This file is indexed.

/usr/include/libalglib/statistics.h is in libalglib-dev 3.10.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
/*************************************************************************
ALGLIB 3.10.0 (source code generated 2015-08-19)
Copyright (c) Sergey Bochkanov (ALGLIB project).

>>> SOURCE LICENSE >>>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation (www.fsf.org); either version 2 of the 
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

A copy of the GNU General Public License is available at
http://www.fsf.org/licensing/licenses
>>> END OF LICENSE >>>
*************************************************************************/
#ifndef _statistics_pkg_h
#define _statistics_pkg_h
#include "ap.h"
#include "alglibinternal.h"
#include "linalg.h"
#include "specialfunctions.h"

/////////////////////////////////////////////////////////////////////////
//
// THIS SECTION CONTAINS COMPUTATIONAL CORE DECLARATIONS (DATATYPES)
//
/////////////////////////////////////////////////////////////////////////
namespace alglib_impl
{

}

/////////////////////////////////////////////////////////////////////////
//
// THIS SECTION CONTAINS C++ INTERFACE
//
/////////////////////////////////////////////////////////////////////////
namespace alglib
{


/*************************************************************************
Calculation of the distribution moments: mean, variance, skewness, kurtosis.

INPUT PARAMETERS:
    X       -   sample
    N       -   N>=0, sample size:
                * if given, only leading N elements of X are processed
                * if not given, automatically determined from size of X

OUTPUT PARAMETERS
    Mean    -   mean.
    Variance-   variance.
    Skewness-   skewness (if variance<>0; zero otherwise).
    Kurtosis-   kurtosis (if variance<>0; zero otherwise).

NOTE: variance is calculated by dividing sum of squares by N-1, not N.

  -- ALGLIB --
     Copyright 06.09.2006 by Bochkanov Sergey
*************************************************************************/
void samplemoments(const real_1d_array &x, const ae_int_t n, double &mean, double &variance, double &skewness, double &kurtosis);
void samplemoments(const real_1d_array &x, double &mean, double &variance, double &skewness, double &kurtosis);


/*************************************************************************
Calculation of the mean.

INPUT PARAMETERS:
    X       -   sample
    N       -   N>=0, sample size:
                * if given, only leading N elements of X are processed
                * if not given, automatically determined from size of X

NOTE:

This function return result  which calculated by 'SampleMoments' function
and stored at 'Mean' variable.


  -- ALGLIB --
     Copyright 06.09.2006 by Bochkanov Sergey
*************************************************************************/
double samplemean(const real_1d_array &x, const ae_int_t n);
double samplemean(const real_1d_array &x);


/*************************************************************************
Calculation of the variance.

INPUT PARAMETERS:
    X       -   sample
    N       -   N>=0, sample size:
                * if given, only leading N elements of X are processed
                * if not given, automatically determined from size of X

NOTE:

This function return result  which calculated by 'SampleMoments' function
and stored at 'Variance' variable.


  -- ALGLIB --
     Copyright 06.09.2006 by Bochkanov Sergey
*************************************************************************/
double samplevariance(const real_1d_array &x, const ae_int_t n);
double samplevariance(const real_1d_array &x);


/*************************************************************************
Calculation of the skewness.

INPUT PARAMETERS:
    X       -   sample
    N       -   N>=0, sample size:
                * if given, only leading N elements of X are processed
                * if not given, automatically determined from size of X

NOTE:

This function return result  which calculated by 'SampleMoments' function
and stored at 'Skewness' variable.


  -- ALGLIB --
     Copyright 06.09.2006 by Bochkanov Sergey
*************************************************************************/
double sampleskewness(const real_1d_array &x, const ae_int_t n);
double sampleskewness(const real_1d_array &x);


/*************************************************************************
Calculation of the kurtosis.

INPUT PARAMETERS:
    X       -   sample
    N       -   N>=0, sample size:
                * if given, only leading N elements of X are processed
                * if not given, automatically determined from size of X

NOTE:

This function return result  which calculated by 'SampleMoments' function
and stored at 'Kurtosis' variable.


  -- ALGLIB --
     Copyright 06.09.2006 by Bochkanov Sergey
*************************************************************************/
double samplekurtosis(const real_1d_array &x, const ae_int_t n);
double samplekurtosis(const real_1d_array &x);


/*************************************************************************
ADev

Input parameters:
    X   -   sample
    N   -   N>=0, sample size:
            * if given, only leading N elements of X are processed
            * if not given, automatically determined from size of X

Output parameters:
    ADev-   ADev

  -- ALGLIB --
     Copyright 06.09.2006 by Bochkanov Sergey
*************************************************************************/
void sampleadev(const real_1d_array &x, const ae_int_t n, double &adev);
void sampleadev(const real_1d_array &x, double &adev);


/*************************************************************************
Median calculation.

Input parameters:
    X   -   sample (array indexes: [0..N-1])
    N   -   N>=0, sample size:
            * if given, only leading N elements of X are processed
            * if not given, automatically determined from size of X

Output parameters:
    Median

  -- ALGLIB --
     Copyright 06.09.2006 by Bochkanov Sergey
*************************************************************************/
void samplemedian(const real_1d_array &x, const ae_int_t n, double &median);
void samplemedian(const real_1d_array &x, double &median);


/*************************************************************************
Percentile calculation.

