() but solves task with multiple right parts
(where b and x are NxM matrices).
Algorithm features:
* automatic detection of degenerate cases
* condition number estimation
* iterative refinement
* O(M*N^2) complexity
INPUT PARAMETERS
A - array[0..N-1,0..N-1], system matrix
LUA - array[0..N-1,0..N-1], LU decomposition, RMatrixLU result
P - array[0..N-1], pivots array, RMatrixLU result
N - size of A
B - array[0..N-1,0..M-1], right part
M - right part size
OUTPUT PARAMETERS
Info - return code:
* -3 matrix is very badly conditioned or exactly singular.
* -1 N<=0 was passed
* 1 task is solved (but matrix A may be ill-conditioned,
check R1/RInf parameters for condition numbers).
Rep - additional report, following fields are set:
* rep.r1 condition number in 1-norm
* rep.rinf condition number in inf-norm
X - array[N,M], it contains:
* info>0 => solution
* info=-3 => filled by zeros
-- ALGLIB --
Copyright 27.01.2010 by Bochkanov Sergey
*************************************************************************/
void rmatrixmixedsolvem(const real_2d_array &a, const real_2d_array &lua, const integer_1d_array &p, const ae_int_t n, const real_2d_array &b, const ae_int_t m, ae_int_t &info, densesolverreport &rep, real_2d_array &x);
/*************************************************************************
Complex dense solver for A*X=B with N*N complex matrix A, N*M complex
matrices X and B. "Slow-but-feature-rich" version which provides
additional functions, at the cost of slower performance. Faster version
may be invoked with CMatrixSolveMFast() function.
Algorithm features:
* automatic detection of degenerate cases
* condition number estimation
* iterative refinement
* O(N^3+M*N^2) complexity
IMPORTANT: ! this function is NOT the most efficient linear solver provided
! by ALGLIB. It estimates condition number of linear system
! and performs iterative refinement, which results in
! significant performance penalty when compared with "fast"
! version which just performs LU decomposition and calls
! triangular solver.
!
! This performance penalty is especially visible in the
! multithreaded mode, because both condition number estimation
! and iterative refinement are inherently sequential
! calculations.
!
! Thus, if you need high performance and if you are pretty sure
! that your system is well conditioned, we strongly recommend
! you to use faster solver, CMatrixSolveMFast() function.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions. Generally, MKL accelerates any
! problem whose size is at least 128, with best efficiency achieved for
! N's larger than 512.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. We should note that LU decomposition is harder to
! parallelize than, say, matrix-matrix product - this algorithm has
! many internal synchronization points which can not be avoided. However
! parallelism starts to be profitable starting from N=1024, achieving
! near-linear speedup for N=4096 or higher.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
INPUT PARAMETERS
A - array[0..N-1,0..N-1], system matrix
N - size of A
B - array[0..N-1,0..M-1], right part
M - right part size
RFS - iterative refinement switch:
* True - refinement is used.
Less performance, more precision.
* False - refinement is not used.
More performance, less precision.
OUTPUT PARAMETERS
Info - return code:
* -3 matrix is very badly conditioned or exactly singular.
X is filled by zeros in such cases.
* -1 N<=0 was passed
* 1 task is solved (but matrix A may be ill-conditioned,
check R1/RInf parameters for condition numbers).
Rep - additional report, following fields are set:
* rep.r1 condition number in 1-norm
* rep.rinf condition number in inf-norm
X - array[N,M], it contains:
* info>0 => solution
* info=-3 => filled by zeros
-- ALGLIB --
Copyright 27.01.2010 by Bochkanov Sergey
*************************************************************************/
void cmatrixsolvem(const complex_2d_array &a, const ae_int_t n, const complex_2d_array &b, const ae_int_t m, const bool rfs, ae_int_t &info, densesolverreport &rep, complex_2d_array &x);
void smp_cmatrixsolvem(const complex_2d_array &a, const ae_int_t n, const complex_2d_array &b, const ae_int_t m, const bool rfs, ae_int_t &info, densesolverreport &rep, complex_2d_array &x);
/*************************************************************************
Complex dense solver for A*X=B with N*N complex matrix A, N*M complex
matrices X and B. "Fast-but-lightweight" version which provides just
triangular solver - and no additional functions like iterative refinement
or condition number estimation.
Algorithm features:
* O(N^3+M*N^2) complexity
* no additional time consuming functions
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions. Generally, MKL accelerates any
! problem whose size is at least 128, with best efficiency achieved for
! N's larger than 512.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. We should note that LU decomposition is harder to
! parallelize than, say, matrix-matrix product - this algorithm has
! many internal synchronization points which can not be avoided. However
! parallelism starts to be profitable starting from N=1024, achieving
! near-linear speedup for N=4096 or higher.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
INPUT PARAMETERS
A - array[0..N-1,0..N-1], system matrix
N - size of A
B - array[0..N-1,0..M-1], right part
M - right part size
OUTPUT PARAMETERS:
Info - return code:
* -3 matrix is exactly singular (ill conditioned matrices
are not recognized).
* -1 N<=0 was passed
* 1 task is solved
B - array[N,M]:
* info>0 => overwritten by solution
* info=-3 => filled by zeros
-- ALGLIB --
Copyright 16.03.2015 by Bochkanov Sergey
*************************************************************************/
void cmatrixsolvemfast(const complex_2d_array &a, const ae_int_t n, const complex_2d_array &b, const ae_int_t m, ae_int_t &info);
void smp_cmatrixsolvemfast(const complex_2d_array &a, const ae_int_t n, const complex_2d_array &b, const ae_int_t m, ae_int_t &info);
/*************************************************************************
Complex dense solver for A*x=B with N*N complex matrix A and N*1 complex
vectors x and b. "Slow-but-feature-rich" version of the solver.
Algorithm features:
* automatic detection of degenerate cases
* condition number estimation
* iterative refinement
* O(N^3) complexity
IMPORTANT: ! this function is NOT the most efficient linear solver provided
! by ALGLIB. It estimates condition number of linear system
! and performs iterative refinement, which results in
! significant performance penalty when compared with "fast"
! version which just performs LU decomposition and calls
! triangular solver.
!
! This performance penalty is especially visible in the
! multithreaded mode, because both condition number estimation
! and iterative refinement are inherently sequential
! calculations.
!
! Thus, if you need high performance and if you are pretty sure
! that your system is well conditioned, we strongly recommend
! you to use faster solver, CMatrixSolveFast() function.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions. Generally, MKL accelerates any
! problem whose size is at least 128, with best efficiency achieved for
! N's larger than 512.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. We should note that LU decomposition is harder to
! parallelize than, say, matrix-matrix product - this algorithm has
! many internal synchronization points which can not be avoided. However
! parallelism starts to be profitable starting from N=1024, achieving
! near-linear speedup for N=4096 or higher.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
INPUT PARAMETERS
A - array[0..N-1,0..N-1], system matrix
N - size of A
B - array[0..N-1], right part
OUTPUT PARAMETERS
Info - return code:
* -3 matrix is very badly conditioned or exactly singular.
* -1 N<=0 was passed
* 1 task is solved (but matrix A may be ill-conditioned,
check R1/RInf parameters for condition numbers).
Rep - additional report, following fields are set:
* rep.r1 condition number in 1-norm
* rep.rinf condition number in inf-norm
X - array[N], it contains:
* info>0 => solution
* info=-3 => filled by zeros
-- ALGLIB --
Copyright 27.01.2010 by Bochkanov Sergey
*************************************************************************/
void cmatrixsolve(const complex_2d_array &a, const ae_int_t n, const complex_1d_array &b, ae_int_t &info, densesolverreport &rep, complex_1d_array &x);
void smp_cmatrixsolve(const complex_2d_array &a, const ae_int_t n, const complex_1d_array &b, ae_int_t &info, densesolverreport &rep, complex_1d_array &x);
/*************************************************************************
Complex dense solver for A*x=B with N*N complex matrix A and N*1 complex
vectors x and b. "Fast-but-lightweight" version of the solver.
Algorithm features:
* O(N^3) complexity
* no additional time consuming features, just triangular solver
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions. Generally, MKL accelerates any
! problem whose size is at least 128, with best efficiency achieved for
! N's larger than 512.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. We should note that LU decomposition is harder to
! parallelize than, say, matrix-matrix product - this algorithm has
! many internal synchronization points which can not be avoided. However
! parallelism starts to be profitable starting from N=1024, achieving
! near-linear speedup for N=4096 or higher.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
INPUT PARAMETERS:
A - array[0..N-1,0..N-1], system matrix
N - size of A
B - array[0..N-1], right part
OUTPUT PARAMETERS:
Info - return code:
* -3 matrix is exactly singular (ill conditioned matrices
are not recognized).
* -1 N<=0 was passed
* 1 task is solved
B - array[N]:
* info>0 => overwritten by solution
* info=-3 => filled by zeros
-- ALGLIB --
Copyright 27.01.2010 by Bochkanov Sergey
*************************************************************************/
void cmatrixsolvefast(const complex_2d_array &a, const ae_int_t n, const complex_1d_array &b, ae_int_t &info);
void smp_cmatrixsolvefast(const complex_2d_array &a, const ae_int_t n, const complex_1d_array &b, ae_int_t &info);
/*************************************************************************
Dense solver for A*X=B with N*N complex A given by its LU decomposition,
and N*M matrices X and B (multiple right sides). "Slow-but-feature-rich"
version of the solver.
Algorithm features:
* automatic detection of degenerate cases
* O(M*N^2) complexity
* condition number estimation
No iterative refinement is provided because exact form of original matrix
is not known to subroutine. Use CMatrixSolve or CMatrixMixedSolve if you
need iterative refinement.
IMPORTANT: ! this function is NOT the most efficient linear solver provided
! by ALGLIB. It estimates condition number of linear system,
! which results in significant performance penalty when
! compared with "fast" version which just calls triangular
! solver.
!
! This performance penalty is especially apparent when you use
! ALGLIB parallel capabilities (condition number estimation is
! inherently sequential). It also becomes significant for
! small-scale problems.
!
! In such cases we strongly recommend you to use faster solver,
! CMatrixLUSolveMFast() function.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions. Generally, MKL accelerates any
! problem whose size is at least 128, with best efficiency achieved for
! N's larger than 512.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. Triangular solver is relatively easy to parallelize.
! However, parallelization will be efficient only for large number of
! right parts M.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
INPUT PARAMETERS
LUA - array[0..N-1,0..N-1], LU decomposition, RMatrixLU result
P - array[0..N-1], pivots array, RMatrixLU result
N - size of A
B - array[0..N-1,0..M-1], right part
M - right part size
OUTPUT PARAMETERS
Info - return code:
* -3 matrix is very badly conditioned or exactly singular.
* -1 N<=0 was passed
* 1 task is solved (but matrix A may be ill-conditioned,
check R1/RInf parameters for condition numbers).
Rep - additional report, following fields are set:
* rep.r1 condition number in 1-norm
* rep.rinf condition number in inf-norm
X - array[N,M], it contains:
* info>0 => solution
* info=-3 => filled by zeros
-- ALGLIB --
Copyright 27.01.2010 by Bochkanov Sergey
*************************************************************************/
void cmatrixlusolvem(const complex_2d_array &lua, const integer_1d_array &p, const ae_int_t n, const complex_2d_array &b, const ae_int_t m, ae_int_t &info, densesolverreport &rep, complex_2d_array &x);
void smp_cmatrixlusolvem(const complex_2d_array &lua, const integer_1d_array &p, const ae_int_t n, const complex_2d_array &b, const ae_int_t m, ae_int_t &info, densesolverreport &rep, complex_2d_array &x);
/*************************************************************************
Dense solver for A*X=B with N*N complex A given by its LU decomposition,
and N*M matrices X and B (multiple right sides). "Fast-but-lightweight"
version of the solver.
