/usr/include/libalglib/statistics.h is in libalglib-dev 3.10.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 | /*************************************************************************
ALGLIB 3.10.0 (source code generated 2015-08-19)
Copyright (c) Sergey Bochkanov (ALGLIB project).
>>> SOURCE LICENSE >>>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation (www.fsf.org); either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
A copy of the GNU General Public License is available at
http://www.fsf.org/licensing/licenses
>>> END OF LICENSE >>>
*************************************************************************/
#ifndef _statistics_pkg_h
#define _statistics_pkg_h
#include "ap.h"
#include "alglibinternal.h"
#include "linalg.h"
#include "specialfunctions.h"
/////////////////////////////////////////////////////////////////////////
//
// THIS SECTION CONTAINS COMPUTATIONAL CORE DECLARATIONS (DATATYPES)
//
/////////////////////////////////////////////////////////////////////////
namespace alglib_impl
{
}
/////////////////////////////////////////////////////////////////////////
//
// THIS SECTION CONTAINS C++ INTERFACE
//
/////////////////////////////////////////////////////////////////////////
namespace alglib
{
/*************************************************************************
Calculation of the distribution moments: mean, variance, skewness, kurtosis.
INPUT PARAMETERS:
X - sample
N - N>=0, sample size:
* if given, only leading N elements of X are processed
* if not given, automatically determined from size of X
OUTPUT PARAMETERS
Mean - mean.
Variance- variance.
Skewness- skewness (if variance<>0; zero otherwise).
Kurtosis- kurtosis (if variance<>0; zero otherwise).
NOTE: variance is calculated by dividing sum of squares by N-1, not N.
-- ALGLIB --
Copyright 06.09.2006 by Bochkanov Sergey
*************************************************************************/
void samplemoments(const real_1d_array &x, const ae_int_t n, double &mean, double &variance, double &skewness, double &kurtosis);
void samplemoments(const real_1d_array &x, double &mean, double &variance, double &skewness, double &kurtosis);
/*************************************************************************
Calculation of the mean.
INPUT PARAMETERS:
X - sample
N - N>=0, sample size:
* if given, only leading N elements of X are processed
* if not given, automatically determined from size of X
NOTE:
This function return result which calculated by 'SampleMoments' function
and stored at 'Mean' variable.
-- ALGLIB --
Copyright 06.09.2006 by Bochkanov Sergey
*************************************************************************/
double samplemean(const real_1d_array &x, const ae_int_t n);
double samplemean(const real_1d_array &x);
/*************************************************************************
Calculation of the variance.
INPUT PARAMETERS:
X - sample
N - N>=0, sample size:
* if given, only leading N elements of X are processed
* if not given, automatically determined from size of X
NOTE:
This function return result which calculated by 'SampleMoments' function
and stored at 'Variance' variable.
-- ALGLIB --
Copyright 06.09.2006 by Bochkanov Sergey
*************************************************************************/
double samplevariance(const real_1d_array &x, const ae_int_t n);
double samplevariance(const real_1d_array &x);
/*************************************************************************
Calculation of the skewness.
INPUT PARAMETERS:
X - sample
N - N>=0, sample size:
* if given, only leading N elements of X are processed
* if not given, automatically determined from size of X
NOTE:
This function return result which calculated by 'SampleMoments' function
and stored at 'Skewness' variable.
-- ALGLIB --
Copyright 06.09.2006 by Bochkanov Sergey
*************************************************************************/
double sampleskewness(const real_1d_array &x, const ae_int_t n);
double sampleskewness(const real_1d_array &x);
/*************************************************************************
Calculation of the kurtosis.
INPUT PARAMETERS:
X - sample
N - N>=0, sample size:
* if given, only leading N elements of X are processed
* if not given, automatically determined from size of X
NOTE:
This function return result which calculated by 'SampleMoments' function
and stored at 'Kurtosis' variable.
-- ALGLIB --
Copyright 06.09.2006 by Bochkanov Sergey
*************************************************************************/
double samplekurtosis(const real_1d_array &x, const ae_int_t n);
double samplekurtosis(const real_1d_array &x);
/*************************************************************************
ADev
Input parameters:
X - sample
N - N>=0, sample size:
* if given, only leading N elements of X are processed
* if not given, automatically determined from size of X
Output parameters:
ADev- ADev
-- ALGLIB --
Copyright 06.09.2006 by Bochkanov Sergey
*************************************************************************/
void sampleadev(const real_1d_array &x, const ae_int_t n, double &adev);
void sampleadev(const real_1d_array &x, double &adev);
/*************************************************************************
Median calculation.
Input parameters:
X - sample (array indexes: [0..N-1])
N - N>=0, sample size:
* if given, only leading N elements of X are processed
* if not given, automatically determined from size of X
Output parameters:
Median
-- ALGLIB --
Copyright 06.09.2006 by Bochkanov Sergey
*************************************************************************/
void samplemedian(const real_1d_array &x, const ae_int_t n, double &median);
void samplemedian(const real_1d_array &x, double &median);
/*************************************************************************
Percentile calculation.