Input parameters:
    X   -   sample (array indexes: [0..N-1])
    N   -   N>=0, sample size:
            * if given, only leading N elements of X are processed
            * if not given, automatically determined from size of X
    P   -   percentile (0<=P<=1)

Output parameters:
    V   -   percentile

  -- ALGLIB --
     Copyright 01.03.2008 by Bochkanov Sergey
*************************************************************************/
void samplepercentile(const real_1d_array &x, const ae_int_t n, const double p, double &v);
void samplepercentile(const real_1d_array &x, const double p, double &v);


/*************************************************************************
2-sample covariance

Input parameters:
    X       -   sample 1 (array indexes: [0..N-1])
    Y       -   sample 2 (array indexes: [0..N-1])
    N       -   N>=0, sample size:
                * if given, only N leading elements of X/Y are processed
                * if not given, automatically determined from input sizes

Result:
    covariance (zero for N=0 or N=1)

  -- ALGLIB --
     Copyright 28.10.2010 by Bochkanov Sergey
*************************************************************************/
double cov2(const real_1d_array &x, const real_1d_array &y, const ae_int_t n);
double cov2(const real_1d_array &x, const real_1d_array &y);


/*************************************************************************
Pearson product-moment correlation coefficient

Input parameters:
    X       -   sample 1 (array indexes: [0..N-1])
    Y       -   sample 2 (array indexes: [0..N-1])
    N       -   N>=0, sample size:
                * if given, only N leading elements of X/Y are processed
                * if not given, automatically determined from input sizes

Result:
    Pearson product-moment correlation coefficient
    (zero for N=0 or N=1)

  -- ALGLIB --
     Copyright 28.10.2010 by Bochkanov Sergey
*************************************************************************/
double pearsoncorr2(const real_1d_array &x, const real_1d_array &y, const ae_int_t n);
double pearsoncorr2(const real_1d_array &x, const real_1d_array &y);


/*************************************************************************
Spearman's rank correlation coefficient

Input parameters:
    X       -   sample 1 (array indexes: [0..N-1])
    Y       -   sample 2 (array indexes: [0..N-1])
    N       -   N>=0, sample size:
                * if given, only N leading elements of X/Y are processed
                * if not given, automatically determined from input sizes

Result:
    Spearman's rank correlation coefficient
    (zero for N=0 or N=1)

  -- ALGLIB --
     Copyright 09.04.2007 by Bochkanov Sergey
*************************************************************************/
double spearmancorr2(const real_1d_array &x, const real_1d_array &y, const ae_int_t n);
double spearmancorr2(const real_1d_array &x, const real_1d_array &y);


/*************************************************************************
Covariance matrix

SMP EDITION OF ALGLIB:

  ! This function can utilize multicore capabilities of  your system.  In
  ! order to do this you have to call version with "smp_" prefix,   which
  ! indicates that multicore code will be used.
  !
  ! This note is given for users of SMP edition; if you use GPL  edition,
  ! or commercial edition of ALGLIB without SMP support, you  still  will
  ! be able to call smp-version of this function,  but  all  computations
  ! will be done serially.
  !
  ! We recommend you to carefully read ALGLIB Reference  Manual,  section
  ! called 'SMP support', before using parallel version of this function.
  !
  ! You should remember that starting/stopping worker thread always  have
  ! non-zero cost. Although  multicore  version  is  pretty  efficient on
  ! large problems, we do not recommend you to use it on small problems -
  ! with covariance matrices smaller than 128*128.

INPUT PARAMETERS:
    X   -   array[N,M], sample matrix:
            * J-th column corresponds to J-th variable
            * I-th row corresponds to I-th observation
    N   -   N>=0, number of observations:
            * if given, only leading N rows of X are used
            * if not given, automatically determined from input size
    M   -   M>0, number of variables:
            * if given, only leading M columns of X are used
            * if not given, automatically determined from input size

OUTPUT PARAMETERS:
    C   -   array[M,M], covariance matrix (zero if N=0 or N=1)

  -- ALGLIB --
     Copyright 28.10.2010 by Bochkanov Sergey
*************************************************************************/
void covm(const real_2d_array &x, const ae_int_t n, const ae_int_t m, real_2d_array &c);
void smp_covm(const real_2d_array &x, const ae_int_t n, const ae_int_t m, real_2d_array &c);
void covm(const real_2d_array &x, real_2d_array &c);
void smp_covm(const real_2d_array &x, real_2d_array &c);


/*************************************************************************
Pearson product-moment correlation matrix

SMP EDITION OF ALGLIB:

  ! This function can utilize multicore capabilities of  your system.  In
  ! order to do this you have to call version with "smp_" prefix,   which
  ! indicates that multicore code will be used.
  !
  ! This note is given for users of SMP edition; if you use GPL  edition,
  ! or commercial edition of ALGLIB without SMP support, you  still  will
  ! be able to call smp-version of this function,  but  all  computations
  ! will be done serially.
  !
  ! We recommend you to carefully read ALGLIB Reference  Manual,  section
  ! called 'SMP support', before using parallel version of this function.
  !
  ! You should remember that starting/stopping worker thread always  have
  ! non-zero cost. Although  multicore  version  is  pretty  efficient on
  ! large problems, we do not recommend you to use it on small problems -
  ! with correlation matrices smaller than 128*128.

INPUT PARAMETERS:
    X   -   array[N,M], sample matrix:
            * J-th column corresponds to J-th variable
            * I-th row corresponds to I-th observation
    N   -   N>=0, number of observations:
            * if given, only leading N rows of X are used
            * if not given, automatically determined from input size
    M   -   M>0, number of variables:
            * if given, only leading M columns of X are used
            * if not given, automatically determined from input size

OUTPUT PARAMETERS:
    C   -   array[M,M], correlation matrix (zero if N=0 or N=1)

  -- ALGLIB --
     Copyright 28.10.2010 by Bochkanov Sergey
*************************************************************************/
void pearsoncorrm(const real_2d_array &x, const ae_int_t n, const ae_int_t m, real_2d_array &c);
void smp_pearsoncorrm(const real_2d_array &x, const ae_int_t n, const ae_int_t m, real_2d_array &c);
void pearsoncorrm(const real_2d_array &x, real_2d_array &c);
void smp_pearsoncorrm(const real_2d_array &x, real_2d_array &c);


/*************************************************************************
Spearman's rank correlation matrix

SMP EDITION OF ALGLIB:

  ! This function can utilize multicore capabilities of  your system.  In
  ! order to do this you have to call version with "smp_" prefix,   which
  ! indicates that multicore code will be used.
  !
  ! This note is given for users of SMP edition; if you use GPL  edition,
  ! or commercial edition of ALGLIB without SMP support, you  still  will
  ! be able to call smp-version of this function,  but  all  computations
  ! will be done serially.
  !
  ! We recommend you to carefully read ALGLIB Reference  Manual,  section
  ! called 'SMP support', before using parallel version of this function.
  !
  ! You should remember that starting/stopping worker thread always  have
  ! non-zero cost. Although  multicore  version  is  pretty  efficient on
  ! large problems, we do not recommend you to use it on small problems -
  ! with correlation matrices smaller than 128*128.