Algorithm features:
* O(M*N^2) complexity
* no additional time-consuming features
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions. Generally, MKL accelerates any
! problem whose size is at least 128, with best efficiency achieved for
! N's larger than 512.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. Triangular solver is relatively easy to parallelize.
! However, parallelization will be efficient only for large number of
! right parts M.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
INPUT PARAMETERS
LUA - array[0..N-1,0..N-1], LU decomposition, RMatrixLU result
P - array[0..N-1], pivots array, RMatrixLU result
N - size of A
B - array[0..N-1,0..M-1], right part
M - right part size
OUTPUT PARAMETERS
Info - return code:
* -3 matrix is exactly singular (ill conditioned matrices
are not recognized).
* -1 N<=0 was passed
* 1 task is solved
B - array[N,M]:
* info>0 => overwritten by solution
* info=-3 => filled by zeros
-- ALGLIB --
Copyright 27.01.2010 by Bochkanov Sergey
*************************************************************************/
void cmatrixlusolvemfast(const complex_2d_array &lua, const integer_1d_array &p, const ae_int_t n, const complex_2d_array &b, const ae_int_t m, ae_int_t &info);
void smp_cmatrixlusolvemfast(const complex_2d_array &lua, const integer_1d_array &p, const ae_int_t n, const complex_2d_array &b, const ae_int_t m, ae_int_t &info);
/*************************************************************************
Complex dense linear solver for A*x=b with complex N*N A given by its LU
decomposition and N*1 vectors x and b. This is "slow-but-robust" version
of the complex linear solver with additional features which add
significant performance overhead. Faster version is CMatrixLUSolveFast()
function.
Algorithm features:
* automatic detection of degenerate cases
* O(N^2) complexity
* condition number estimation
No iterative refinement is provided because exact form of original matrix
is not known to subroutine. Use CMatrixSolve or CMatrixMixedSolve if you
need iterative refinement.
IMPORTANT: ! this function is NOT the most efficient linear solver provided
! by ALGLIB. It estimates condition number of linear system,
! which results in 10-15x performance penalty when compared
! with "fast" version which just calls triangular solver.
!
! This performance penalty is insignificant when compared with
! cost of large LU decomposition. However, if you call this
! function many times for the same left side, this overhead
! BECOMES significant. It also becomes significant for small-
! scale problems.
!
! In such cases we strongly recommend you to use faster solver,
! CMatrixLUSolveFast() function.
INPUT PARAMETERS
LUA - array[0..N-1,0..N-1], LU decomposition, CMatrixLU result
P - array[0..N-1], pivots array, CMatrixLU result
N - size of A
B - array[0..N-1], right part
OUTPUT PARAMETERS
Info - return code:
* -3 matrix is very badly conditioned or exactly singular.
* -1 N<=0 was passed
* 1 task is solved (but matrix A may be ill-conditioned,
check R1/RInf parameters for condition numbers).
Rep - additional report, following fields are set:
* rep.r1 condition number in 1-norm
* rep.rinf condition number in inf-norm
X - array[N], it contains:
* info>0 => solution
* info=-3 => filled by zeros
-- ALGLIB --
Copyright 27.01.2010 by Bochkanov Sergey
*************************************************************************/
void cmatrixlusolve(const complex_2d_array &lua, const integer_1d_array &p, const ae_int_t n, const complex_1d_array &b, ae_int_t &info, densesolverreport &rep, complex_1d_array &x);
/*************************************************************************
Complex dense linear solver for A*x=b with N*N complex A given by its LU
decomposition and N*1 vectors x and b. This is fast lightweight version
of solver, which is significantly faster than CMatrixLUSolve(), but does
not provide additional information (like condition numbers).
Algorithm features:
* O(N^2) complexity
* no additional time-consuming features, just triangular solver
INPUT PARAMETERS
LUA - array[0..N-1,0..N-1], LU decomposition, CMatrixLU result
P - array[0..N-1], pivots array, CMatrixLU result
N - size of A
B - array[0..N-1], right part
OUTPUT PARAMETERS
Info - return code:
* -3 matrix is exactly singular (ill conditioned matrices
are not recognized).
* -1 N<=0 was passed
* 1 task is solved
B - array[N]:
* info>0 => overwritten by solution
* info=-3 => filled by zeros
NOTE: unlike CMatrixLUSolve(), this function does NOT check for
near-degeneracy of input matrix. It checks for EXACT degeneracy,
because this check is easy to do. However, very badly conditioned
matrices may went unnoticed.
-- ALGLIB --
Copyright 27.01.2010 by Bochkanov Sergey
*************************************************************************/
void cmatrixlusolvefast(const complex_2d_array &lua, const integer_1d_array &p, const ae_int_t n, const complex_1d_array &b, ae_int_t &info);
/*************************************************************************
Dense solver. Same as RMatrixMixedSolveM(), but for complex matrices.
Algorithm features:
* automatic detection of degenerate cases
* condition number estimation
* iterative refinement
* O(M*N^2) complexity
INPUT PARAMETERS
A - array[0..N-1,0..N-1], system matrix
LUA - array[0..N-1,0..N-1], LU decomposition, CMatrixLU result
P - array[0..N-1], pivots array, CMatrixLU result
N - size of A
B - array[0..N-1,0..M-1], right part
M - right part size
OUTPUT PARAMETERS
Info - return code:
* -3 matrix is very badly conditioned or exactly singular.
* -1 N<=0 was passed
* 1 task is solved (but matrix A may be ill-conditioned,
check R1/RInf parameters for condition numbers).
Rep - additional report, following fields are set:
* rep.r1 condition number in 1-norm
* rep.rinf condition number in inf-norm
X - array[N,M], it contains:
* info>0 => solution
* info=-3 => filled by zeros
-- ALGLIB --
Copyright 27.01.2010 by Bochkanov Sergey
*************************************************************************/
void cmatrixmixedsolvem(const complex_2d_array &a, const complex_2d_array &lua, const integer_1d_array &p, const ae_int_t n, const complex_2d_array &b, const ae_int_t m, ae_int_t &info, densesolverreport &rep, complex_2d_array &x);
/*************************************************************************
Dense solver. Same as RMatrixMixedSolve(), but for complex matrices.
Algorithm features:
* automatic detection of degenerate cases
* condition number estimation
* iterative refinement
* O(N^2) complexity
INPUT PARAMETERS
A - array[0..N-1,0..N-1], system matrix
LUA - array[0..N-1,0..N-1], LU decomposition, CMatrixLU result
P - array[0..N-1], pivots array, CMatrixLU result
N - size of A
B - array[0..N-1], right part
OUTPUT PARAMETERS
Info - return code:
* -3 matrix is very badly conditioned or exactly singular.
* -1 N<=0 was passed
* 1 task is solved (but matrix A may be ill-conditioned,
check R1/RInf parameters for condition numbers).
Rep - additional report, following fields are set:
* rep.r1 condition number in 1-norm
* rep.rinf condition number in inf-norm
X - array[N], it contains:
* info>0 => solution
* info=-3 => filled by zeros
-- ALGLIB --
Copyright 27.01.2010 by Bochkanov Sergey
*************************************************************************/
void cmatrixmixedsolve(const complex_2d_array &a, const complex_2d_array &lua, const integer_1d_array &p, const ae_int_t n, const complex_1d_array &b, ae_int_t &info, densesolverreport &rep, complex_1d_array &x);
/*************************************************************************
Dense solver for A*X=B with N*N symmetric positive definite matrix A, and
N*M vectors X and B. It is "slow-but-feature-rich" version of the solver.
Algorithm features:
* automatic detection of degenerate cases
* condition number estimation
* O(N^3+M*N^2) complexity
* matrix is represented by its upper or lower triangle
No iterative refinement is provided because such partial representation of
matrix does not allow efficient calculation of extra-precise matrix-vector
products for large matrices. Use RMatrixSolve or RMatrixMixedSolve if you
need iterative refinement.
IMPORTANT: ! this function is NOT the most efficient linear solver provided
! by ALGLIB. It estimates condition number of linear system,
! which results in significant performance penalty when
! compared with "fast" version which just performs Cholesky
! decomposition and calls triangular solver.
!
! This performance penalty is especially visible in the
! multithreaded mode, because both condition number estimation
! and iterative refinement are inherently sequential
! calculations.
!
! Thus, if you need high performance and if you are pretty sure
! that your system is well conditioned, we strongly recommend
! you to use faster solver, SPDMatrixSolveMFast() function.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions. Generally, MKL accelerates any
! problem whose size is at least 128, with best efficiency achieved for
! N's larger than 512.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. We should note that Cholesky decomposition is harder
! to parallelize than, say, matrix-matrix product - this algorithm has
! several synchronization points which can not be avoided. However,
! parallelism starts to be profitable starting from N=500.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
INPUT PARAMETERS
A - array[0..N-1,0..N-1], system matrix
N - size of A
IsUpper - what half of A is provided
B - array[0..N-1,0..M-1], right part
M - right part size
OUTPUT PARAMETERS
Info - return code:
* -3 matrix is very badly conditioned or non-SPD.
* -1 N<=0 was passed
* 1 task is solved (but matrix A may be ill-conditioned,
check R1/RInf parameters for condition numbers).
Rep - additional report, following fields are set:
* rep.r1 condition number in 1-norm
* rep.rinf condition number in inf-norm
X - array[N,M], it contains:
* info>0 => solution
* info=-3 => filled by zeros
-- ALGLIB --
Copyright 27.01.2010 by Bochkanov Sergey
*************************************************************************/
void spdmatrixsolvem(const real_2d_array &a, const ae_int_t n, const bool isupper, const real_2d_array &b, const ae_int_t m, ae_int_t &info, densesolverreport &rep, real_2d_array &x);
void smp_spdmatrixsolvem(const real_2d_array &a, const ae_int_t n, const bool isupper, const real_2d_array &b, const ae_int_t m, ae_int_t &info, densesolverreport &rep, real_2d_array &x);
/*************************************************************************
Dense solver for A*X=B with N*N symmetric positive definite matrix A, and
N*M vectors X and B. It is "fast-but-lightweight" version of the solver.
Algorithm features:
* O(N^3+M*N^2) complexity
* matrix is represented by its upper or lower triangle
* no additional time consuming features
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions. Generally, MKL accelerates any
! problem whose size is at least 128, with best efficiency achieved for
! N's larger than 512.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. We should note that Cholesky decomposition is harder
! to parallelize than, say, matrix-matrix product - this algorithm has
! several synchronization points which can not be avoided. However,
! parallelism starts to be profitable starting from N=500.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
INPUT PARAMETERS
A - array[0..N-1,0..N-1], system matrix
N - size of A
IsUpper - what half of A is provided
B - array[0..N-1,0..M-1], right part
M - right part size
OUTPUT PARAMETERS
Info - return code:
* -3 A is is exactly singular
* -1 N<=0 was passed
* 1 task was solved
B - array[N,M], it contains:
* info>0 => solution
* info=-3 => filled by zeros
-- ALGLIB --
Copyright 17.03.2015 by Bochkanov Sergey
*************************************************************************/
void spdmatrixsolvemfast(const real_2d_array &a, const ae_int_t n, const bool isupper, const real_2d_array &b, const ae_int_t m, ae_int_t &info);
void smp_spdmatrixsolvemfast(const real_2d_array &a, const ae_int_t n, const bool isupper, const real_2d_array &b, const ae_int_t m, ae_int_t &info);
/*************************************************************************
Dense linear solver for A*x=b with N*N real symmetric positive definite
matrix A, N*1 vectors x and b. "Slow-but-feature-rich" version of the
solver.