Input parameters:
X - sample (array indexes: [0..N-1])
N - N>=0, sample size:
* if given, only leading N elements of X are processed
* if not given, automatically determined from size of X
P - percentile (0<=P<=1)
Output parameters:
V - percentile
-- ALGLIB --
Copyright 01.03.2008 by Bochkanov Sergey
*************************************************************************/
void samplepercentile(const real_1d_array &x, const ae_int_t n, const double p, double &v);
void samplepercentile(const real_1d_array &x, const double p, double &v);
/*************************************************************************
2-sample covariance
Input parameters:
X - sample 1 (array indexes: [0..N-1])
Y - sample 2 (array indexes: [0..N-1])
N - N>=0, sample size:
* if given, only N leading elements of X/Y are processed
* if not given, automatically determined from input sizes
Result:
covariance (zero for N=0 or N=1)
-- ALGLIB --
Copyright 28.10.2010 by Bochkanov Sergey
*************************************************************************/
double cov2(const real_1d_array &x, const real_1d_array &y, const ae_int_t n);
double cov2(const real_1d_array &x, const real_1d_array &y);
/*************************************************************************
Pearson product-moment correlation coefficient
Input parameters:
X - sample 1 (array indexes: [0..N-1])
Y - sample 2 (array indexes: [0..N-1])
N - N>=0, sample size:
* if given, only N leading elements of X/Y are processed
* if not given, automatically determined from input sizes
Result:
Pearson product-moment correlation coefficient
(zero for N=0 or N=1)
-- ALGLIB --
Copyright 28.10.2010 by Bochkanov Sergey
*************************************************************************/
double pearsoncorr2(const real_1d_array &x, const real_1d_array &y, const ae_int_t n);
double pearsoncorr2(const real_1d_array &x, const real_1d_array &y);
/*************************************************************************
Spearman's rank correlation coefficient
Input parameters:
X - sample 1 (array indexes: [0..N-1])
Y - sample 2 (array indexes: [0..N-1])
N - N>=0, sample size:
* if given, only N leading elements of X/Y are processed
* if not given, automatically determined from input sizes
Result:
Spearman's rank correlation coefficient
(zero for N=0 or N=1)
-- ALGLIB --
Copyright 09.04.2007 by Bochkanov Sergey
*************************************************************************/
double spearmancorr2(const real_1d_array &x, const real_1d_array &y, const ae_int_t n);
double spearmancorr2(const real_1d_array &x, const real_1d_array &y);
/*************************************************************************
Covariance matrix
SMP EDITION OF ALGLIB:
! This function can utilize multicore capabilities of your system. In
! order to do this you have to call version with "smp_" prefix, which
! indicates that multicore code will be used.
!
! This note is given for users of SMP edition; if you use GPL edition,
! or commercial edition of ALGLIB without SMP support, you still will
! be able to call smp-version of this function, but all computations
! will be done serially.
!
! We recommend you to carefully read ALGLIB Reference Manual, section
! called 'SMP support', before using parallel version of this function.
!
! You should remember that starting/stopping worker thread always have
! non-zero cost. Although multicore version is pretty efficient on
! large problems, we do not recommend you to use it on small problems -
! with covariance matrices smaller than 128*128.
INPUT PARAMETERS:
X - array[N,M], sample matrix:
* J-th column corresponds to J-th variable
* I-th row corresponds to I-th observation
N - N>=0, number of observations:
* if given, only leading N rows of X are used
* if not given, automatically determined from input size
M - M>0, number of variables:
* if given, only leading M columns of X are used
* if not given, automatically determined from input size
OUTPUT PARAMETERS:
C - array[M,M], covariance matrix (zero if N=0 or N=1)
-- ALGLIB --
Copyright 28.10.2010 by Bochkanov Sergey
*************************************************************************/
void covm(const real_2d_array &x, const ae_int_t n, const ae_int_t m, real_2d_array &c);
void smp_covm(const real_2d_array &x, const ae_int_t n, const ae_int_t m, real_2d_array &c);
void covm(const real_2d_array &x, real_2d_array &c);
void smp_covm(const real_2d_array &x, real_2d_array &c);
/*************************************************************************
Pearson product-moment correlation matrix
SMP EDITION OF ALGLIB:
! This function can utilize multicore capabilities of your system. In
! order to do this you have to call version with "smp_" prefix, which
! indicates that multicore code will be used.
!
! This note is given for users of SMP edition; if you use GPL edition,
! or commercial edition of ALGLIB without SMP support, you still will
! be able to call smp-version of this function, but all computations
! will be done serially.
!
! We recommend you to carefully read ALGLIB Reference Manual, section
! called 'SMP support', before using parallel version of this function.
!
! You should remember that starting/stopping worker thread always have
! non-zero cost. Although multicore version is pretty efficient on
! large problems, we do not recommend you to use it on small problems -
! with correlation matrices smaller than 128*128.