INPUT PARAMETERS:
    X   -   array[N,M], sample matrix:
            * J-th column corresponds to J-th variable
            * I-th row corresponds to I-th observation
    N   -   N>=0, number of observations:
            * if given, only leading N rows of X are used
            * if not given, automatically determined from input size
    M   -   M>0, number of variables:
            * if given, only leading M columns of X are used
            * if not given, automatically determined from input size

OUTPUT PARAMETERS:
    C   -   array[M,M], correlation matrix (zero if N=0 or N=1)

  -- ALGLIB --
     Copyright 28.10.2010 by Bochkanov Sergey
*************************************************************************/
void spearmancorrm(const real_2d_array &x, const ae_int_t n, const ae_int_t m, real_2d_array &c);
void smp_spearmancorrm(const real_2d_array &x, const ae_int_t n, const ae_int_t m, real_2d_array &c);
void spearmancorrm(const real_2d_array &x, real_2d_array &c);
void smp_spearmancorrm(const real_2d_array &x, real_2d_array &c);


/*************************************************************************
Cross-covariance matrix

SMP EDITION OF ALGLIB:

  ! This function can utilize multicore capabilities of  your system.  In
  ! order to do this you have to call version with "smp_" prefix,   which
  ! indicates that multicore code will be used.
  !
  ! This note is given for users of SMP edition; if you use GPL  edition,
  ! or commercial edition of ALGLIB without SMP support, you  still  will
  ! be able to call smp-version of this function,  but  all  computations
  ! will be done serially.
  !
  ! We recommend you to carefully read ALGLIB Reference  Manual,  section
  ! called 'SMP support', before using parallel version of this function.
  !
  ! You should remember that starting/stopping worker thread always  have
  ! non-zero cost. Although  multicore  version  is  pretty  efficient on
  ! large problems, we do not recommend you to use it on small problems -
  ! with covariance matrices smaller than 128*128.

INPUT PARAMETERS:
    X   -   array[N,M1], sample matrix:
            * J-th column corresponds to J-th variable
            * I-th row corresponds to I-th observation
    Y   -   array[N,M2], sample matrix:
            * J-th column corresponds to J-th variable
            * I-th row corresponds to I-th observation
    N   -   N>=0, number of observations:
            * if given, only leading N rows of X/Y are used
            * if not given, automatically determined from input sizes
    M1  -   M1>0, number of variables in X:
            * if given, only leading M1 columns of X are used
            * if not given, automatically determined from input size
    M2  -   M2>0, number of variables in Y:
            * if given, only leading M1 columns of X are used
            * if not given, automatically determined from input size

OUTPUT PARAMETERS:
    C   -   array[M1,M2], cross-covariance matrix (zero if N=0 or N=1)

  -- ALGLIB --
     Copyright 28.10.2010 by Bochkanov Sergey
*************************************************************************/
void covm2(const real_2d_array &x, const real_2d_array &y, const ae_int_t n, const ae_int_t m1, const ae_int_t m2, real_2d_array &c);
void smp_covm2(const real_2d_array &x, const real_2d_array &y, const ae_int_t n, const ae_int_t m1, const ae_int_t m2, real_2d_array &c);
void covm2(const real_2d_array &x, const real_2d_array &y, real_2d_array &c);
void smp_covm2(const real_2d_array &x, const real_2d_array &y, real_2d_array &c);


/*************************************************************************
Pearson product-moment cross-correlation matrix

SMP EDITION OF ALGLIB:

  ! This function can utilize multicore capabilities of  your system.  In
  ! order to do this you have to call version with "smp_" prefix,   which
  ! indicates that multicore code will be used.
  !
  ! This note is given for users of SMP edition; if you use GPL  edition,
  ! or commercial edition of ALGLIB without SMP support, you  still  will
  ! be able to call smp-version of this function,  but  all  computations
  ! will be done serially.
  !
  ! We recommend you to carefully read ALGLIB Reference  Manual,  section
  ! called 'SMP support', before using parallel version of this function.
  !
  ! You should remember that starting/stopping worker thread always  have
  ! non-zero cost. Although  multicore  version  is  pretty  efficient on
  ! large problems, we do not recommend you to use it on small problems -
  ! with correlation matrices smaller than 128*128.

INPUT PARAMETERS:
    X   -   array[N,M1], sample matrix:
            * J-th column corresponds to J-th variable
            * I-th row corresponds to I-th observation
    Y   -   array[N,M2], sample matrix:
            * J-th column corresponds to J-th variable
            * I-th row corresponds to I-th observation
    N   -   N>=0, number of observations:
            * if given, only leading N rows of X/Y are used
            * if not given, automatically determined from input sizes
    M1  -   M1>0, number of variables in X:
            * if given, only leading M1 columns of X are used
            * if not given, automatically determined from input size
    M2  -   M2>0, number of variables in Y:
            * if given, only leading M1 columns of X are used
            * if not given, automatically determined from input size

OUTPUT PARAMETERS:
    C   -   array[M1,M2], cross-correlation matrix (zero if N=0 or N=1)

  -- ALGLIB --
     Copyright 28.10.2010 by Bochkanov Sergey
*************************************************************************/
void pearsoncorrm2(const real_2d_array &x, const real_2d_array &y, const ae_int_t n, const ae_int_t m1, const ae_int_t m2, real_2d_array &c);
void smp_pearsoncorrm2(const real_2d_array &x, const real_2d_array &y, const ae_int_t n, const ae_int_t m1, const ae_int_t m2, real_2d_array &c);
void pearsoncorrm2(const real_2d_array &x, const real_2d_array &y, real_2d_array &c);
void smp_pearsoncorrm2(const real_2d_array &x, const real_2d_array &y, real_2d_array &c);


/*************************************************************************
Spearman's rank cross-correlation matrix

SMP EDITION OF ALGLIB:

  ! This function can utilize multicore capabilities of  your system.  In
  ! order to do this you have to call version with "smp_" prefix,   which
  ! indicates that multicore code will be used.
  !
  ! This note is given for users of SMP edition; if you use GPL  edition,
  ! or commercial edition of ALGLIB without SMP support, you  still  will
  ! be able to call smp-version of this function,  but  all  computations
  ! will be done serially.
  !
  ! We recommend you to carefully read ALGLIB Reference  Manual,  section
  ! called 'SMP support', before using parallel version of this function.
  !
  ! You should remember that starting/stopping worker thread always  have
  ! non-zero cost. Although  multicore  version  is  pretty  efficient on
  ! large problems, we do not recommend you to use it on small problems -
  ! with correlation matrices smaller than 128*128.