Algorithm features:
* automatic detection of degenerate cases
* condition number estimation
* O(N^3) complexity
* matrix is represented by its upper or lower triangle
No iterative refinement is provided because such partial representation of
matrix does not allow efficient calculation of extra-precise matrix-vector
products for large matrices. Use RMatrixSolve or RMatrixMixedSolve if you
need iterative refinement.
IMPORTANT: ! this function is NOT the most efficient linear solver provided
! by ALGLIB. It estimates condition number of linear system,
! which results in significant performance penalty when
! compared with "fast" version which just performs Cholesky
! decomposition and calls triangular solver.
!
! This performance penalty is especially visible in the
! multithreaded mode, because both condition number estimation
! and iterative refinement are inherently sequential
! calculations.
!
! Thus, if you need high performance and if you are pretty sure
! that your system is well conditioned, we strongly recommend
! you to use faster solver, SPDMatrixSolveFast() function.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions. Generally, MKL accelerates any
! problem whose size is at least 128, with best efficiency achieved for
! N's larger than 512.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. We should note that Cholesky decomposition is harder
! to parallelize than, say, matrix-matrix product - this algorithm has
! several synchronization points which can not be avoided. However,
! parallelism starts to be profitable starting from N=500.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
INPUT PARAMETERS
A - array[0..N-1,0..N-1], system matrix
N - size of A
IsUpper - what half of A is provided
B - array[0..N-1], right part
OUTPUT PARAMETERS
Info - return code:
* -3 matrix is very badly conditioned or non-SPD.
* -1 N<=0 was passed
* 1 task is solved (but matrix A may be ill-conditioned,
check R1/RInf parameters for condition numbers).
Rep - additional report, following fields are set:
* rep.r1 condition number in 1-norm
* rep.rinf condition number in inf-norm
X - array[N], it contains:
* info>0 => solution
* info=-3 => filled by zeros
-- ALGLIB --
Copyright 27.01.2010 by Bochkanov Sergey
*************************************************************************/
void spdmatrixsolve(const real_2d_array &a, const ae_int_t n, const bool isupper, const real_1d_array &b, ae_int_t &info, densesolverreport &rep, real_1d_array &x);
void smp_spdmatrixsolve(const real_2d_array &a, const ae_int_t n, const bool isupper, const real_1d_array &b, ae_int_t &info, densesolverreport &rep, real_1d_array &x);
/*************************************************************************
Dense linear solver for A*x=b with N*N real symmetric positive definite
matrix A, N*1 vectors x and b. "Fast-but-lightweight" version of the
solver.
Algorithm features:
* O(N^3) complexity
* matrix is represented by its upper or lower triangle
* no additional time consuming features like condition number estimation
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions. Generally, MKL accelerates any
! problem whose size is at least 128, with best efficiency achieved for
! N's larger than 512.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. We should note that Cholesky decomposition is harder
! to parallelize than, say, matrix-matrix product - this algorithm has
! several synchronization points which can not be avoided. However,
! parallelism starts to be profitable starting from N=500.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
INPUT PARAMETERS
A - array[0..N-1,0..N-1], system matrix
N - size of A
IsUpper - what half of A is provided
B - array[0..N-1], right part
OUTPUT PARAMETERS
Info - return code:
* -3 A is is exactly singular or non-SPD
* -1 N<=0 was passed
* 1 task was solved
B - array[N], it contains:
* info>0 => solution
* info=-3 => filled by zeros
-- ALGLIB --
Copyright 17.03.2015 by Bochkanov Sergey
*************************************************************************/
void spdmatrixsolvefast(const real_2d_array &a, const ae_int_t n, const bool isupper, const real_1d_array &b, ae_int_t &info);
void smp_spdmatrixsolvefast(const real_2d_array &a, const ae_int_t n, const bool isupper, const real_1d_array &b, ae_int_t &info);
/*************************************************************************
Dense solver for A*X=B with N*N symmetric positive definite matrix A given
by its Cholesky decomposition, and N*M vectors X and B. It is "slow-but-
feature-rich" version of the solver which estimates condition number of
the system.
Algorithm features:
* automatic detection of degenerate cases
* O(M*N^2) complexity
* condition number estimation
* matrix is represented by its upper or lower triangle
No iterative refinement is provided because such partial representation of
matrix does not allow efficient calculation of extra-precise matrix-vector
products for large matrices. Use RMatrixSolve or RMatrixMixedSolve if you
need iterative refinement.
IMPORTANT: ! this function is NOT the most efficient linear solver provided
! by ALGLIB. It estimates condition number of linear system,
! which results in significant performance penalty when
! compared with "fast" version which just calls triangular
! solver. Amount of overhead introduced depends on M (the
! larger - the more efficient).
!
! This performance penalty is insignificant when compared with
! cost of large LU decomposition. However, if you call this
! function many times for the same left side, this overhead
! BECOMES significant. It also becomes significant for small-
! scale problems (N<50).
!
! In such cases we strongly recommend you to use faster solver,
! SPDMatrixCholeskySolveMFast() function.
INPUT PARAMETERS
CHA - array[0..N-1,0..N-1], Cholesky decomposition,
SPDMatrixCholesky result
N - size of CHA
IsUpper - what half of CHA is provided
B - array[0..N-1,0..M-1], right part
M - right part size
OUTPUT PARAMETERS
Info - return code:
* -3 A is is exactly singular or badly conditioned
X is filled by zeros in such cases.
* -1 N<=0 was passed
* 1 task was solved
Rep - additional report, following fields are set:
* rep.r1 condition number in 1-norm
* rep.rinf condition number in inf-norm
X - array[N]:
* for info>0 contains solution
* for info=-3 filled by zeros
-- ALGLIB --
Copyright 27.01.2010 by Bochkanov Sergey
*************************************************************************/
void spdmatrixcholeskysolvem(const real_2d_array &cha, const ae_int_t n, const bool isupper, const real_2d_array &b, const ae_int_t m, ae_int_t &info, densesolverreport &rep, real_2d_array &x);
void smp_spdmatrixcholeskysolvem(const real_2d_array &cha, const ae_int_t n, const bool isupper, const real_2d_array &b, const ae_int_t m, ae_int_t &info, densesolverreport &rep, real_2d_array &x);
/*************************************************************************
Dense solver for A*X=B with N*N symmetric positive definite matrix A given
by its Cholesky decomposition, and N*M vectors X and B. It is "fast-but-
lightweight" version of the solver which just solves linear system,
without any additional functions.
Algorithm features:
* O(M*N^2) complexity
* matrix is represented by its upper or lower triangle
* no additional functionality
INPUT PARAMETERS
CHA - array[N,N], Cholesky decomposition,
SPDMatrixCholesky result
N - size of CHA
IsUpper - what half of CHA is provided
B - array[N,M], right part
M - right part size
OUTPUT PARAMETERS
Info - return code:
* -3 A is is exactly singular or badly conditioned
X is filled by zeros in such cases.
* -1 N<=0 was passed
* 1 task was solved
B - array[N]:
* for info>0 overwritten by solution
* for info=-3 filled by zeros
-- ALGLIB --
Copyright 18.03.2015 by Bochkanov Sergey
*************************************************************************/
void spdmatrixcholeskysolvemfast(const real_2d_array &cha, const ae_int_t n, const bool isupper, const real_2d_array &b, const ae_int_t m, ae_int_t &info);
void smp_spdmatrixcholeskysolvemfast(const real_2d_array &cha, const ae_int_t n, const bool isupper, const real_2d_array &b, const ae_int_t m, ae_int_t &info);
/*************************************************************************
Dense solver for A*x=b with N*N symmetric positive definite matrix A given
by its Cholesky decomposition, and N*1 real vectors x and b. This is "slow-
but-feature-rich" version of the solver which, in addition to the
solution, performs condition number estimation.
Algorithm features:
* automatic detection of degenerate cases
* O(N^2) complexity
* condition number estimation
* matrix is represented by its upper or lower triangle
No iterative refinement is provided because such partial representation of
matrix does not allow efficient calculation of extra-precise matrix-vector
products for large matrices. Use RMatrixSolve or RMatrixMixedSolve if you
need iterative refinement.
IMPORTANT: ! this function is NOT the most efficient linear solver provided
! by ALGLIB. It estimates condition number of linear system,
! which results in 10-15x performance penalty when compared
! with "fast" version which just calls triangular solver.
!
! This performance penalty is insignificant when compared with
! cost of large LU decomposition. However, if you call this
! function many times for the same left side, this overhead
! BECOMES significant. It also becomes significant for small-
! scale problems (N<50).
!
! In such cases we strongly recommend you to use faster solver,
! SPDMatrixCholeskySolveFast() function.
INPUT PARAMETERS
CHA - array[N,N], Cholesky decomposition,
SPDMatrixCholesky result
N - size of A
IsUpper - what half of CHA is provided
B - array[N], right part
OUTPUT PARAMETERS
Info - return code:
* -3 A is is exactly singular or ill conditioned
X is filled by zeros in such cases.
* -1 N<=0 was passed
* 1 task is solved
Rep - additional report, following fields are set:
* rep.r1 condition number in 1-norm
* rep.rinf condition number in inf-norm
X - array[N]:
* for info>0 - solution
* for info=-3 - filled by zeros
-- ALGLIB --
Copyright 27.01.2010 by Bochkanov Sergey
*************************************************************************/
void spdmatrixcholeskysolve(const real_2d_array &cha, const ae_int_t n, const bool isupper, const real_1d_array &b, ae_int_t &info, densesolverreport &rep, real_1d_array &x);
/*************************************************************************
Dense solver for A*x=b with N*N symmetric positive definite matrix A given
by its Cholesky decomposition, and N*1 real vectors x and b. This is "fast-
but-lightweight" version of the solver.
Algorithm features:
* O(N^2) complexity
* matrix is represented by its upper or lower triangle
* no additional features
INPUT PARAMETERS
CHA - array[N,N], Cholesky decomposition,
SPDMatrixCholesky result
N - size of A
IsUpper - what half of CHA is provided
B - array[N], right part
OUTPUT PARAMETERS
Info - return code:
* -3 A is is exactly singular or ill conditioned
X is filled by zeros in such cases.
* -1 N<=0 was passed
* 1 task is solved
B - array[N]:
* for info>0 - overwritten by solution
* for info=-3 - filled by zeros
-- ALGLIB --
Copyright 27.01.2010 by Bochkanov Sergey
*************************************************************************/
void spdmatrixcholeskysolvefast(const real_2d_array &cha, const ae_int_t n, const bool isupper, const real_1d_array &b, ae_int_t &info);
/*************************************************************************
Dense solver for A*X=B, with N*N Hermitian positive definite matrix A and
N*M complex matrices X and B. "Slow-but-feature-rich" version of the
solver.
Algorithm features:
* automatic detection of degenerate cases
* condition number estimation
* O(N^3+M*N^2) complexity
* matrix is represented by its upper or lower triangle
No iterative refinement is provided because such partial representation of
matrix does not allow efficient calculation of extra-precise matrix-vector
products for large matrices. Use RMatrixSolve or RMatrixMixedSolve if you
need iterative refinement.
IMPORTANT: ! this function is NOT the most efficient linear solver provided
! by ALGLIB. It estimates condition number of linear system,
! which results in significant performance penalty when
! compared with "fast" version which just calls triangular
! solver.