INPUT PARAMETERS:
X - array[N,M], sample matrix:
* J-th column corresponds to J-th variable
* I-th row corresponds to I-th observation
N - N>=0, number of observations:
* if given, only leading N rows of X are used
* if not given, automatically determined from input size
M - M>0, number of variables:
* if given, only leading M columns of X are used
* if not given, automatically determined from input size
OUTPUT PARAMETERS:
C - array[M,M], correlation matrix (zero if N=0 or N=1)
-- ALGLIB --
Copyright 28.10.2010 by Bochkanov Sergey
*************************************************************************/
void pearsoncorrm(const real_2d_array &x, const ae_int_t n, const ae_int_t m, real_2d_array &c);
void smp_pearsoncorrm(const real_2d_array &x, const ae_int_t n, const ae_int_t m, real_2d_array &c);
void pearsoncorrm(const real_2d_array &x, real_2d_array &c);
void smp_pearsoncorrm(const real_2d_array &x, real_2d_array &c);
/*************************************************************************
Spearman's rank correlation matrix
SMP EDITION OF ALGLIB:
! This function can utilize multicore capabilities of your system. In
! order to do this you have to call version with "smp_" prefix, which
! indicates that multicore code will be used.
!
! This note is given for users of SMP edition; if you use GPL edition,
! or commercial edition of ALGLIB without SMP support, you still will
! be able to call smp-version of this function, but all computations
! will be done serially.
!
! We recommend you to carefully read ALGLIB Reference Manual, section
! called 'SMP support', before using parallel version of this function.
!
! You should remember that starting/stopping worker thread always have
! non-zero cost. Although multicore version is pretty efficient on
! large problems, we do not recommend you to use it on small problems -
! with correlation matrices smaller than 128*128.
INPUT PARAMETERS:
X - array[N,M], sample matrix:
* J-th column corresponds to J-th variable
* I-th row corresponds to I-th observation
N - N>=0, number of observations:
* if given, only leading N rows of X are used
* if not given, automatically determined from input size
M - M>0, number of variables:
* if given, only leading M columns of X are used
* if not given, automatically determined from input size
OUTPUT PARAMETERS:
C - array[M,M], correlation matrix (zero if N=0 or N=1)
-- ALGLIB --
Copyright 28.10.2010 by Bochkanov Sergey
*************************************************************************/
void spearmancorrm(const real_2d_array &x, const ae_int_t n, const ae_int_t m, real_2d_array &c);
void smp_spearmancorrm(const real_2d_array &x, const ae_int_t n, const ae_int_t m, real_2d_array &c);
void spearmancorrm(const real_2d_array &x, real_2d_array &c);
void smp_spearmancorrm(const real_2d_array &x, real_2d_array &c);
/*************************************************************************
Cross-covariance matrix
SMP EDITION OF ALGLIB:
! This function can utilize multicore capabilities of your system. In
! order to do this you have to call version with "smp_" prefix, which
! indicates that multicore code will be used.
!
! This note is given for users of SMP edition; if you use GPL edition,
! or commercial edition of ALGLIB without SMP support, you still will
! be able to call smp-version of this function, but all computations
! will be done serially.
!
! We recommend you to carefully read ALGLIB Reference Manual, section
! called 'SMP support', before using parallel version of this function.
!
! You should remember that starting/stopping worker thread always have
! non-zero cost. Although multicore version is pretty efficient on
! large problems, we do not recommend you to use it on small problems -
! with covariance matrices smaller than 128*128.
INPUT PARAMETERS:
X - array[N,M1], sample matrix:
* J-th column corresponds to J-th variable
* I-th row corresponds to I-th observation
Y - array[N,M2], sample matrix:
* J-th column corresponds to J-th variable
* I-th row corresponds to I-th observation
N - N>=0, number of observations:
* if given, only leading N rows of X/Y are used
* if not given, automatically determined from input sizes
M1 - M1>0, number of variables in X:
* if given, only leading M1 columns of X are used
* if not given, automatically determined from input size
M2 - M2>0, number of variables in Y:
* if given, only leading M1 columns of X are used
* if not given, automatically determined from input size
OUTPUT PARAMETERS:
C - array[M1,M2], cross-covariance matrix (zero if N=0 or N=1)
-- ALGLIB --
Copyright 28.10.2010 by Bochkanov Sergey
*************************************************************************/
void covm2(const real_2d_array &x, const real_2d_array &y, const ae_int_t n, const ae_int_t m1, const ae_int_t m2, real_2d_array &c);
void smp_covm2(const real_2d_array &x, const real_2d_array &y, const ae_int_t n, const ae_int_t m1, const ae_int_t m2, real_2d_array &c);
void covm2(const real_2d_array &x, const real_2d_array &y, real_2d_array &c);
void smp_covm2(const real_2d_array &x, const real_2d_array &y, real_2d_array &c);
/*************************************************************************
Pearson product-moment cross-correlation matrix
SMP EDITION OF ALGLIB:
! This function can utilize multicore capabilities of your system. In
! order to do this you have to call version with "smp_" prefix, which
! indicates that multicore code will be used.
!
! This note is given for users of SMP edition; if you use GPL edition,
! or commercial edition of ALGLIB without SMP support, you still will
! be able to call smp-version of this function, but all computations
! will be done serially.
!
! We recommend you to carefully read ALGLIB Reference Manual, section
! called 'SMP support', before using parallel version of this function.
!
! You should remember that starting/stopping worker thread always have
! non-zero cost. Although multicore version is pretty efficient on
! large problems, we do not recommend you to use it on small problems -
! with correlation matrices smaller than 128*128.