INPUT PARAMETERS:
    X   -   array[N,M1], sample matrix:
            * J-th column corresponds to J-th variable
            * I-th row corresponds to I-th observation
    Y   -   array[N,M2], sample matrix:
            * J-th column corresponds to J-th variable
            * I-th row corresponds to I-th observation
    N   -   N>=0, number of observations:
            * if given, only leading N rows of X/Y are used
            * if not given, automatically determined from input sizes
    M1  -   M1>0, number of variables in X:
            * if given, only leading M1 columns of X are used
            * if not given, automatically determined from input size
    M2  -   M2>0, number of variables in Y:
            * if given, only leading M1 columns of X are used
            * if not given, automatically determined from input size

OUTPUT PARAMETERS:
    C   -   array[M1,M2], cross-correlation matrix (zero if N=0 or N=1)

  -- ALGLIB --
     Copyright 28.10.2010 by Bochkanov Sergey
*************************************************************************/
void spearmancorrm2(const real_2d_array &x, const real_2d_array &y, const ae_int_t n, const ae_int_t m1, const ae_int_t m2, real_2d_array &c);
void smp_spearmancorrm2(const real_2d_array &x, const real_2d_array &y, const ae_int_t n, const ae_int_t m1, const ae_int_t m2, real_2d_array &c);
void spearmancorrm2(const real_2d_array &x, const real_2d_array &y, real_2d_array &c);
void smp_spearmancorrm2(const real_2d_array &x, const real_2d_array &y, real_2d_array &c);


/*************************************************************************
This function replaces data in XY by their ranks:
* XY is processed row-by-row
* rows are processed separately
* tied data are correctly handled (tied ranks are calculated)
* ranking starts from 0, ends at NFeatures-1
* sum of within-row values is equal to (NFeatures-1)*NFeatures/2

SMP EDITION OF ALGLIB:

  ! This function can utilize multicore capabilities of  your system.  In
  ! order to do this you have to call version with "smp_" prefix,   which
  ! indicates that multicore code will be used.
  !
  ! This note is given for users of SMP edition; if you use GPL  edition,
  ! or commercial edition of ALGLIB without SMP support, you  still  will
  ! be able to call smp-version of this function,  but  all  computations
  ! will be done serially.
  !
  ! We recommend you to carefully read ALGLIB Reference  Manual,  section
  ! called 'SMP support', before using parallel version of this function.
  !
  ! You should remember that starting/stopping worker thread always  have
  ! non-zero cost. Although  multicore  version  is  pretty  efficient on
  ! large problems, we do not recommend you to use it on small problems -
  ! ones where expected operations count is less than 100.000

INPUT PARAMETERS:
    XY      -   array[NPoints,NFeatures], dataset
    NPoints -   number of points
    NFeatures-  number of features

OUTPUT PARAMETERS:
    XY      -   data are replaced by their within-row ranks;
                ranking starts from 0, ends at NFeatures-1

  -- ALGLIB --
     Copyright 18.04.2013 by Bochkanov Sergey
*************************************************************************/
void rankdata(const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nfeatures);
void smp_rankdata(const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nfeatures);
void rankdata(real_2d_array &xy);
void smp_rankdata(real_2d_array &xy);


/*************************************************************************
This function replaces data in XY by their CENTERED ranks:
* XY is processed row-by-row
* rows are processed separately
* tied data are correctly handled (tied ranks are calculated)
* centered ranks are just usual ranks, but centered in such way  that  sum
  of within-row values is equal to 0.0.
* centering is performed by subtracting mean from each row, i.e it changes
  mean value, but does NOT change higher moments

SMP EDITION OF ALGLIB:

  ! This function can utilize multicore capabilities of  your system.  In
  ! order to do this you have to call version with "smp_" prefix,   which
  ! indicates that multicore code will be used.
  !
  ! This note is given for users of SMP edition; if you use GPL  edition,
  ! or commercial edition of ALGLIB without SMP support, you  still  will
  ! be able to call smp-version of this function,  but  all  computations
  ! will be done serially.
  !
  ! We recommend you to carefully read ALGLIB Reference  Manual,  section
  ! called 'SMP support', before using parallel version of this function.
  !
  ! You should remember that starting/stopping worker thread always  have
  ! non-zero cost. Although  multicore  version  is  pretty  efficient on
  ! large problems, we do not recommend you to use it on small problems -
  ! ones where expected operations count is less than 100.000

INPUT PARAMETERS:
    XY      -   array[NPoints,NFeatures], dataset
    NPoints -   number of points
    NFeatures-  number of features

OUTPUT PARAMETERS:
    XY      -   data are replaced by their within-row ranks;
                ranking starts from 0, ends at NFeatures-1

  -- ALGLIB --
     Copyright 18.04.2013 by Bochkanov Sergey
*************************************************************************/
void rankdatacentered(const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nfeatures);
void smp_rankdatacentered(const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nfeatures);
void rankdatacentered(real_2d_array &xy);
void smp_rankdatacentered(real_2d_array &xy);


/*************************************************************************
Obsolete function, we recommend to use PearsonCorr2().

  -- ALGLIB --
     Copyright 09.04.2007 by Bochkanov Sergey
*************************************************************************/
double pearsoncorrelation(const real_1d_array &x, const real_1d_array &y, const ae_int_t n);


/*************************************************************************
Obsolete function, we recommend to use SpearmanCorr2().

    -- ALGLIB --
    Copyright 09.04.2007 by Bochkanov Sergey
*************************************************************************/
double spearmanrankcorrelation(const real_1d_array &x, const real_1d_array &y, const ae_int_t n);

/*************************************************************************
Pearson's correlation coefficient significance test

This test checks hypotheses about whether X  and  Y  are  samples  of  two
continuous  distributions  having  zero  correlation  or   whether   their
correlation is non-zero.