!
! This performance penalty is especially apparent when you use
! ALGLIB parallel capabilities (condition number estimation is
! inherently sequential). It also becomes significant for
! small-scale problems (N<100).
!
! In such cases we strongly recommend you to use faster solver,
! HPDMatrixSolveMFast() function.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions. Generally, MKL accelerates any
! problem whose size is at least 128, with best efficiency achieved for
! N's larger than 512.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. We should note that Cholesky decomposition is harder
! to parallelize than, say, matrix-matrix product - this algorithm has
! several synchronization points which can not be avoided. However,
! parallelism starts to be profitable starting from N=500.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
INPUT PARAMETERS
A - array[0..N-1,0..N-1], system matrix
N - size of A
IsUpper - what half of A is provided
B - array[0..N-1,0..M-1], right part
M - right part size
OUTPUT PARAMETERS
Info - same as in RMatrixSolve.
Returns -3 for non-HPD matrices.
Rep - same as in RMatrixSolve
X - same as in RMatrixSolve
-- ALGLIB --
Copyright 27.01.2010 by Bochkanov Sergey
*************************************************************************/
void hpdmatrixsolvem(const complex_2d_array &a, const ae_int_t n, const bool isupper, const complex_2d_array &b, const ae_int_t m, ae_int_t &info, densesolverreport &rep, complex_2d_array &x);
void smp_hpdmatrixsolvem(const complex_2d_array &a, const ae_int_t n, const bool isupper, const complex_2d_array &b, const ae_int_t m, ae_int_t &info, densesolverreport &rep, complex_2d_array &x);
/*************************************************************************
Dense solver for A*X=B, with N*N Hermitian positive definite matrix A and
N*M complex matrices X and B. "Fast-but-lightweight" version of the solver.
Algorithm features:
* O(N^3+M*N^2) complexity
* matrix is represented by its upper or lower triangle
* no additional time consuming features like condition number estimation
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions. Generally, MKL accelerates any
! problem whose size is at least 128, with best efficiency achieved for
! N's larger than 512.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. We should note that Cholesky decomposition is harder
! to parallelize than, say, matrix-matrix product - this algorithm has
! several synchronization points which can not be avoided. However,
! parallelism starts to be profitable starting from N=500.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
INPUT PARAMETERS
A - array[0..N-1,0..N-1], system matrix
N - size of A
IsUpper - what half of A is provided
B - array[0..N-1,0..M-1], right part
M - right part size
OUTPUT PARAMETERS
Info - return code:
* -3 A is is exactly singular or is not positive definite.
B is filled by zeros in such cases.
* -1 N<=0 was passed
* 1 task is solved
B - array[0..N-1]:
* overwritten by solution
* zeros, if problem was not solved
-- ALGLIB --
Copyright 17.03.2015 by Bochkanov Sergey
*************************************************************************/
void hpdmatrixsolvemfast(const complex_2d_array &a, const ae_int_t n, const bool isupper, const complex_2d_array &b, const ae_int_t m, ae_int_t &info);
void smp_hpdmatrixsolvemfast(const complex_2d_array &a, const ae_int_t n, const bool isupper, const complex_2d_array &b, const ae_int_t m, ae_int_t &info);
/*************************************************************************
Dense solver for A*x=b, with N*N Hermitian positive definite matrix A, and
N*1 complex vectors x and b. "Slow-but-feature-rich" version of the
solver.
Algorithm features:
* automatic detection of degenerate cases
* condition number estimation
* O(N^3) complexity
* matrix is represented by its upper or lower triangle
No iterative refinement is provided because such partial representation of
matrix does not allow efficient calculation of extra-precise matrix-vector
products for large matrices. Use RMatrixSolve or RMatrixMixedSolve if you
need iterative refinement.
IMPORTANT: ! this function is NOT the most efficient linear solver provided
! by ALGLIB. It estimates condition number of linear system,
! which results in significant performance penalty when
! compared with "fast" version which just performs Cholesky
! decomposition and calls triangular solver.
!
! This performance penalty is especially visible in the
! multithreaded mode, because both condition number estimation
! and iterative refinement are inherently sequential
! calculations.
!
! Thus, if you need high performance and if you are pretty sure
! that your system is well conditioned, we strongly recommend
! you to use faster solver, HPDMatrixSolveFast() function.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions. Generally, MKL accelerates any
! problem whose size is at least 128, with best efficiency achieved for
! N's larger than 512.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. We should note that Cholesky decomposition is harder
! to parallelize than, say, matrix-matrix product - this algorithm has
! several synchronization points which can not be avoided. However,
! parallelism starts to be profitable starting from N=500.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
INPUT PARAMETERS
A - array[0..N-1,0..N-1], system matrix
N - size of A
IsUpper - what half of A is provided
B - array[0..N-1], right part
OUTPUT PARAMETERS
Info - same as in RMatrixSolve
Returns -3 for non-HPD matrices.
Rep - same as in RMatrixSolve
X - same as in RMatrixSolve
-- ALGLIB --
Copyright 27.01.2010 by Bochkanov Sergey
*************************************************************************/
void hpdmatrixsolve(const complex_2d_array &a, const ae_int_t n, const bool isupper, const complex_1d_array &b, ae_int_t &info, densesolverreport &rep, complex_1d_array &x);
void smp_hpdmatrixsolve(const complex_2d_array &a, const ae_int_t n, const bool isupper, const complex_1d_array &b, ae_int_t &info, densesolverreport &rep, complex_1d_array &x);
/*************************************************************************
Dense solver for A*x=b, with N*N Hermitian positive definite matrix A, and
N*1 complex vectors x and b. "Fast-but-lightweight" version of the
solver without additional functions.
Algorithm features:
* O(N^3) complexity
* matrix is represented by its upper or lower triangle
* no additional time consuming functions
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
! * about 2-3x faster than ALGLIB for C++ without MKL
! * about 7-10x faster than "pure C#" edition of ALGLIB
! Difference in performance will be more striking on newer CPU's with
! support for newer SIMD instructions. Generally, MKL accelerates any
! problem whose size is at least 128, with best efficiency achieved for
! N's larger than 512.
!
! Commercial edition of ALGLIB also supports multithreaded acceleration
! of this function. We should note that Cholesky decomposition is harder
! to parallelize than, say, matrix-matrix product - this algorithm has
! several synchronization points which can not be avoided. However,
! parallelism starts to be profitable starting from N=500.
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
INPUT PARAMETERS
A - array[0..N-1,0..N-1], system matrix
N - size of A
IsUpper - what half of A is provided
B - array[0..N-1], right part
OUTPUT PARAMETERS
Info - return code:
* -3 A is is exactly singular or not positive definite
X is filled by zeros in such cases.
* -1 N<=0 was passed
* 1 task was solved
B - array[0..N-1]:
* overwritten by solution
* zeros, if A is exactly singular (diagonal of its LU
decomposition has exact zeros).
-- ALGLIB --
Copyright 17.03.2015 by Bochkanov Sergey
*************************************************************************/
void hpdmatrixsolvefast(const complex_2d_array &a, const ae_int_t n, const bool isupper, const complex_1d_array &b, ae_int_t &info);
void smp_hpdmatrixsolvefast(const complex_2d_array &a, const ae_int_t n, const bool isupper, const complex_1d_array &b, ae_int_t &info);
/*************************************************************************
Dense solver for A*X=B with N*N Hermitian positive definite matrix A given
by its Cholesky decomposition and N*M complex matrices X and B. This is
"slow-but-feature-rich" version of the solver which, in addition to the
solution, estimates condition number of the system.
Algorithm features:
* automatic detection of degenerate cases
* O(M*N^2) complexity
* condition number estimation
* matrix is represented by its upper or lower triangle
No iterative refinement is provided because such partial representation of
matrix does not allow efficient calculation of extra-precise matrix-vector
products for large matrices. Use RMatrixSolve or RMatrixMixedSolve if you
need iterative refinement.
IMPORTANT: ! this function is NOT the most efficient linear solver provided
! by ALGLIB. It estimates condition number of linear system,
! which results in significant performance penalty when
! compared with "fast" version which just calls triangular
! solver. Amount of overhead introduced depends on M (the
! larger - the more efficient).
!
! This performance penalty is insignificant when compared with
! cost of large Cholesky decomposition. However, if you call
! this function many times for the same left side, this
! overhead BECOMES significant. It also becomes significant
! for small-scale problems (N<50).
!
! In such cases we strongly recommend you to use faster solver,
! HPDMatrixCholeskySolveMFast() function.
INPUT PARAMETERS
CHA - array[N,N], Cholesky decomposition,
HPDMatrixCholesky result
N - size of CHA
IsUpper - what half of CHA is provided
B - array[N,M], right part
M - right part size
OUTPUT PARAMETERS:
Info - return code:
* -3 A is singular, or VERY close to singular.
X is filled by zeros in such cases.
* -1 N<=0 was passed
* 1 task was solved
Rep - additional report, following fields are set:
* rep.r1 condition number in 1-norm
* rep.rinf condition number in inf-norm
X - array[N]:
* for info>0 contains solution
* for info=-3 filled by zeros
-- ALGLIB --
Copyright 27.01.2010 by Bochkanov Sergey
*************************************************************************/
void hpdmatrixcholeskysolvem(const complex_2d_array &cha, const ae_int_t n, const bool isupper, const complex_2d_array &b, const ae_int_t m, ae_int_t &info, densesolverreport &rep, complex_2d_array &x);
void smp_hpdmatrixcholeskysolvem(const complex_2d_array &cha, const ae_int_t n, const bool isupper, const complex_2d_array &b, const ae_int_t m, ae_int_t &info, densesolverreport &rep, complex_2d_array &x);
/*************************************************************************
Dense solver for A*X=B with N*N Hermitian positive definite matrix A given
by its Cholesky decomposition and N*M complex matrices X and B. This is
"fast-but-lightweight" version of the solver.
Algorithm features:
* O(M*N^2) complexity
* matrix is represented by its upper or lower triangle
* no additional time-consuming features
INPUT PARAMETERS
CHA - array[N,N], Cholesky decomposition,
HPDMatrixCholesky result
N - size of CHA
IsUpper - what half of CHA is provided
B - array[N,M], right part
M - right part size
OUTPUT PARAMETERS:
Info - return code:
* -3 A is singular, or VERY close to singular.
X is filled by zeros in such cases.
* -1 N<=0 was passed
* 1 task was solved
B - array[N]:
* for info>0 overwritten by solution
* for info=-3 filled by zeros
-- ALGLIB --
Copyright 18.03.2015 by Bochkanov Sergey
*************************************************************************/
void hpdmatrixcholeskysolvemfast(const complex_2d_array &cha, const ae_int_t n, const bool isupper, const complex_2d_array &b, const ae_int_t m, ae_int_t &info);
void smp_hpdmatrixcholeskysolvemfast(const complex_2d_array &cha, const ae_int_t n, const bool isupper, const complex_2d_array &b, const ae_int_t m, ae_int_t &info);
/*************************************************************************
Dense solver for A*x=b with N*N Hermitian positive definite matrix A given
by its Cholesky decomposition, and N*1 complex vectors x and b. This is
"slow-but-feature-rich" version of the solver which estimates condition
number of the system.
Algorithm features:
* automatic detection of degenerate cases
* O(N^2) complexity
* condition number estimation
* matrix is represented by its upper or lower triangle
No iterative refinement is provided because such partial representation of
matrix does not allow efficient calculation of extra-precise matrix-vector
products for large matrices. Use RMatrixSolve or RMatrixMixedSolve if you
need iterative refinement.