INPUT PARAMETERS:
X - array[N,M1], sample matrix:
* J-th column corresponds to J-th variable
* I-th row corresponds to I-th observation
Y - array[N,M2], sample matrix:
* J-th column corresponds to J-th variable
* I-th row corresponds to I-th observation
N - N>=0, number of observations:
* if given, only leading N rows of X/Y are used
* if not given, automatically determined from input sizes
M1 - M1>0, number of variables in X:
* if given, only leading M1 columns of X are used
* if not given, automatically determined from input size
M2 - M2>0, number of variables in Y:
* if given, only leading M1 columns of X are used
* if not given, automatically determined from input size
OUTPUT PARAMETERS:
C - array[M1,M2], cross-correlation matrix (zero if N=0 or N=1)
-- ALGLIB --
Copyright 28.10.2010 by Bochkanov Sergey
*************************************************************************/
void pearsoncorrm2(const real_2d_array &x, const real_2d_array &y, const ae_int_t n, const ae_int_t m1, const ae_int_t m2, real_2d_array &c);
void smp_pearsoncorrm2(const real_2d_array &x, const real_2d_array &y, const ae_int_t n, const ae_int_t m1, const ae_int_t m2, real_2d_array &c);
void pearsoncorrm2(const real_2d_array &x, const real_2d_array &y, real_2d_array &c);
void smp_pearsoncorrm2(const real_2d_array &x, const real_2d_array &y, real_2d_array &c);
/*************************************************************************
Spearman's rank cross-correlation matrix
SMP EDITION OF ALGLIB:
! This function can utilize multicore capabilities of your system. In
! order to do this you have to call version with "smp_" prefix, which
! indicates that multicore code will be used.
!
! This note is given for users of SMP edition; if you use GPL edition,
! or commercial edition of ALGLIB without SMP support, you still will
! be able to call smp-version of this function, but all computations
! will be done serially.
!
! We recommend you to carefully read ALGLIB Reference Manual, section
! called 'SMP support', before using parallel version of this function.
!
! You should remember that starting/stopping worker thread always have
! non-zero cost. Although multicore version is pretty efficient on
! large problems, we do not recommend you to use it on small problems -
! with correlation matrices smaller than 128*128.
INPUT PARAMETERS:
X - array[N,M1], sample matrix:
* J-th column corresponds to J-th variable
* I-th row corresponds to I-th observation
Y - array[N,M2], sample matrix:
* J-th column corresponds to J-th variable
* I-th row corresponds to I-th observation
N - N>=0, number of observations:
* if given, only leading N rows of X/Y are used
* if not given, automatically determined from input sizes
M1 - M1>0, number of variables in X:
* if given, only leading M1 columns of X are used
* if not given, automatically determined from input size
M2 - M2>0, number of variables in Y:
* if given, only leading M1 columns of X are used
* if not given, automatically determined from input size
OUTPUT PARAMETERS:
C - array[M1,M2], cross-correlation matrix (zero if N=0 or N=1)
-- ALGLIB --
Copyright 28.10.2010 by Bochkanov Sergey
*************************************************************************/
void spearmancorrm2(const real_2d_array &x, const real_2d_array &y, const ae_int_t n, const ae_int_t m1, const ae_int_t m2, real_2d_array &c);
void smp_spearmancorrm2(const real_2d_array &x, const real_2d_array &y, const ae_int_t n, const ae_int_t m1, const ae_int_t m2, real_2d_array &c);
void spearmancorrm2(const real_2d_array &x, const real_2d_array &y, real_2d_array &c);
void smp_spearmancorrm2(const real_2d_array &x, const real_2d_array &y, real_2d_array &c);
/*************************************************************************
This function replaces data in XY by their ranks:
* XY is processed row-by-row
* rows are processed separately
* tied data are correctly handled (tied ranks are calculated)
* ranking starts from 0, ends at NFeatures-1
* sum of within-row values is equal to (NFeatures-1)*NFeatures/2
SMP EDITION OF ALGLIB:
! This function can utilize multicore capabilities of your system. In
! order to do this you have to call version with "smp_" prefix, which
! indicates that multicore code will be used.
!
! This note is given for users of SMP edition; if you use GPL edition,
! or commercial edition of ALGLIB without SMP support, you still will
! be able to call smp-version of this function, but all computations
! will be done serially.
!
! We recommend you to carefully read ALGLIB Reference Manual, section
! called 'SMP support', before using parallel version of this function.
!
! You should remember that starting/stopping worker thread always have
! non-zero cost. Although multicore version is pretty efficient on
! large problems, we do not recommend you to use it on small problems -
! ones where expected operations count is less than 100.000
INPUT PARAMETERS:
XY - array[NPoints,NFeatures], dataset
NPoints - number of points
NFeatures- number of features
OUTPUT PARAMETERS:
XY - data are replaced by their within-row ranks;
ranking starts from 0, ends at NFeatures-1
-- ALGLIB --
Copyright 18.04.2013 by Bochkanov Sergey
*************************************************************************/
void rankdata(const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nfeatures);
void smp_rankdata(const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nfeatures);
void rankdata(real_2d_array &xy);
void smp_rankdata(real_2d_array &xy);
/*************************************************************************
This function replaces data in XY by their CENTERED ranks:
* XY is processed row-by-row
* rows are processed separately
* tied data are correctly handled (tied ranks are calculated)
* centered ranks are just usual ranks, but centered in such way that sum
of within-row values is equal to 0.0.