The following tests are performed:
    * two-tailed test (null hypothesis - X and Y have zero correlation)
    * left-tailed test (null hypothesis - the correlation  coefficient  is
      greater than or equal to 0)
    * right-tailed test (null hypothesis - the correlation coefficient  is
      less than or equal to 0).

Requirements:
    * the number of elements in each sample is not less than 5
    * normality of distributions of X and Y.

Input parameters:
    R   -   Pearson's correlation coefficient for X and Y
    N   -   number of elements in samples, N>=5.

Output parameters:
    BothTails   -   p-value for two-tailed test.
                    If BothTails is less than the given significance level
                    the null hypothesis is rejected.
    LeftTail    -   p-value for left-tailed test.
                    If LeftTail is less than the given significance level,
                    the null hypothesis is rejected.
    RightTail   -   p-value for right-tailed test.
                    If RightTail is less than the given significance level
                    the null hypothesis is rejected.

  -- ALGLIB --
     Copyright 09.04.2007 by Bochkanov Sergey
*************************************************************************/
void pearsoncorrelationsignificance(const double r, const ae_int_t n, double &bothtails, double &lefttail, double &righttail);


/*************************************************************************
Spearman's rank correlation coefficient significance test

This test checks hypotheses about whether X  and  Y  are  samples  of  two
continuous  distributions  having  zero  correlation  or   whether   their
correlation is non-zero.

The following tests are performed:
    * two-tailed test (null hypothesis - X and Y have zero correlation)
    * left-tailed test (null hypothesis - the correlation  coefficient  is
      greater than or equal to 0)
    * right-tailed test (null hypothesis - the correlation coefficient  is
      less than or equal to 0).

Requirements:
    * the number of elements in each sample is not less than 5.

The test is non-parametric and doesn't require distributions X and Y to be
normal.

Input parameters:
    R   -   Spearman's rank correlation coefficient for X and Y
    N   -   number of elements in samples, N>=5.

Output parameters:
    BothTails   -   p-value for two-tailed test.
                    If BothTails is less than the given significance level
                    the null hypothesis is rejected.
    LeftTail    -   p-value for left-tailed test.
                    If LeftTail is less than the given significance level,
                    the null hypothesis is rejected.
    RightTail   -   p-value for right-tailed test.
                    If RightTail is less than the given significance level
                    the null hypothesis is rejected.

  -- ALGLIB --
     Copyright 09.04.2007 by Bochkanov Sergey
*************************************************************************/
void spearmanrankcorrelationsignificance(const double r, const ae_int_t n, double &bothtails, double &lefttail, double &righttail);

/*************************************************************************
Jarque-Bera test

This test checks hypotheses about the fact that a  given  sample  X  is  a
sample of normal random variable.

Requirements:
    * the number of elements in the sample is not less than 5.

Input parameters:
    X   -   sample. Array whose index goes from 0 to N-1.
    N   -   size of the sample. N>=5

Output parameters:
    P           -   p-value for the test

Accuracy of the approximation used (5<=N<=1951):

p-value  	    relative error (5<=N<=1951)
[1, 0.1]            < 1%
[0.1, 0.01]         < 2%
[0.01, 0.001]       < 6%
[0.001, 0]          wasn't measured

For N>1951 accuracy wasn't measured but it shouldn't be sharply  different
from table values.

  -- ALGLIB --
     Copyright 09.04.2007 by Bochkanov Sergey
*************************************************************************/
void jarqueberatest(const real_1d_array &x, const ae_int_t n, double &p);

/*************************************************************************
Mann-Whitney U-test

This test checks hypotheses about whether X  and  Y  are  samples  of  two
continuous distributions of the same shape  and  same  median  or  whether
their medians are different.

The following tests are performed:
    * two-tailed test (null hypothesis - the medians are equal)
    * left-tailed test (null hypothesis - the median of the  first  sample
      is greater than or equal to the median of the second sample)
    * right-tailed test (null hypothesis - the median of the first  sample
      is less than or equal to the median of the second sample).

Requirements:
    * the samples are independent
    * X and Y are continuous distributions (or discrete distributions well-
      approximating continuous distributions)
    * distributions of X and Y have the  same  shape.  The  only  possible
      difference is their position (i.e. the value of the median)
    * the number of elements in each sample is not less than 5
    * the scale of measurement should be ordinal, interval or ratio  (i.e.
      the test could not be applied to nominal variables).

The test is non-parametric and doesn't require distributions to be normal.

Input parameters:
    X   -   sample 1. Array whose index goes from 0 to N-1.
    N   -   size of the sample. N>=5
    Y   -   sample 2. Array whose index goes from 0 to M-1.
    M   -   size of the sample. M>=5

Output parameters:
    BothTails   -   p-value for two-tailed test.
                    If BothTails is less than the given significance level
                    the null hypothesis is rejected.
    LeftTail    -   p-value for left-tailed test.
                    If LeftTail is less than the given significance level,
                    the null hypothesis is rejected.
    RightTail   -   p-value for right-tailed test.
                    If RightTail is less than the given significance level
                    the null hypothesis is rejected.

To calculate p-values, special approximation is used. This method lets  us
calculate p-values with satisfactory  accuracy  in  interval  [0.0001, 1].
There is no approximation outside the [0.0001, 1] interval. Therefore,  if
the significance level outlies this interval, the test returns 0.0001.

Relative precision of approximation of p-value:

N          M          Max.err.   Rms.err.
5..10      N..10      1.4e-02    6.0e-04
5..10      N..100     2.2e-02    5.3e-06
10..15     N..15      1.0e-02    3.2e-04
10..15     N..100     1.0e-02    2.2e-05
15..100    N..100     6.1e-03    2.7e-06

For N,M>100 accuracy checks weren't put into  practice,  but  taking  into
account characteristics of asymptotic approximation used, precision should
not be sharply different from the values for interval [5, 100].

NOTE: P-value approximation was  optimized  for  0.0001<=p<=0.2500.  Thus,
      P's outside of this interval are enforced to these bounds. Say,  you
      may quite often get P equal to exactly 0.25 or 0.0001.