IMPORTANT: ! this function is NOT the most efficient linear solver provided
! by ALGLIB. It estimates condition number of linear system,
! which results in 10-15x performance penalty when compared
! with "fast" version which just calls triangular solver.
!
! This performance penalty is insignificant when compared with
! cost of large LU decomposition. However, if you call this
! function many times for the same left side, this overhead
! BECOMES significant. It also becomes significant for small-
! scale problems (N<50).
!
! In such cases we strongly recommend you to use faster solver,
! HPDMatrixCholeskySolveFast() function.
INPUT PARAMETERS
CHA - array[0..N-1,0..N-1], Cholesky decomposition,
SPDMatrixCholesky result
N - size of A
IsUpper - what half of CHA is provided
B - array[0..N-1], right part
OUTPUT PARAMETERS
Info - return code:
* -3 A is is exactly singular or ill conditioned
X is filled by zeros in such cases.
* -1 N<=0 was passed
* 1 task is solved
Rep - additional report, following fields are set:
* rep.r1 condition number in 1-norm
* rep.rinf condition number in inf-norm
X - array[N]:
* for info>0 - solution
* for info=-3 - filled by zeros
-- ALGLIB --
Copyright 27.01.2010 by Bochkanov Sergey
*************************************************************************/
void hpdmatrixcholeskysolve(const complex_2d_array &cha, const ae_int_t n, const bool isupper, const complex_1d_array &b, ae_int_t &info, densesolverreport &rep, complex_1d_array &x);
/*************************************************************************
Dense solver for A*x=b with N*N Hermitian positive definite matrix A given
by its Cholesky decomposition, and N*1 complex vectors x and b. This is
"fast-but-lightweight" version of the solver.
Algorithm features:
* O(N^2) complexity
* matrix is represented by its upper or lower triangle
* no additional time-consuming features
INPUT PARAMETERS
CHA - array[0..N-1,0..N-1], Cholesky decomposition,
SPDMatrixCholesky result
N - size of A
IsUpper - what half of CHA is provided
B - array[0..N-1], right part
OUTPUT PARAMETERS
Info - return code:
* -3 A is is exactly singular or ill conditioned
B is filled by zeros in such cases.
* -1 N<=0 was passed
* 1 task is solved
B - array[N]:
* for info>0 - overwritten by solution
* for info=-3 - filled by zeros
-- ALGLIB --
Copyright 18.03.2015 by Bochkanov Sergey
*************************************************************************/
void hpdmatrixcholeskysolvefast(const complex_2d_array &cha, const ae_int_t n, const bool isupper, const complex_1d_array &b, ae_int_t &info);
/*************************************************************************
Dense solver.
This subroutine finds solution of the linear system A*X=B with non-square,
possibly degenerate A. System is solved in the least squares sense, and
general least squares solution X = X0 + CX*y which minimizes |A*X-B| is
returned. If A is non-degenerate, solution in the usual sense is returned.
Algorithm features:
* automatic detection (and correct handling!) of degenerate cases
* iterative refinement
* O(N^3) complexity
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes one important improvement of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison.
!
! Generally, commercial ALGLIB is several times faster than open-source
! generic C edition, and many times faster than open-source C# edition.
!
! Multithreaded acceleration is only partially supported (some parts are
! optimized, but most - are not).
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
INPUT PARAMETERS
A - array[0..NRows-1,0..NCols-1], system matrix
NRows - vertical size of A
NCols - horizontal size of A
B - array[0..NCols-1], right part
Threshold- a number in [0,1]. Singular values beyond Threshold are
considered zero. Set it to 0.0, if you don't understand
what it means, so the solver will choose good value on its
own.
OUTPUT PARAMETERS
Info - return code:
* -4 SVD subroutine failed
* -1 if NRows<=0 or NCols<=0 or Threshold<0 was passed
* 1 if task is solved
Rep - solver report, see below for more info
X - array[0..N-1,0..M-1], it contains:
* solution of A*X=B (even for singular A)
* zeros, if SVD subroutine failed
SOLVER REPORT
Subroutine sets following fields of the Rep structure:
* R2 reciprocal of condition number: 1/cond(A), 2-norm.
* N = NCols
* K dim(Null(A))
* CX array[0..N-1,0..K-1], kernel of A.
Columns of CX store such vectors that A*CX[i]=0.
-- ALGLIB --
Copyright 24.08.2009 by Bochkanov Sergey
*************************************************************************/
void rmatrixsolvels(const real_2d_array &a, const ae_int_t nrows, const ae_int_t ncols, const real_1d_array &b, const double threshold, ae_int_t &info, densesolverlsreport &rep, real_1d_array &x);
void smp_rmatrixsolvels(const real_2d_array &a, const ae_int_t nrows, const ae_int_t ncols, const real_1d_array &b, const double threshold, ae_int_t &info, densesolverlsreport &rep, real_1d_array &x);
/*************************************************************************
This function initializes linear LSQR Solver. This solver is used to solve
non-symmetric (and, possibly, non-square) problems. Least squares solution
is returned for non-compatible systems.
USAGE:
1. User initializes algorithm state with LinLSQRCreate() call
2. User tunes solver parameters with LinLSQRSetCond() and other functions
3. User calls LinLSQRSolveSparse() function which takes algorithm state
and SparseMatrix object.
4. User calls LinLSQRResults() to get solution
5. Optionally, user may call LinLSQRSolveSparse() again to solve another
problem with different matrix and/or right part without reinitializing
LinLSQRState structure.
INPUT PARAMETERS:
M - number of rows in A
N - number of variables, N>0
OUTPUT PARAMETERS:
State - structure which stores algorithm state
-- ALGLIB --
Copyright 30.11.2011 by Bochkanov Sergey
*************************************************************************/
void linlsqrcreate(const ae_int_t m, const ae_int_t n, linlsqrstate &state);
/*************************************************************************
This function changes preconditioning settings of LinLSQQSolveSparse()
function. By default, SolveSparse() uses diagonal preconditioner, but if
you want to use solver without preconditioning, you can call this function
which forces solver to use unit matrix for preconditioning.
INPUT PARAMETERS:
State - structure which stores algorithm state
-- ALGLIB --
Copyright 19.11.2012 by Bochkanov Sergey
*************************************************************************/
void linlsqrsetprecunit(const linlsqrstate &state);
/*************************************************************************
This function changes preconditioning settings of LinCGSolveSparse()
function. LinCGSolveSparse() will use diagonal of the system matrix as
preconditioner. This preconditioning mode is active by default.
INPUT PARAMETERS:
State - structure which stores algorithm state
-- ALGLIB --
Copyright 19.11.2012 by Bochkanov Sergey
*************************************************************************/
void linlsqrsetprecdiag(const linlsqrstate &state);
/*************************************************************************
This function sets optional Tikhonov regularization coefficient.
It is zero by default.
INPUT PARAMETERS:
LambdaI - regularization factor, LambdaI>=0
OUTPUT PARAMETERS:
State - structure which stores algorithm state
-- ALGLIB --
Copyright 30.11.2011 by Bochkanov Sergey
*************************************************************************/
void linlsqrsetlambdai(const linlsqrstate &state, const double lambdai);
/*************************************************************************
Procedure for solution of A*x=b with sparse A.
INPUT PARAMETERS:
State - algorithm state
A - sparse M*N matrix in the CRS format (you MUST contvert it
to CRS format by calling SparseConvertToCRS() function
BEFORE you pass it to this function).
B - right part, array[M]
RESULT:
This function returns no result.
You can get solution by calling LinCGResults()
NOTE: this function uses lightweight preconditioning - multiplication by
inverse of diag(A). If you want, you can turn preconditioning off by
calling LinLSQRSetPrecUnit(). However, preconditioning cost is low
and preconditioner is very important for solution of badly scaled
problems.
-- ALGLIB --
Copyright 30.11.2011 by Bochkanov Sergey
*************************************************************************/
void linlsqrsolvesparse(const linlsqrstate &state, const sparsematrix &a, const real_1d_array &b);
/*************************************************************************
This function sets stopping criteria.
INPUT PARAMETERS:
EpsA - algorithm will be stopped if ||A^T*Rk||/(||A||*||Rk||)<=EpsA.
EpsB - algorithm will be stopped if ||Rk||<=EpsB*||B||
MaxIts - algorithm will be stopped if number of iterations
more than MaxIts.
OUTPUT PARAMETERS:
State - structure which stores algorithm state
NOTE: if EpsA,EpsB,EpsC and MaxIts are zero then these variables will
be setted as default values.
-- ALGLIB --
Copyright 30.11.2011 by Bochkanov Sergey
*************************************************************************/
void linlsqrsetcond(const linlsqrstate &state, const double epsa, const double epsb, const ae_int_t maxits);
/*************************************************************************
LSQR solver: results.
This function must be called after LinLSQRSolve
INPUT PARAMETERS:
State - algorithm state
OUTPUT PARAMETERS:
X - array[N], solution
Rep - optimization report:
* Rep.TerminationType completetion code:
* 1 ||Rk||<=EpsB*||B||
* 4 ||A^T*Rk||/(||A||*||Rk||)<=EpsA
* 5 MaxIts steps was taken
* 7 rounding errors prevent further progress,
X contains best point found so far.
(sometimes returned on singular systems)
* Rep.IterationsCount contains iterations count
* NMV countains number of matrix-vector calculations
-- ALGLIB --
Copyright 30.11.2011 by Bochkanov Sergey
*************************************************************************/
void linlsqrresults(const linlsqrstate &state, real_1d_array &x, linlsqrreport &rep);
/*************************************************************************
This function turns on/off reporting.
INPUT PARAMETERS:
State - structure which stores algorithm state
NeedXRep- whether iteration reports are needed or not
If NeedXRep is True, algorithm will call rep() callback function if it is
provided to MinCGOptimize().
-- ALGLIB --
Copyright 30.11.2011 by Bochkanov Sergey
*************************************************************************/
void linlsqrsetxrep(const linlsqrstate &state, const bool needxrep);
/*************************************************************************
This function initializes linear CG Solver. This solver is used to solve
symmetric positive definite problems. If you want to solve nonsymmetric
(or non-positive definite) problem you may use LinLSQR solver provided by
ALGLIB.
USAGE:
1. User initializes algorithm state with LinCGCreate() call
2. User tunes solver parameters with LinCGSetCond() and other functions
3. Optionally, user sets starting point with LinCGSetStartingPoint()
4. User calls LinCGSolveSparse() function which takes algorithm state and
SparseMatrix object.
5. User calls LinCGResults() to get solution
6. Optionally, user may call LinCGSolveSparse() again to solve another
problem with different matrix and/or right part without reinitializing
LinCGState structure.
INPUT PARAMETERS:
N - problem dimension, N>0
OUTPUT PARAMETERS:
State - structure which stores algorithm state
-- ALGLIB --
Copyright 14.11.2011 by Bochkanov Sergey
*************************************************************************/
void lincgcreate(const ae_int_t n, lincgstate &state);
/*************************************************************************
This function sets starting point.
By default, zero starting point is used.
INPUT PARAMETERS:
X - starting point, array[N]
OUTPUT PARAMETERS:
State - structure which stores algorithm state
-- ALGLIB --
Copyright 14.11.2011 by Bochkanov Sergey
*************************************************************************/
void lincgsetstartingpoint(const lincgstate &state, const real_1d_array &x);
/*************************************************************************
This function changes preconditioning settings of LinCGSolveSparse()
function. By default, SolveSparse() uses diagonal preconditioner, but if
you want to use solver without preconditioning, you can call this function
which forces solver to use unit matrix for preconditioning.