* centering is performed by subtracting mean from each row, i.e it changes
mean value, but does NOT change higher moments
SMP EDITION OF ALGLIB:
! This function can utilize multicore capabilities of your system. In
! order to do this you have to call version with "smp_" prefix, which
! indicates that multicore code will be used.
!
! This note is given for users of SMP edition; if you use GPL edition,
! or commercial edition of ALGLIB without SMP support, you still will
! be able to call smp-version of this function, but all computations
! will be done serially.
!
! We recommend you to carefully read ALGLIB Reference Manual, section
! called 'SMP support', before using parallel version of this function.
!
! You should remember that starting/stopping worker thread always have
! non-zero cost. Although multicore version is pretty efficient on
! large problems, we do not recommend you to use it on small problems -
! ones where expected operations count is less than 100.000
INPUT PARAMETERS:
XY - array[NPoints,NFeatures], dataset
NPoints - number of points
NFeatures- number of features
OUTPUT PARAMETERS:
XY - data are replaced by their within-row ranks;
ranking starts from 0, ends at NFeatures-1
-- ALGLIB --
Copyright 18.04.2013 by Bochkanov Sergey
*************************************************************************/
void rankdatacentered(const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nfeatures);
void smp_rankdatacentered(const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nfeatures);
void rankdatacentered(real_2d_array &xy);
void smp_rankdatacentered(real_2d_array &xy);
/*************************************************************************
Obsolete function, we recommend to use PearsonCorr2().
-- ALGLIB --
Copyright 09.04.2007 by Bochkanov Sergey
*************************************************************************/
double pearsoncorrelation(const real_1d_array &x, const real_1d_array &y, const ae_int_t n);
/*************************************************************************
Obsolete function, we recommend to use SpearmanCorr2().
-- ALGLIB --
Copyright 09.04.2007 by Bochkanov Sergey
*************************************************************************/
double spearmanrankcorrelation(const real_1d_array &x, const real_1d_array &y, const ae_int_t n);
/*************************************************************************
Pearson's correlation coefficient significance test
This test checks hypotheses about whether X and Y are samples of two
continuous distributions having zero correlation or whether their
correlation is non-zero.
The following tests are performed:
* two-tailed test (null hypothesis - X and Y have zero correlation)
* left-tailed test (null hypothesis - the correlation coefficient is
greater than or equal to 0)
* right-tailed test (null hypothesis - the correlation coefficient is
less than or equal to 0).
Requirements:
* the number of elements in each sample is not less than 5
* normality of distributions of X and Y.
Input parameters:
R - Pearson's correlation coefficient for X and Y
N - number of elements in samples, N>=5.
Output parameters:
BothTails - p-value for two-tailed test.
If BothTails is less than the given significance level
the null hypothesis is rejected.
LeftTail - p-value for left-tailed test.
If LeftTail is less than the given significance level,
the null hypothesis is rejected.
RightTail - p-value for right-tailed test.
If RightTail is less than the given significance level
the null hypothesis is rejected.
-- ALGLIB --
Copyright 09.04.2007 by Bochkanov Sergey
*************************************************************************/
void pearsoncorrelationsignificance(const double r, const ae_int_t n, double &bothtails, double &lefttail, double &righttail);
/*************************************************************************
Spearman's rank correlation coefficient significance test
This test checks hypotheses about whether X and Y are samples of two
continuous distributions having zero correlation or whether their
correlation is non-zero.
The following tests are performed:
* two-tailed test (null hypothesis - X and Y have zero correlation)
* left-tailed test (null hypothesis - the correlation coefficient is
greater than or equal to 0)
* right-tailed test (null hypothesis - the correlation coefficient is
less than or equal to 0).
Requirements:
* the number of elements in each sample is not less than 5.
The test is non-parametric and doesn't require distributions X and Y to be
normal.
Input parameters:
R - Spearman's rank correlation coefficient for X and Y
N - number of elements in samples, N>=5.
Output parameters:
BothTails - p-value for two-tailed test.
If BothTails is less than the given significance level
the null hypothesis is rejected.
LeftTail - p-value for left-tailed test.
If LeftTail is less than the given significance level,
the null hypothesis is rejected.
RightTail - p-value for right-tailed test.
If RightTail is less than the given significance level
the null hypothesis is rejected.
-- ALGLIB --
Copyright 09.04.2007 by Bochkanov Sergey
*************************************************************************/
void spearmanrankcorrelationsignificance(const double r, const ae_int_t n, double &bothtails, double &lefttail, double &righttail);
/*************************************************************************
Jarque-Bera test
This test checks hypotheses about the fact that a given sample X is a
sample of normal random variable.
Requirements:
* the number of elements in the sample is not less than 5.
Input parameters:
X - sample. Array whose index goes from 0 to N-1.
N - size of the sample. N>=5
Output parameters:
P - p-value for the test
Accuracy of the approximation used (5<=N<=1951):
p-value relative error (5<=N<=1951)
[1, 0.1] < 1%
[0.1, 0.01] < 2%
[0.01, 0.001] < 6%
[0.001, 0] wasn't measured
For N>1951 accuracy wasn't measured but it shouldn't be sharply different
from table values.