  -- ALGLIB --
     Copyright 09.04.2007 by Bochkanov Sergey
*************************************************************************/
void mannwhitneyutest(const real_1d_array &x, const ae_int_t n, const real_1d_array &y, const ae_int_t m, double &bothtails, double &lefttail, double &righttail);

/*************************************************************************
Sign test

This test checks three hypotheses about the median of  the  given  sample.
The following tests are performed:
    * two-tailed test (null hypothesis - the median is equal to the  given
      value)
    * left-tailed test (null hypothesis - the median is  greater  than  or
      equal to the given value)
    * right-tailed test (null hypothesis - the  median  is  less  than  or
      equal to the given value)

Requirements:
    * the scale of measurement should be ordinal, interval or ratio  (i.e.
      the test could not be applied to nominal variables).

The test is non-parametric and doesn't require distribution X to be normal

Input parameters:
    X       -   sample. Array whose index goes from 0 to N-1.
    N       -   size of the sample.
    Median  -   assumed median value.

Output parameters:
    BothTails   -   p-value for two-tailed test.
                    If BothTails is less than the given significance level
                    the null hypothesis is rejected.
    LeftTail    -   p-value for left-tailed test.
                    If LeftTail is less than the given significance level,
                    the null hypothesis is rejected.
    RightTail   -   p-value for right-tailed test.
                    If RightTail is less than the given significance level
                    the null hypothesis is rejected.

While   calculating   p-values   high-precision   binomial    distribution
approximation is used, so significance levels have about 15 exact digits.

  -- ALGLIB --
     Copyright 08.09.2006 by Bochkanov Sergey
*************************************************************************/
void onesamplesigntest(const real_1d_array &x, const ae_int_t n, const double median, double &bothtails, double &lefttail, double &righttail);

/*************************************************************************
One-sample t-test

This test checks three hypotheses about the mean of the given sample.  The
following tests are performed:
    * two-tailed test (null hypothesis - the mean is equal  to  the  given
      value)
    * left-tailed test (null hypothesis - the  mean  is  greater  than  or
      equal to the given value)
    * right-tailed test (null hypothesis - the mean is less than or  equal
      to the given value).

The test is based on the assumption that  a  given  sample  has  a  normal
distribution and  an  unknown  dispersion.  If  the  distribution  sharply
differs from normal, the test will work incorrectly.

INPUT PARAMETERS:
    X       -   sample. Array whose index goes from 0 to N-1.
    N       -   size of sample, N>=0
    Mean    -   assumed value of the mean.

OUTPUT PARAMETERS:
    BothTails   -   p-value for two-tailed test.
                    If BothTails is less than the given significance level
                    the null hypothesis is rejected.
    LeftTail    -   p-value for left-tailed test.
                    If LeftTail is less than the given significance level,
                    the null hypothesis is rejected.
    RightTail   -   p-value for right-tailed test.
                    If RightTail is less than the given significance level
                    the null hypothesis is rejected.

NOTE: this function correctly handles degenerate cases:
      * when N=0, all p-values are set to 1.0
      * when variance of X[] is exactly zero, p-values are set
        to 1.0 or 0.0, depending on difference between sample mean and
        value of mean being tested.


  -- ALGLIB --
     Copyright 08.09.2006 by Bochkanov Sergey
*************************************************************************/
void studentttest1(const real_1d_array &x, const ae_int_t n, const double mean, double &bothtails, double &lefttail, double &righttail);


/*************************************************************************
Two-sample pooled test

This test checks three hypotheses about the mean of the given samples. The
following tests are performed:
    * two-tailed test (null hypothesis - the means are equal)
    * left-tailed test (null hypothesis - the mean of the first sample  is
      greater than or equal to the mean of the second sample)
    * right-tailed test (null hypothesis - the mean of the first sample is
      less than or equal to the mean of the second sample).

Test is based on the following assumptions:
    * given samples have normal distributions
    * dispersions are equal
    * samples are independent.

Input parameters:
    X       -   sample 1. Array whose index goes from 0 to N-1.
    N       -   size of sample.
    Y       -   sample 2. Array whose index goes from 0 to M-1.
    M       -   size of sample.

Output parameters:
    BothTails   -   p-value for two-tailed test.
                    If BothTails is less than the given significance level
                    the null hypothesis is rejected.
    LeftTail    -   p-value for left-tailed test.
                    If LeftTail is less than the given significance level,
                    the null hypothesis is rejected.
    RightTail   -   p-value for right-tailed test.
                    If RightTail is less than the given significance level
                    the null hypothesis is rejected.

NOTE: this function correctly handles degenerate cases:
      * when N=0 or M=0, all p-values are set to 1.0
      * when both samples has exactly zero variance, p-values are set
        to 1.0 or 0.0, depending on difference between means.

  -- ALGLIB --
     Copyright 18.09.2006 by Bochkanov Sergey
*************************************************************************/
void studentttest2(const real_1d_array &x, const ae_int_t n, const real_1d_array &y, const ae_int_t m, double &bothtails, double &lefttail, double &righttail);


/*************************************************************************
Two-sample unpooled test

This test checks three hypotheses about the mean of the given samples. The
following tests are performed:
    * two-tailed test (null hypothesis - the means are equal)
    * left-tailed test (null hypothesis - the mean of the first sample  is
      greater than or equal to the mean of the second sample)
    * right-tailed test (null hypothesis - the mean of the first sample is
      less than or equal to the mean of the second sample).

Test is based on the following assumptions:
    * given samples have normal distributions
    * samples are independent.
Equality of variances is NOT required.

Input parameters:
    X - sample 1. Array whose index goes from 0 to N-1.
    N - size of the sample.
    Y - sample 2. Array whose index goes from 0 to M-1.
    M - size of the sample.

Output parameters:
    BothTails   -   p-value for two-tailed test.
                    If BothTails is less than the given significance level
                    the null hypothesis is rejected.
    LeftTail    -   p-value for left-tailed test.
                    If LeftTail is less than the given significance level,
                    the null hypothesis is rejected.
    RightTail   -   p-value for right-tailed test.
                    If RightTail is less than the given significance level
                    the null hypothesis is rejected.