INPUT PARAMETERS:
State - structure which stores algorithm state
-- ALGLIB --
Copyright 19.11.2012 by Bochkanov Sergey
*************************************************************************/
void lincgsetprecunit(const lincgstate &state);
/*************************************************************************
This function changes preconditioning settings of LinCGSolveSparse()
function. LinCGSolveSparse() will use diagonal of the system matrix as
preconditioner. This preconditioning mode is active by default.
INPUT PARAMETERS:
State - structure which stores algorithm state
-- ALGLIB --
Copyright 19.11.2012 by Bochkanov Sergey
*************************************************************************/
void lincgsetprecdiag(const lincgstate &state);
/*************************************************************************
This function sets stopping criteria.
INPUT PARAMETERS:
EpsF - algorithm will be stopped if norm of residual is less than
EpsF*||b||.
MaxIts - algorithm will be stopped if number of iterations is more
than MaxIts.
OUTPUT PARAMETERS:
State - structure which stores algorithm state
NOTES:
If both EpsF and MaxIts are zero then small EpsF will be set to small
value.
-- ALGLIB --
Copyright 14.11.2011 by Bochkanov Sergey
*************************************************************************/
void lincgsetcond(const lincgstate &state, const double epsf, const ae_int_t maxits);
/*************************************************************************
Procedure for solution of A*x=b with sparse A.
INPUT PARAMETERS:
State - algorithm state
A - sparse matrix in the CRS format (you MUST contvert it to
CRS format by calling SparseConvertToCRS() function).
IsUpper - whether upper or lower triangle of A is used:
* IsUpper=True => only upper triangle is used and lower
triangle is not referenced at all
* IsUpper=False => only lower triangle is used and upper
triangle is not referenced at all
B - right part, array[N]
RESULT:
This function returns no result.
You can get solution by calling LinCGResults()
NOTE: this function uses lightweight preconditioning - multiplication by
inverse of diag(A). If you want, you can turn preconditioning off by
calling LinCGSetPrecUnit(). However, preconditioning cost is low and
preconditioner is very important for solution of badly scaled
problems.
-- ALGLIB --
Copyright 14.11.2011 by Bochkanov Sergey
*************************************************************************/
void lincgsolvesparse(const lincgstate &state, const sparsematrix &a, const bool isupper, const real_1d_array &b);
/*************************************************************************
CG-solver: results.
This function must be called after LinCGSolve
INPUT PARAMETERS:
State - algorithm state
OUTPUT PARAMETERS:
X - array[N], solution
Rep - optimization report:
* Rep.TerminationType completetion code:
* -5 input matrix is either not positive definite,
too large or too small
* -4 overflow/underflow during solution
(ill conditioned problem)
* 1 ||residual||<=EpsF*||b||
* 5 MaxIts steps was taken
* 7 rounding errors prevent further progress,
best point found is returned
* Rep.IterationsCount contains iterations count
* NMV countains number of matrix-vector calculations
-- ALGLIB --
Copyright 14.11.2011 by Bochkanov Sergey
*************************************************************************/
void lincgresults(const lincgstate &state, real_1d_array &x, lincgreport &rep);
/*************************************************************************
This function sets restart frequency. By default, algorithm is restarted
after N subsequent iterations.
-- ALGLIB --
Copyright 14.11.2011 by Bochkanov Sergey
*************************************************************************/
void lincgsetrestartfreq(const lincgstate &state, const ae_int_t srf);
/*************************************************************************
This function sets frequency of residual recalculations.
Algorithm updates residual r_k using iterative formula, but recalculates
it from scratch after each 10 iterations. It is done to avoid accumulation
of numerical errors and to stop algorithm when r_k starts to grow.
Such low update frequence (1/10) gives very little overhead, but makes
algorithm a bit more robust against numerical errors. However, you may
change it
INPUT PARAMETERS:
Freq - desired update frequency, Freq>=0.
Zero value means that no updates will be done.
-- ALGLIB --
Copyright 14.11.2011 by Bochkanov Sergey
*************************************************************************/
void lincgsetrupdatefreq(const lincgstate &state, const ae_int_t freq);
/*************************************************************************
This function turns on/off reporting.
INPUT PARAMETERS:
State - structure which stores algorithm state
NeedXRep- whether iteration reports are needed or not
If NeedXRep is True, algorithm will call rep() callback function if it is
provided to MinCGOptimize().
-- ALGLIB --
Copyright 14.11.2011 by Bochkanov Sergey
*************************************************************************/
void lincgsetxrep(const lincgstate &state, const bool needxrep);
/*************************************************************************
LEVENBERG-MARQUARDT-LIKE NONLINEAR SOLVER
DESCRIPTION:
This algorithm solves system of nonlinear equations
F[0](x[0], ..., x[n-1]) = 0
F[1](x[0], ..., x[n-1]) = 0
...
F[M-1](x[0], ..., x[n-1]) = 0
with M/N do not necessarily coincide. Algorithm converges quadratically
under following conditions:
* the solution set XS is nonempty
* for some xs in XS there exist such neighbourhood N(xs) that:
* vector function F(x) and its Jacobian J(x) are continuously
differentiable on N
* ||F(x)|| provides local error bound on N, i.e. there exists such
c1, that ||F(x)||>c1*distance(x,XS)
Note that these conditions are much more weaker than usual non-singularity
conditions. For example, algorithm will converge for any affine function
F (whether its Jacobian singular or not).
REQUIREMENTS:
Algorithm will request following information during its operation:
* function vector F[] and Jacobian matrix at given point X
* value of merit function f(x)=F[0]^2(x)+...+F[M-1]^2(x) at given point X
USAGE:
1. User initializes algorithm state with NLEQCreateLM() call
2. User tunes solver parameters with NLEQSetCond(), NLEQSetStpMax() and
other functions
3. User calls NLEQSolve() function which takes algorithm state and
pointers (delegates, etc.) to callback functions which calculate merit
function value and Jacobian.
4. User calls NLEQResults() to get solution
5. Optionally, user may call NLEQRestartFrom() to solve another problem
with same parameters (N/M) but another starting point and/or another
function vector. NLEQRestartFrom() allows to reuse already initialized
structure.
INPUT PARAMETERS:
N - space dimension, N>1:
* if provided, only leading N elements of X are used
* if not provided, determined automatically from size of X
M - system size
X - starting point
OUTPUT PARAMETERS:
State - structure which stores algorithm state
NOTES:
1. you may tune stopping conditions with NLEQSetCond() function
2. if target function contains exp() or other fast growing functions, and
optimization algorithm makes too large steps which leads to overflow,
use NLEQSetStpMax() function to bound algorithm's steps.
3. this algorithm is a slightly modified implementation of the method
described in 'Levenberg-Marquardt method for constrained nonlinear
equations with strong local convergence properties' by Christian Kanzow
Nobuo Yamashita and Masao Fukushima and further developed in 'On the
convergence of a New Levenberg-Marquardt Method' by Jin-yan Fan and
Ya-Xiang Yuan.
-- ALGLIB --
Copyright 20.08.2009 by Bochkanov Sergey
*************************************************************************/
void nleqcreatelm(const ae_int_t n, const ae_int_t m, const real_1d_array &x, nleqstate &state);
void nleqcreatelm(const ae_int_t m, const real_1d_array &x, nleqstate &state);
/*************************************************************************
This function sets stopping conditions for the nonlinear solver
INPUT PARAMETERS:
State - structure which stores algorithm state
EpsF - >=0
The subroutine finishes its work if on k+1-th iteration
the condition ||F||<=EpsF is satisfied
MaxIts - maximum number of iterations. If MaxIts=0, the number of
iterations is unlimited.
Passing EpsF=0 and MaxIts=0 simultaneously will lead to automatic
stopping criterion selection (small EpsF).
NOTES:
-- ALGLIB --
Copyright 20.08.2010 by Bochkanov Sergey
*************************************************************************/
void nleqsetcond(const nleqstate &state, const double epsf, const ae_int_t maxits);
/*************************************************************************
This function turns on/off reporting.
INPUT PARAMETERS:
State - structure which stores algorithm state
NeedXRep- whether iteration reports are needed or not
If NeedXRep is True, algorithm will call rep() callback function if it is
provided to NLEQSolve().
-- ALGLIB --
Copyright 20.08.2010 by Bochkanov Sergey
*************************************************************************/
void nleqsetxrep(const nleqstate &state, const bool needxrep);
/*************************************************************************
This function sets maximum step length
INPUT PARAMETERS:
State - structure which stores algorithm state
StpMax - maximum step length, >=0. Set StpMax to 0.0, if you don't
want to limit step length.
Use this subroutine when target function contains exp() or other fast
growing functions, and algorithm makes too large steps which lead to
overflow. This function allows us to reject steps that are too large (and
therefore expose us to the possible overflow) without actually calculating
function value at the x+stp*d.
-- ALGLIB --
Copyright 20.08.2010 by Bochkanov Sergey
*************************************************************************/
void nleqsetstpmax(const nleqstate &state, const double stpmax);
/*************************************************************************
This function provides reverse communication interface
Reverse communication interface is not documented or recommended to use.
See below for functions which provide better documented API
*************************************************************************/
bool nleqiteration(const nleqstate &state);
/*************************************************************************
This family of functions is used to launcn iterations of nonlinear solver
These functions accept following parameters:
state - algorithm state
func - callback which calculates function (or merit function)
value func at given point x
jac - callback which calculates function vector fi[]
and Jacobian jac at given point x
rep - optional callback which is called after each iteration
can be NULL
ptr - optional pointer which is passed to func/grad/hess/jac/rep
can be NULL
-- ALGLIB --
Copyright 20.03.2009 by Bochkanov Sergey
*************************************************************************/
void nleqsolve(nleqstate &state,
void (*func)(const real_1d_array &x, double &func, void *ptr),
void (*jac)(const real_1d_array &x, real_1d_array &fi, real_2d_array &jac, void *ptr),
void (*rep)(const real_1d_array &x, double func, void *ptr) = NULL,
void *ptr = NULL);
/*************************************************************************
NLEQ solver results
INPUT PARAMETERS:
State - algorithm state.
OUTPUT PARAMETERS:
X - array[0..N-1], solution
Rep - optimization report:
* Rep.TerminationType completetion code:
* -4 ERROR: algorithm has converged to the
stationary point Xf which is local minimum of
f=F[0]^2+...+F[m-1]^2, but is not solution of
nonlinear system.
* 1 sqrt(f)<=EpsF.
* 5 MaxIts steps was taken
* 7 stopping conditions are too stringent,
further improvement is impossible
* Rep.IterationsCount contains iterations count
* NFEV countains number of function calculations
* ActiveConstraints contains number of active constraints
-- ALGLIB --
Copyright 20.08.2009 by Bochkanov Sergey
*************************************************************************/
void nleqresults(const nleqstate &state, real_1d_array &x, nleqreport &rep);
/*************************************************************************
NLEQ solver results
Buffered implementation of NLEQResults(), which uses pre-allocated buffer
to store X[]. If buffer size is too small, it resizes buffer. It is
intended to be used in the inner cycles of performance critical algorithms
where array reallocation penalty is too large to be ignored.
-- ALGLIB --
Copyright 20.08.2009 by Bochkanov Sergey
*************************************************************************/
void nleqresultsbuf(const nleqstate &state, real_1d_array &x, nleqreport &rep);
/*************************************************************************
This subroutine restarts CG algorithm from new point. All optimization
parameters are left unchanged.