-- ALGLIB --
Copyright 09.04.2007 by Bochkanov Sergey
*************************************************************************/
void jarqueberatest(const real_1d_array &x, const ae_int_t n, double &p);
/*************************************************************************
Mann-Whitney U-test
This test checks hypotheses about whether X and Y are samples of two
continuous distributions of the same shape and same median or whether
their medians are different.
The following tests are performed:
* two-tailed test (null hypothesis - the medians are equal)
* left-tailed test (null hypothesis - the median of the first sample
is greater than or equal to the median of the second sample)
* right-tailed test (null hypothesis - the median of the first sample
is less than or equal to the median of the second sample).
Requirements:
* the samples are independent
* X and Y are continuous distributions (or discrete distributions well-
approximating continuous distributions)
* distributions of X and Y have the same shape. The only possible
difference is their position (i.e. the value of the median)
* the number of elements in each sample is not less than 5
* the scale of measurement should be ordinal, interval or ratio (i.e.
the test could not be applied to nominal variables).
The test is non-parametric and doesn't require distributions to be normal.
Input parameters:
X - sample 1. Array whose index goes from 0 to N-1.
N - size of the sample. N>=5
Y - sample 2. Array whose index goes from 0 to M-1.
M - size of the sample. M>=5
Output parameters:
BothTails - p-value for two-tailed test.
If BothTails is less than the given significance level
the null hypothesis is rejected.
LeftTail - p-value for left-tailed test.
If LeftTail is less than the given significance level,
the null hypothesis is rejected.
RightTail - p-value for right-tailed test.
If RightTail is less than the given significance level
the null hypothesis is rejected.
To calculate p-values, special approximation is used. This method lets us
calculate p-values with satisfactory accuracy in interval [0.0001, 1].
There is no approximation outside the [0.0001, 1] interval. Therefore, if
the significance level outlies this interval, the test returns 0.0001.
Relative precision of approximation of p-value:
N M Max.err. Rms.err.
5..10 N..10 1.4e-02 6.0e-04
5..10 N..100 2.2e-02 5.3e-06
10..15 N..15 1.0e-02 3.2e-04
10..15 N..100 1.0e-02 2.2e-05
15..100 N..100 6.1e-03 2.7e-06
For N,M>100 accuracy checks weren't put into practice, but taking into
account characteristics of asymptotic approximation used, precision should
not be sharply different from the values for interval [5, 100].
NOTE: P-value approximation was optimized for 0.0001<=p<=0.2500. Thus,
P's outside of this interval are enforced to these bounds. Say, you
may quite often get P equal to exactly 0.25 or 0.0001.
-- ALGLIB --
Copyright 09.04.2007 by Bochkanov Sergey
*************************************************************************/
void mannwhitneyutest(const real_1d_array &x, const ae_int_t n, const real_1d_array &y, const ae_int_t m, double &bothtails, double &lefttail, double &righttail);
/*************************************************************************
Sign test
This test checks three hypotheses about the median of the given sample.
The following tests are performed:
* two-tailed test (null hypothesis - the median is equal to the given
value)
* left-tailed test (null hypothesis - the median is greater than or
equal to the given value)
* right-tailed test (null hypothesis - the median is less than or
equal to the given value)
Requirements:
* the scale of measurement should be ordinal, interval or ratio (i.e.
the test could not be applied to nominal variables).
The test is non-parametric and doesn't require distribution X to be normal
Input parameters:
X - sample. Array whose index goes from 0 to N-1.
N - size of the sample.
Median - assumed median value.
Output parameters:
BothTails - p-value for two-tailed test.
If BothTails is less than the given significance level
the null hypothesis is rejected.
LeftTail - p-value for left-tailed test.
If LeftTail is less than the given significance level,
the null hypothesis is rejected.
RightTail - p-value for right-tailed test.
If RightTail is less than the given significance level
the null hypothesis is rejected.
While calculating p-values high-precision binomial distribution
approximation is used, so significance levels have about 15 exact digits.
-- ALGLIB --
Copyright 08.09.2006 by Bochkanov Sergey
*************************************************************************/
void onesamplesigntest(const real_1d_array &x, const ae_int_t n, const double median, double &bothtails, double &lefttail, double &righttail);
/*************************************************************************
One-sample t-test
This test checks three hypotheses about the mean of the given sample. The
following tests are performed:
* two-tailed test (null hypothesis - the mean is equal to the given
value)
* left-tailed test (null hypothesis - the mean is greater than or
equal to the given value)
* right-tailed test (null hypothesis - the mean is less than or equal
to the given value).
The test is based on the assumption that a given sample has a normal
distribution and an unknown dispersion. If the distribution sharply
differs from normal, the test will work incorrectly.
INPUT PARAMETERS:
X - sample. Array whose index goes from 0 to N-1.
N - size of sample, N>=0
Mean - assumed value of the mean.
OUTPUT PARAMETERS:
BothTails - p-value for two-tailed test.
If BothTails is less than the given significance level
the null hypothesis is rejected.