NOTE: this function correctly handles degenerate cases:
      * when N=0 or M=0, all p-values are set to 1.0
      * when both samples has zero variance, p-values are set
        to 1.0 or 0.0, depending on difference between means.
      * when only one sample has zero variance, test reduces to 1-sample
        version.

  -- ALGLIB --
     Copyright 18.09.2006 by Bochkanov Sergey
*************************************************************************/
void unequalvariancettest(const real_1d_array &x, const ae_int_t n, const real_1d_array &y, const ae_int_t m, double &bothtails, double &lefttail, double &righttail);

/*************************************************************************
Two-sample F-test

This test checks three hypotheses about dispersions of the given  samples.
The following tests are performed:
    * two-tailed test (null hypothesis - the dispersions are equal)
    * left-tailed test (null hypothesis  -  the  dispersion  of  the first
      sample is greater than or equal to  the  dispersion  of  the  second
      sample).
    * right-tailed test (null hypothesis - the  dispersion  of  the  first
      sample is less than or equal to the dispersion of the second sample)

The test is based on the following assumptions:
    * the given samples have normal distributions
    * the samples are independent.

Input parameters:
    X   -   sample 1. Array whose index goes from 0 to N-1.
    N   -   sample size.
    Y   -   sample 2. Array whose index goes from 0 to M-1.
    M   -   sample size.

Output parameters:
    BothTails   -   p-value for two-tailed test.
                    If BothTails is less than the given significance level
                    the null hypothesis is rejected.
    LeftTail    -   p-value for left-tailed test.
                    If LeftTail is less than the given significance level,
                    the null hypothesis is rejected.
    RightTail   -   p-value for right-tailed test.
                    If RightTail is less than the given significance level
                    the null hypothesis is rejected.

  -- ALGLIB --
     Copyright 19.09.2006 by Bochkanov Sergey
*************************************************************************/
void ftest(const real_1d_array &x, const ae_int_t n, const real_1d_array &y, const ae_int_t m, double &bothtails, double &lefttail, double &righttail);


/*************************************************************************
One-sample chi-square test

This test checks three hypotheses about the dispersion of the given sample
The following tests are performed:
    * two-tailed test (null hypothesis - the dispersion equals  the  given
      number)
    * left-tailed test (null hypothesis - the dispersion is  greater  than
      or equal to the given number)
    * right-tailed test (null hypothesis  -  dispersion is  less  than  or
      equal to the given number).

Test is based on the following assumptions:
    * the given sample has a normal distribution.

Input parameters:
    X           -   sample 1. Array whose index goes from 0 to N-1.
    N           -   size of the sample.
    Variance    -   dispersion value to compare with.

Output parameters:
    BothTails   -   p-value for two-tailed test.
                    If BothTails is less than the given significance level
                    the null hypothesis is rejected.
    LeftTail    -   p-value for left-tailed test.
                    If LeftTail is less than the given significance level,
                    the null hypothesis is rejected.
    RightTail   -   p-value for right-tailed test.
                    If RightTail is less than the given significance level
                    the null hypothesis is rejected.

  -- ALGLIB --
     Copyright 19.09.2006 by Bochkanov Sergey
*************************************************************************/
void onesamplevariancetest(const real_1d_array &x, const ae_int_t n, const double variance, double &bothtails, double &lefttail, double &righttail);

/*************************************************************************
Wilcoxon signed-rank test

This test checks three hypotheses about the median  of  the  given sample.
The following tests are performed:
    * two-tailed test (null hypothesis - the median is equal to the  given
      value)
    * left-tailed test (null hypothesis - the median is  greater  than  or
      equal to the given value)
    * right-tailed test (null hypothesis  -  the  median  is  less than or
      equal to the given value)

Requirements:
    * the scale of measurement should be ordinal, interval or  ratio (i.e.
      the test could not be applied to nominal variables).
    * the distribution should be continuous and symmetric relative to  its
      median.
    * number of distinct values in the X array should be greater than 4

The test is non-parametric and doesn't require distribution X to be normal

Input parameters:
    X       -   sample. Array whose index goes from 0 to N-1.
    N       -   size of the sample.
    Median  -   assumed median value.

Output parameters:
    BothTails   -   p-value for two-tailed test.
                    If BothTails is less than the given significance level
                    the null hypothesis is rejected.
    LeftTail    -   p-value for left-tailed test.
                    If LeftTail is less than the given significance level,
                    the null hypothesis is rejected.
    RightTail   -   p-value for right-tailed test.
                    If RightTail is less than the given significance level
                    the null hypothesis is rejected.

To calculate p-values, special approximation is used. This method lets  us
calculate p-values with two decimal places in interval [0.0001, 1].

"Two decimal places" does not sound very impressive, but in  practice  the
relative error of less than 1% is enough to make a decision.

There is no approximation outside the [0.0001, 1] interval. Therefore,  if
the significance level outlies this interval, the test returns 0.0001.

  -- ALGLIB --
     Copyright 08.09.2006 by Bochkanov Sergey
*************************************************************************/
void wilcoxonsignedranktest(const real_1d_array &x, const ae_int_t n, const double e, double &bothtails, double &lefttail, double &righttail);
}