This function allows to solve multiple optimization problems (which
must have same number of dimensions) without object reallocation penalty.
INPUT PARAMETERS:
State - structure used for reverse communication previously
allocated with MinCGCreate call.
X - new starting point.
BndL - new lower bounds
BndU - new upper bounds
-- ALGLIB --
Copyright 30.07.2010 by Bochkanov Sergey
*************************************************************************/
void nleqrestartfrom(const nleqstate &state, const real_1d_array &x);
/*************************************************************************
Polynomial root finding.
This function returns all roots of the polynomial
P(x) = a0 + a1*x + a2*x^2 + ... + an*x^n
Both real and complex roots are returned (see below).
INPUT PARAMETERS:
A - array[N+1], polynomial coefficients:
* A[0] is constant term
* A[N] is a coefficient of X^N
N - polynomial degree
OUTPUT PARAMETERS:
X - array of complex roots:
* for isolated real root, X[I] is strictly real: IMAGE(X[I])=0
* complex roots are always returned in pairs - roots occupy
positions I and I+1, with:
* X[I+1]=Conj(X[I])
* IMAGE(X[I]) > 0
* IMAGE(X[I+1]) = -IMAGE(X[I]) < 0
* multiple real roots may have non-zero imaginary part due
to roundoff errors. There is no reliable way to distinguish
real root of multiplicity 2 from two complex roots in
the presence of roundoff errors.
Rep - report, additional information, following fields are set:
* Rep.MaxErr - max( |P(xi)| ) for i=0..N-1. This field
allows to quickly estimate "quality" of the roots being
returned.
NOTE: this function uses companion matrix method to find roots. In case
internal EVD solver fails do find eigenvalues, exception is
generated.
NOTE: roots are not "polished" and no matrix balancing is performed
for them.
-- ALGLIB --
Copyright 24.02.2014 by Bochkanov Sergey
*************************************************************************/
void polynomialsolve(const real_1d_array &a, const ae_int_t n, complex_1d_array &x, polynomialsolverreport &rep);
}
/////////////////////////////////////////////////////////////////////////
//
// THIS SECTION CONTAINS COMPUTATIONAL CORE DECLARATIONS (FUNCTIONS)
//
/////////////////////////////////////////////////////////////////////////
namespace alglib_impl
{
void rmatrixsolve(/* Real */ ae_matrix* a,
ae_int_t n,
/* Real */ ae_vector* b,
ae_int_t* info,
densesolverreport* rep,
/* Real */ ae_vector* x,
ae_state *_state);
void _pexec_rmatrixsolve(/* Real */ ae_matrix* a,
ae_int_t n,
/* Real */ ae_vector* b,
ae_int_t* info,
densesolverreport* rep,
/* Real */ ae_vector* x, ae_state *_state);
void rmatrixsolvefast(/* Real */ ae_matrix* a,
ae_int_t n,
/* Real */ ae_vector* b,
ae_int_t* info,
ae_state *_state);
void _pexec_rmatrixsolvefast(/* Real */ ae_matrix* a,
ae_int_t n,
/* Real */ ae_vector* b,
ae_int_t* info, ae_state *_state);
void rmatrixsolvem(/* Real */ ae_matrix* a,
ae_int_t n,
/* Real */ ae_matrix* b,
ae_int_t m,
ae_bool rfs,
ae_int_t* info,
densesolverreport* rep,
/* Real */ ae_matrix* x,
ae_state *_state);
void _pexec_rmatrixsolvem(/* Real */ ae_matrix* a,
ae_int_t n,
/* Real */ ae_matrix* b,
ae_int_t m,
ae_bool rfs,
ae_int_t* info,
densesolverreport* rep,
/* Real */ ae_matrix* x, ae_state *_state);
void rmatrixsolvemfast(/* Real */ ae_matrix* a,
ae_int_t n,
/* Real */ ae_matrix* b,
ae_int_t m,
ae_int_t* info,
ae_state *_state);
void _pexec_rmatrixsolvemfast(/* Real */ ae_matrix* a,
ae_int_t n,
/* Real */ ae_matrix* b,
ae_int_t m,
ae_int_t* info, ae_state *_state);
void rmatrixlusolve(/* Real */ ae_matrix* lua,
/* Integer */ ae_vector* p,
ae_int_t n,
/* Real */ ae_vector* b,
ae_int_t* info,
densesolverreport* rep,
/* Real */ ae_vector* x,
ae_state *_state);
void rmatrixlusolvefast(/* Real */ ae_matrix* lua,
/* Integer */ ae_vector* p,
ae_int_t n,
/* Real */ ae_vector* b,
ae_int_t* info,
ae_state *_state);
void rmatrixlusolvem(/* Real */ ae_matrix* lua,
/* Integer */ ae_vector* p,
ae_int_t n,
/* Real */ ae_matrix* b,
ae_int_t m,
ae_int_t* info,
densesolverreport* rep,
/* Real */ ae_matrix* x,
ae_state *_state);
void _pexec_rmatrixlusolvem(/* Real */ ae_matrix* lua,
/* Integer */ ae_vector* p,
ae_int_t n,
/* Real */ ae_matrix* b,
ae_int_t m,
ae_int_t* info,
densesolverreport* rep,
/* Real */ ae_matrix* x, ae_state *_state);
void rmatrixlusolvemfast(/* Real */ ae_matrix* lua,
/* Integer */ ae_vector* p,
ae_int_t n,
/* Real */ ae_matrix* b,
ae_int_t m,
ae_int_t* info,
ae_state *_state);
void _pexec_rmatrixlusolvemfast(/* Real */ ae_matrix* lua,
/* Integer */ ae_vector* p,
ae_int_t n,
/* Real */ ae_matrix* b,
ae_int_t m,
ae_int_t* info, ae_state *_state);
void rmatrixmixedsolve(/* Real */ ae_matrix* a,
/* Real */ ae_matrix* lua,
/* Integer */ ae_vector* p,
ae_int_t n,
/* Real */ ae_vector* b,
ae_int_t* info,
densesolverreport* rep,
/* Real */ ae_vector* x,
ae_state *_state);
void rmatrixmixedsolvem(/* Real */ ae_matrix* a,
/* Real */ ae_matrix* lua,
/* Integer */ ae_vector* p,
ae_int_t n,
/* Real */ ae_matrix* b,
ae_int_t m,
ae_int_t* info,
densesolverreport* rep,
/* Real */ ae_matrix* x,
ae_state *_state);
void cmatrixsolvem(/* Complex */ ae_matrix* a,
ae_int_t n,
/* Complex */ ae_matrix* b,
ae_int_t m,
ae_bool rfs,
ae_int_t* info,
densesolverreport* rep,
/* Complex */ ae_matrix* x,
ae_state *_state);
void _pexec_cmatrixsolvem(/* Complex */ ae_matrix* a,
ae_int_t n,
/* Complex */ ae_matrix* b,
ae_int_t m,
ae_bool rfs,
ae_int_t* info,
densesolverreport* rep,
/* Complex */ ae_matrix* x, ae_state *_state);
void cmatrixsolvemfast(/* Complex */ ae_matrix* a,
ae_int_t n,
/* Complex */ ae_matrix* b,
ae_int_t m,
ae_int_t* info,
ae_state *_state);
void _pexec_cmatrixsolvemfast(/* Complex */ ae_matrix* a,
ae_int_t n,
/* Complex */ ae_matrix* b,
ae_int_t m,
ae_int_t* info, ae_state *_state);
void cmatrixsolve(/* Complex */ ae_matrix* a,
ae_int_t n,
/* Complex */ ae_vector* b,
ae_int_t* info,
densesolverreport* rep,
/* Complex */ ae_vector* x,
ae_state *_state);
void _pexec_cmatrixsolve(/* Complex */ ae_matrix* a,
ae_int_t n,
/* Complex */ ae_vector* b,
ae_int_t* info,
densesolverreport* rep,
/* Complex */ ae_vector* x, ae_state *_state);
void cmatrixsolvefast(/* Complex */ ae_matrix* a,
ae_int_t n,
/* Complex */ ae_vector* b,
ae_int_t* info,
ae_state *_state);
void _pexec_cmatrixsolvefast(/* Complex */ ae_matrix* a,
ae_int_t n,
/* Complex */ ae_vector* b,
ae_int_t* info, ae_state *_state);
void cmatrixlusolvem(/* Complex */ ae_matrix* lua,
/* Integer */ ae_vector* p,
ae_int_t n,
/* Complex */ ae_matrix* b,
ae_int_t m,
ae_int_t* info,
densesolverreport* rep,
/* Complex */ ae_matrix* x,
ae_state *_state);
void _pexec_cmatrixlusolvem(/* Complex */ ae_matrix* lua,
/* Integer */ ae_vector* p,
ae_int_t n,
/* Complex */ ae_matrix* b,
ae_int_t m,
ae_int_t* info,
densesolverreport* rep,
/* Complex */ ae_matrix* x, ae_state *_state);
void cmatrixlusolvemfast(/* Complex */ ae_matrix* lua,
/* Integer */ ae_vector* p,
ae_int_t n,
/* Complex */ ae_matrix* b,
ae_int_t m,
ae_int_t* info,
ae_state *_state);
void _pexec_cmatrixlusolvemfast(/* Complex */ ae_matrix* lua,
/* Integer */ ae_vector* p,
ae_int_t n,
/* Complex */ ae_matrix* b,
ae_int_t m,
ae_int_t* info, ae_state *_state);
void cmatrixlusolve(/* Complex */ ae_matrix* lua,
/* Integer */ ae_vector* p,
ae_int_t n,
/* Complex */ ae_vector* b,
ae_int_t* info,
densesolverreport* rep,
/* Complex */ ae_vector* x,
ae_state *_state);
void cmatrixlusolvefast(/* Complex */ ae_matrix* lua,
/* Integer */ ae_vector* p,
ae_int_t n,
/* Complex */ ae_vector* b,
ae_int_t* info,
ae_state *_state);
void cmatrixmixedsolvem(/* Complex */ ae_matrix* a,
/* Complex */ ae_matrix* lua,
/* Integer */ ae_vector* p,
ae_int_t n,
/* Complex */ ae_matrix* b,
ae_int_t m,
ae_int_t* info,
densesolverreport* rep,
/* Complex */ ae_matrix* x,
ae_state *_state);
void cmatrixmixedsolve(/* Complex */ ae_matrix* a,
/* Complex */ ae_matrix* lua,
/* Integer */ ae_vector* p,
ae_int_t n,
/* Complex */ ae_vector* b,
ae_int_t* info,
densesolverreport* rep,
/* Complex */ ae_vector* x,
ae_state *_state);
void spdmatrixsolvem(/* Real */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
/* Real */ ae_matrix* b,
ae_int_t m,
ae_int_t* info,
densesolverreport* rep,
/* Real */ ae_matrix* x,
ae_state *_state);
void _pexec_spdmatrixsolvem(/* Real */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
/* Real */ ae_matrix* b,
ae_int_t m,
ae_int_t* info,
densesolverreport* rep,
/* Real */ ae_matrix* x, ae_state *_state);
void spdmatrixsolvemfast(/* Real */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
/* Real */ ae_matrix* b,
ae_int_t m,
ae_int_t* info,
ae_state *_state);
void _pexec_spdmatrixsolvemfast(/* Real */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
/* Real */ ae_matrix* b,
ae_int_t m,
ae_int_t* info, ae_state *_state);
void spdmatrixsolve(/* Real */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
/* Real */ ae_vector* b,
ae_int_t* info,
densesolverreport* rep,
/* Real */ ae_vector* x,
ae_state *_state);
void _pexec_spdmatrixsolve(/* Real */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
/* Real */ ae_vector* b,