LeftTail - p-value for left-tailed test.
If LeftTail is less than the given significance level,
the null hypothesis is rejected.
RightTail - p-value for right-tailed test.
If RightTail is less than the given significance level
the null hypothesis is rejected.
NOTE: this function correctly handles degenerate cases:
* when N=0, all p-values are set to 1.0
* when variance of X[] is exactly zero, p-values are set
to 1.0 or 0.0, depending on difference between sample mean and
value of mean being tested.
-- ALGLIB --
Copyright 08.09.2006 by Bochkanov Sergey
*************************************************************************/
void studentttest1(const real_1d_array &x, const ae_int_t n, const double mean, double &bothtails, double &lefttail, double &righttail);
/*************************************************************************
Two-sample pooled test
This test checks three hypotheses about the mean of the given samples. The
following tests are performed:
* two-tailed test (null hypothesis - the means are equal)
* left-tailed test (null hypothesis - the mean of the first sample is
greater than or equal to the mean of the second sample)
* right-tailed test (null hypothesis - the mean of the first sample is
less than or equal to the mean of the second sample).
Test is based on the following assumptions:
* given samples have normal distributions
* dispersions are equal
* samples are independent.
Input parameters:
X - sample 1. Array whose index goes from 0 to N-1.
N - size of sample.
Y - sample 2. Array whose index goes from 0 to M-1.
M - size of sample.
Output parameters:
BothTails - p-value for two-tailed test.
If BothTails is less than the given significance level
the null hypothesis is rejected.
LeftTail - p-value for left-tailed test.
If LeftTail is less than the given significance level,
the null hypothesis is rejected.
RightTail - p-value for right-tailed test.
If RightTail is less than the given significance level
the null hypothesis is rejected.
NOTE: this function correctly handles degenerate cases:
* when N=0 or M=0, all p-values are set to 1.0
* when both samples has exactly zero variance, p-values are set
to 1.0 or 0.0, depending on difference between means.
-- ALGLIB --
Copyright 18.09.2006 by Bochkanov Sergey
*************************************************************************/
void studentttest2(const real_1d_array &x, const ae_int_t n, const real_1d_array &y, const ae_int_t m, double &bothtails, double &lefttail, double &righttail);
/*************************************************************************
Two-sample unpooled test
This test checks three hypotheses about the mean of the given samples. The
following tests are performed:
* two-tailed test (null hypothesis - the means are equal)
* left-tailed test (null hypothesis - the mean of the first sample is
greater than or equal to the mean of the second sample)
* right-tailed test (null hypothesis - the mean of the first sample is
less than or equal to the mean of the second sample).
Test is based on the following assumptions:
* given samples have normal distributions
* samples are independent.
Equality of variances is NOT required.
Input parameters:
X - sample 1. Array whose index goes from 0 to N-1.
N - size of the sample.
Y - sample 2. Array whose index goes from 0 to M-1.
M - size of the sample.
Output parameters:
BothTails - p-value for two-tailed test.
If BothTails is less than the given significance level
the null hypothesis is rejected.
LeftTail - p-value for left-tailed test.
If LeftTail is less than the given significance level,
the null hypothesis is rejected.
RightTail - p-value for right-tailed test.
If RightTail is less than the given significance level
the null hypothesis is rejected.
NOTE: this function correctly handles degenerate cases:
* when N=0 or M=0, all p-values are set to 1.0
* when both samples has zero variance, p-values are set
to 1.0 or 0.0, depending on difference between means.
* when only one sample has zero variance, test reduces to 1-sample
version.
-- ALGLIB --
Copyright 18.09.2006 by Bochkanov Sergey
*************************************************************************/
void unequalvariancettest(const real_1d_array &x, const ae_int_t n, const real_1d_array &y, const ae_int_t m, double &bothtails, double &lefttail, double &righttail);
/*************************************************************************
Two-sample F-test
This test checks three hypotheses about dispersions of the given samples.
The following tests are performed:
* two-tailed test (null hypothesis - the dispersions are equal)
* left-tailed test (null hypothesis - the dispersion of the first
sample is greater than or equal to the dispersion of the second
sample).
* right-tailed test (null hypothesis - the dispersion of the first
sample is less than or equal to the dispersion of the second sample)
The test is based on the following assumptions:
* the given samples have normal distributions
* the samples are independent.
Input parameters:
X - sample 1. Array whose index goes from 0 to N-1.
N - sample size.
Y - sample 2. Array whose index goes from 0 to M-1.
M - sample size.
Output parameters:
BothTails - p-value for two-tailed test.
If BothTails is less than the given significance level
the null hypothesis is rejected.
LeftTail - p-value for left-tailed test.
If LeftTail is less than the given significance level,
the null hypothesis is rejected.
RightTail - p-value for right-tailed test.
If RightTail is less than the given significance level
the null hypothesis is rejected.
-- ALGLIB --
Copyright 19.09.2006 by Bochkanov Sergey
*************************************************************************/
void ftest(const real_1d_array &x, const ae_int_t n, const real_1d_array &y, const ae_int_t m, double &bothtails, double &lefttail, double &righttail);
/*************************************************************************
One-sample chi-square test
This test checks three hypotheses about the dispersion of the given sample
The following tests are performed:
* two-tailed test (null hypothesis - the dispersion equals the given
number)
* left-tailed test (null hypothesis - the dispersion is greater than
or equal to the given number)
* right-tailed test (null hypothesis - dispersion is less than or
equal to the given number).