/////////////////////////////////////////////////////////////////////////
//
// THIS SECTION CONTAINS COMPUTATIONAL CORE DECLARATIONS (FUNCTIONS)
//
/////////////////////////////////////////////////////////////////////////
namespace alglib_impl
{
void samplemoments(/* Real    */ ae_vector* x,
     ae_int_t n,
     double* mean,
     double* variance,
     double* skewness,
     double* kurtosis,
     ae_state *_state);
double samplemean(/* Real    */ ae_vector* x,
     ae_int_t n,
     ae_state *_state);
double samplevariance(/* Real    */ ae_vector* x,
     ae_int_t n,
     ae_state *_state);
double sampleskewness(/* Real    */ ae_vector* x,
     ae_int_t n,
     ae_state *_state);
double samplekurtosis(/* Real    */ ae_vector* x,
     ae_int_t n,
     ae_state *_state);
void sampleadev(/* Real    */ ae_vector* x,
     ae_int_t n,
     double* adev,
     ae_state *_state);
void samplemedian(/* Real    */ ae_vector* x,
     ae_int_t n,
     double* median,
     ae_state *_state);
void samplepercentile(/* Real    */ ae_vector* x,
     ae_int_t n,
     double p,
     double* v,
     ae_state *_state);
double cov2(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     ae_int_t n,
     ae_state *_state);
double pearsoncorr2(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     ae_int_t n,
     ae_state *_state);
double spearmancorr2(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     ae_int_t n,
     ae_state *_state);
void covm(/* Real    */ ae_matrix* x,
     ae_int_t n,
     ae_int_t m,
     /* Real    */ ae_matrix* c,
     ae_state *_state);
void _pexec_covm(/* Real    */ ae_matrix* x,
    ae_int_t n,
    ae_int_t m,
    /* Real    */ ae_matrix* c, ae_state *_state);
void pearsoncorrm(/* Real    */ ae_matrix* x,
     ae_int_t n,
     ae_int_t m,
     /* Real    */ ae_matrix* c,
     ae_state *_state);
void _pexec_pearsoncorrm(/* Real    */ ae_matrix* x,
    ae_int_t n,
    ae_int_t m,
    /* Real    */ ae_matrix* c, ae_state *_state);
void spearmancorrm(/* Real    */ ae_matrix* x,
     ae_int_t n,
     ae_int_t m,
     /* Real    */ ae_matrix* c,
     ae_state *_state);
void _pexec_spearmancorrm(/* Real    */ ae_matrix* x,
    ae_int_t n,
    ae_int_t m,
    /* Real    */ ae_matrix* c, ae_state *_state);
void covm2(/* Real    */ ae_matrix* x,
     /* Real    */ ae_matrix* y,
     ae_int_t n,
     ae_int_t m1,
     ae_int_t m2,
     /* Real    */ ae_matrix* c,
     ae_state *_state);
void _pexec_covm2(/* Real    */ ae_matrix* x,
    /* Real    */ ae_matrix* y,
    ae_int_t n,
    ae_int_t m1,
    ae_int_t m2,
    /* Real    */ ae_matrix* c, ae_state *_state);
void pearsoncorrm2(/* Real    */ ae_matrix* x,
     /* Real    */ ae_matrix* y,
     ae_int_t n,
     ae_int_t m1,
     ae_int_t m2,
     /* Real    */ ae_matrix* c,
     ae_state *_state);
void _pexec_pearsoncorrm2(/* Real    */ ae_matrix* x,
    /* Real    */ ae_matrix* y,
    ae_int_t n,
    ae_int_t m1,
    ae_int_t m2,
    /* Real    */ ae_matrix* c, ae_state *_state);
void spearmancorrm2(/* Real    */ ae_matrix* x,
     /* Real    */ ae_matrix* y,
     ae_int_t n,
     ae_int_t m1,
     ae_int_t m2,
     /* Real    */ ae_matrix* c,
     ae_state *_state);
void _pexec_spearmancorrm2(/* Real    */ ae_matrix* x,
    /* Real    */ ae_matrix* y,
    ae_int_t n,
    ae_int_t m1,
    ae_int_t m2,
    /* Real    */ ae_matrix* c, ae_state *_state);
void rankdata(/* Real    */ ae_matrix* xy,
     ae_int_t npoints,
     ae_int_t nfeatures,
     ae_state *_state);
void _pexec_rankdata(/* Real    */ ae_matrix* xy,
    ae_int_t npoints,
    ae_int_t nfeatures, ae_state *_state);
void rankdatacentered(/* Real    */ ae_matrix* xy,
     ae_int_t npoints,
     ae_int_t nfeatures,
     ae_state *_state);
void _pexec_rankdatacentered(/* Real    */ ae_matrix* xy,
    ae_int_t npoints,
    ae_int_t nfeatures, ae_state *_state);
double pearsoncorrelation(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     ae_int_t n,
     ae_state *_state);
double spearmanrankcorrelation(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     ae_int_t n,
     ae_state *_state);
void pearsoncorrelationsignificance(double r,
     ae_int_t n,
     double* bothtails,
     double* lefttail,
     double* righttail,
     ae_state *_state);
void spearmanrankcorrelationsignificance(double r,
     ae_int_t n,
     double* bothtails,
     double* lefttail,
     double* righttail,
     ae_state *_state);
void jarqueberatest(/* Real    */ ae_vector* x,
     ae_int_t n,
     double* p,
     ae_state *_state);
void mannwhitneyutest(/* Real    */ ae_vector* x,
     ae_int_t n,
     /* Real    */ ae_vector* y,
     ae_int_t m,
     double* bothtails,
     double* lefttail,
     double* righttail,
     ae_state *_state);
void onesamplesigntest(/* Real    */ ae_vector* x,
     ae_int_t n,
     double median,
     double* bothtails,
     double* lefttail,
     double* righttail,
     ae_state *_state);
void studentttest1(/* Real    */ ae_vector* x,
     ae_int_t n,
     double mean,
     double* bothtails,
     double* lefttail,
     double* righttail,
     ae_state *_state);
void studentttest2(/* Real    */ ae_vector* x,
     ae_int_t n,
     /* Real    */ ae_vector* y,
     ae_int_t m,
     double* bothtails,
     double* lefttail,
     double* righttail,
     ae_state *_state);
void unequalvariancettest(/* Real    */ ae_vector* x,
     ae_int_t n,
     /* Real    */ ae_vector* y,
     ae_int_t m,
     double* bothtails,
     double* lefttail,
     double* righttail,
     ae_state *_state);
void ftest(/* Real    */ ae_vector* x,
     ae_int_t n,
     /* Real    */ ae_vector* y,
     ae_int_t m,
     double* bothtails,
     double* lefttail,
     double* righttail,
     ae_state *_state);
void onesamplevariancetest(/* Real    */ ae_vector* x,
     ae_int_t n,
     double variance,
     double* bothtails,
     double* lefttail,
     double* righttail,
     ae_state *_state);
void wilcoxonsignedranktest(/* Real    */ ae_vector* x,
     ae_int_t n,
     double e,
     double* bothtails,
     double* lefttail,
     double* righttail,
     ae_state *_state);

}
#endif