ae_int_t* info,
densesolverreport* rep,
/* Real */ ae_vector* x, ae_state *_state);
void spdmatrixsolvefast(/* Real */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
/* Real */ ae_vector* b,
ae_int_t* info,
ae_state *_state);
void _pexec_spdmatrixsolvefast(/* Real */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
/* Real */ ae_vector* b,
ae_int_t* info, ae_state *_state);
void spdmatrixcholeskysolvem(/* Real */ ae_matrix* cha,
ae_int_t n,
ae_bool isupper,
/* Real */ ae_matrix* b,
ae_int_t m,
ae_int_t* info,
densesolverreport* rep,
/* Real */ ae_matrix* x,
ae_state *_state);
void _pexec_spdmatrixcholeskysolvem(/* Real */ ae_matrix* cha,
ae_int_t n,
ae_bool isupper,
/* Real */ ae_matrix* b,
ae_int_t m,
ae_int_t* info,
densesolverreport* rep,
/* Real */ ae_matrix* x, ae_state *_state);
void spdmatrixcholeskysolvemfast(/* Real */ ae_matrix* cha,
ae_int_t n,
ae_bool isupper,
/* Real */ ae_matrix* b,
ae_int_t m,
ae_int_t* info,
ae_state *_state);
void _pexec_spdmatrixcholeskysolvemfast(/* Real */ ae_matrix* cha,
ae_int_t n,
ae_bool isupper,
/* Real */ ae_matrix* b,
ae_int_t m,
ae_int_t* info, ae_state *_state);
void spdmatrixcholeskysolve(/* Real */ ae_matrix* cha,
ae_int_t n,
ae_bool isupper,
/* Real */ ae_vector* b,
ae_int_t* info,
densesolverreport* rep,
/* Real */ ae_vector* x,
ae_state *_state);
void spdmatrixcholeskysolvefast(/* Real */ ae_matrix* cha,
ae_int_t n,
ae_bool isupper,
/* Real */ ae_vector* b,
ae_int_t* info,
ae_state *_state);
void hpdmatrixsolvem(/* Complex */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
/* Complex */ ae_matrix* b,
ae_int_t m,
ae_int_t* info,
densesolverreport* rep,
/* Complex */ ae_matrix* x,
ae_state *_state);
void _pexec_hpdmatrixsolvem(/* Complex */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
/* Complex */ ae_matrix* b,
ae_int_t m,
ae_int_t* info,
densesolverreport* rep,
/* Complex */ ae_matrix* x, ae_state *_state);
void hpdmatrixsolvemfast(/* Complex */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
/* Complex */ ae_matrix* b,
ae_int_t m,
ae_int_t* info,
ae_state *_state);
void _pexec_hpdmatrixsolvemfast(/* Complex */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
/* Complex */ ae_matrix* b,
ae_int_t m,
ae_int_t* info, ae_state *_state);
void hpdmatrixsolve(/* Complex */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
/* Complex */ ae_vector* b,
ae_int_t* info,
densesolverreport* rep,
/* Complex */ ae_vector* x,
ae_state *_state);
void _pexec_hpdmatrixsolve(/* Complex */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
/* Complex */ ae_vector* b,
ae_int_t* info,
densesolverreport* rep,
/* Complex */ ae_vector* x, ae_state *_state);
void hpdmatrixsolvefast(/* Complex */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
/* Complex */ ae_vector* b,
ae_int_t* info,
ae_state *_state);
void _pexec_hpdmatrixsolvefast(/* Complex */ ae_matrix* a,
ae_int_t n,
ae_bool isupper,
/* Complex */ ae_vector* b,
ae_int_t* info, ae_state *_state);
void hpdmatrixcholeskysolvem(/* Complex */ ae_matrix* cha,
ae_int_t n,
ae_bool isupper,
/* Complex */ ae_matrix* b,
ae_int_t m,
ae_int_t* info,
densesolverreport* rep,
/* Complex */ ae_matrix* x,
ae_state *_state);
void _pexec_hpdmatrixcholeskysolvem(/* Complex */ ae_matrix* cha,
ae_int_t n,
ae_bool isupper,
/* Complex */ ae_matrix* b,
ae_int_t m,
ae_int_t* info,
densesolverreport* rep,
/* Complex */ ae_matrix* x, ae_state *_state);
void hpdmatrixcholeskysolvemfast(/* Complex */ ae_matrix* cha,
ae_int_t n,
ae_bool isupper,
/* Complex */ ae_matrix* b,
ae_int_t m,
ae_int_t* info,
ae_state *_state);
void _pexec_hpdmatrixcholeskysolvemfast(/* Complex */ ae_matrix* cha,
ae_int_t n,
ae_bool isupper,
/* Complex */ ae_matrix* b,
ae_int_t m,
ae_int_t* info, ae_state *_state);
void hpdmatrixcholeskysolve(/* Complex */ ae_matrix* cha,
ae_int_t n,
ae_bool isupper,
/* Complex */ ae_vector* b,
ae_int_t* info,
densesolverreport* rep,
/* Complex */ ae_vector* x,
ae_state *_state);
void hpdmatrixcholeskysolvefast(/* Complex */ ae_matrix* cha,
ae_int_t n,
ae_bool isupper,
/* Complex */ ae_vector* b,
ae_int_t* info,
ae_state *_state);
void rmatrixsolvels(/* Real */ ae_matrix* a,
ae_int_t nrows,
ae_int_t ncols,
/* Real */ ae_vector* b,
double threshold,
ae_int_t* info,
densesolverlsreport* rep,
/* Real */ ae_vector* x,
ae_state *_state);
void _pexec_rmatrixsolvels(/* Real */ ae_matrix* a,
ae_int_t nrows,
ae_int_t ncols,
/* Real */ ae_vector* b,
double threshold,
ae_int_t* info,
densesolverlsreport* rep,
/* Real */ ae_vector* x, ae_state *_state);
void _densesolverreport_init(void* _p, ae_state *_state);
void _densesolverreport_init_copy(void* _dst, void* _src, ae_state *_state);
void _densesolverreport_clear(void* _p);
void _densesolverreport_destroy(void* _p);
void _densesolverlsreport_init(void* _p, ae_state *_state);
void _densesolverlsreport_init_copy(void* _dst, void* _src, ae_state *_state);
void _densesolverlsreport_clear(void* _p);
void _densesolverlsreport_destroy(void* _p);
void linlsqrcreate(ae_int_t m,
ae_int_t n,
linlsqrstate* state,
ae_state *_state);
void linlsqrsetb(linlsqrstate* state,
/* Real */ ae_vector* b,
ae_state *_state);
void linlsqrsetprecunit(linlsqrstate* state, ae_state *_state);
void linlsqrsetprecdiag(linlsqrstate* state, ae_state *_state);
void linlsqrsetlambdai(linlsqrstate* state,
double lambdai,
ae_state *_state);
ae_bool linlsqriteration(linlsqrstate* state, ae_state *_state);
void linlsqrsolvesparse(linlsqrstate* state,
sparsematrix* a,
/* Real */ ae_vector* b,
ae_state *_state);
void linlsqrsetcond(linlsqrstate* state,
double epsa,
double epsb,
ae_int_t maxits,
ae_state *_state);
void linlsqrresults(linlsqrstate* state,
/* Real */ ae_vector* x,
linlsqrreport* rep,
ae_state *_state);
void linlsqrsetxrep(linlsqrstate* state,
ae_bool needxrep,
ae_state *_state);
void linlsqrrestart(linlsqrstate* state, ae_state *_state);
void _linlsqrstate_init(void* _p, ae_state *_state);
void _linlsqrstate_init_copy(void* _dst, void* _src, ae_state *_state);
void _linlsqrstate_clear(void* _p);
void _linlsqrstate_destroy(void* _p);
void _linlsqrreport_init(void* _p, ae_state *_state);
void _linlsqrreport_init_copy(void* _dst, void* _src, ae_state *_state);
void _linlsqrreport_clear(void* _p);
void _linlsqrreport_destroy(void* _p);
void lincgcreate(ae_int_t n, lincgstate* state, ae_state *_state);
void lincgsetstartingpoint(lincgstate* state,
/* Real */ ae_vector* x,
ae_state *_state);
void lincgsetb(lincgstate* state,
/* Real */ ae_vector* b,
ae_state *_state);
void lincgsetprecunit(lincgstate* state, ae_state *_state);
void lincgsetprecdiag(lincgstate* state, ae_state *_state);
void lincgsetcond(lincgstate* state,
double epsf,
ae_int_t maxits,
ae_state *_state);
ae_bool lincgiteration(lincgstate* state, ae_state *_state);
void lincgsolvesparse(lincgstate* state,
sparsematrix* a,
ae_bool isupper,
/* Real */ ae_vector* b,
ae_state *_state);
void lincgresults(lincgstate* state,
/* Real */ ae_vector* x,
lincgreport* rep,
ae_state *_state);
void lincgsetrestartfreq(lincgstate* state,
ae_int_t srf,
ae_state *_state);
void lincgsetrupdatefreq(lincgstate* state,
ae_int_t freq,
ae_state *_state);
void lincgsetxrep(lincgstate* state, ae_bool needxrep, ae_state *_state);
void lincgrestart(lincgstate* state, ae_state *_state);
void _lincgstate_init(void* _p, ae_state *_state);
void _lincgstate_init_copy(void* _dst, void* _src, ae_state *_state);
void _lincgstate_clear(void* _p);
void _lincgstate_destroy(void* _p);
void _lincgreport_init(void* _p, ae_state *_state);
void _lincgreport_init_copy(void* _dst, void* _src, ae_state *_state);
void _lincgreport_clear(void* _p);
void _lincgreport_destroy(void* _p);
void nleqcreatelm(ae_int_t n,
ae_int_t m,
/* Real */ ae_vector* x,
nleqstate* state,
ae_state *_state);
void nleqsetcond(nleqstate* state,
double epsf,
ae_int_t maxits,
ae_state *_state);
void nleqsetxrep(nleqstate* state, ae_bool needxrep, ae_state *_state);
void nleqsetstpmax(nleqstate* state, double stpmax, ae_state *_state);
ae_bool nleqiteration(nleqstate* state, ae_state *_state);
void nleqresults(nleqstate* state,
/* Real */ ae_vector* x,
nleqreport* rep,
ae_state *_state);
void nleqresultsbuf(nleqstate* state,
/* Real */ ae_vector* x,
nleqreport* rep,
ae_state *_state);
void nleqrestartfrom(nleqstate* state,
/* Real */ ae_vector* x,
ae_state *_state);
void _nleqstate_init(void* _p, ae_state *_state);
void _nleqstate_init_copy(void* _dst, void* _src, ae_state *_state);
void _nleqstate_clear(void* _p);
void _nleqstate_destroy(void* _p);
void _nleqreport_init(void* _p, ae_state *_state);
void _nleqreport_init_copy(void* _dst, void* _src, ae_state *_state);
void _nleqreport_clear(void* _p);
void _nleqreport_destroy(void* _p);
void polynomialsolve(/* Real */ ae_vector* a,
ae_int_t n,
/* Complex */ ae_vector* x,
polynomialsolverreport* rep,
ae_state *_state);
void _polynomialsolverreport_init(void* _p, ae_state *_state);
void _polynomialsolverreport_init_copy(void* _dst, void* _src, ae_state *_state);
void _polynomialsolverreport_clear(void* _p);
void _polynomialsolverreport_destroy(void* _p);
}
#endif
|