Test is based on the following assumptions:
* the given sample has a normal distribution.
Input parameters:
X - sample 1. Array whose index goes from 0 to N-1.
N - size of the sample.
Variance - dispersion value to compare with.
Output parameters:
BothTails - p-value for two-tailed test.
If BothTails is less than the given significance level
the null hypothesis is rejected.
LeftTail - p-value for left-tailed test.
If LeftTail is less than the given significance level,
the null hypothesis is rejected.
RightTail - p-value for right-tailed test.
If RightTail is less than the given significance level
the null hypothesis is rejected.
-- ALGLIB --
Copyright 19.09.2006 by Bochkanov Sergey
*************************************************************************/
void onesamplevariancetest(const real_1d_array &x, const ae_int_t n, const double variance, double &bothtails, double &lefttail, double &righttail);
/*************************************************************************
Wilcoxon signed-rank test
This test checks three hypotheses about the median of the given sample.
The following tests are performed:
* two-tailed test (null hypothesis - the median is equal to the given
value)
* left-tailed test (null hypothesis - the median is greater than or
equal to the given value)
* right-tailed test (null hypothesis - the median is less than or
equal to the given value)
Requirements:
* the scale of measurement should be ordinal, interval or ratio (i.e.
the test could not be applied to nominal variables).
* the distribution should be continuous and symmetric relative to its
median.
* number of distinct values in the X array should be greater than 4
The test is non-parametric and doesn't require distribution X to be normal
Input parameters:
X - sample. Array whose index goes from 0 to N-1.
N - size of the sample.
Median - assumed median value.
Output parameters:
BothTails - p-value for two-tailed test.
If BothTails is less than the given significance level
the null hypothesis is rejected.
LeftTail - p-value for left-tailed test.
If LeftTail is less than the given significance level,
the null hypothesis is rejected.
RightTail - p-value for right-tailed test.
If RightTail is less than the given significance level
the null hypothesis is rejected.
To calculate p-values, special approximation is used. This method lets us
calculate p-values with two decimal places in interval [0.0001, 1].
"Two decimal places" does not sound very impressive, but in practice the
relative error of less than 1% is enough to make a decision.
There is no approximation outside the [0.0001, 1] interval. Therefore, if
the significance level outlies this interval, the test returns 0.0001.
-- ALGLIB --
Copyright 08.09.2006 by Bochkanov Sergey
*************************************************************************/
void wilcoxonsignedranktest(const real_1d_array &x, const ae_int_t n, const double e, double &bothtails, double &lefttail, double &righttail);
}
/////////////////////////////////////////////////////////////////////////
//
// THIS SECTION CONTAINS COMPUTATIONAL CORE DECLARATIONS (FUNCTIONS)
//
/////////////////////////////////////////////////////////////////////////
namespace alglib_impl
{
void samplemoments(/* Real */ ae_vector* x,
ae_int_t n,
double* mean,
double* variance,
double* skewness,
double* kurtosis,
ae_state *_state);
double samplemean(/* Real */ ae_vector* x,
ae_int_t n,
ae_state *_state);
double samplevariance(/* Real */ ae_vector* x,
ae_int_t n,
ae_state *_state);
double sampleskewness(/* Real */ ae_vector* x,
ae_int_t n,
ae_state *_state);
double samplekurtosis(/* Real */ ae_vector* x,
ae_int_t n,
ae_state *_state);
void sampleadev(/* Real */ ae_vector* x,
ae_int_t n,
double* adev,
ae_state *_state);
void samplemedian(/* Real */ ae_vector* x,
ae_int_t n,
double* median,
ae_state *_state);
void samplepercentile(/* Real */ ae_vector* x,
ae_int_t n,
double p,
double* v,
ae_state *_state);
double cov2(/* Real */ ae_vector* x,
/* Real */ ae_vector* y,
ae_int_t n,
ae_state *_state);
double pearsoncorr2(/* Real */ ae_vector* x,
/* Real */ ae_vector* y,
ae_int_t n,
ae_state *_state);
double spearmancorr2(/* Real */ ae_vector* x,
/* Real */ ae_vector* y,
ae_int_t n,
ae_state *_state);
void covm(/* Real */ ae_matrix* x,
ae_int_t n,
ae_int_t m,
/* Real */ ae_matrix* c,
ae_state *_state);
void _pexec_covm(/* Real */ ae_matrix* x,
ae_int_t n,
ae_int_t m,
/* Real */ ae_matrix* c, ae_state *_state);
void pearsoncorrm(/* Real */ ae_matrix* x,
ae_int_t n,
ae_int_t m,
/* Real */ ae_matrix* c,
ae_state *_state);
void _pexec_pearsoncorrm(/* Real */ ae_matrix* x,
ae_int_t n,
ae_int_t m,
/* Real */ ae_matrix* c, ae_state *_state);
void spearmancorrm(/* Real */ ae_matrix* x,
ae_int_t n,
ae_int_t m,
/* Real */ ae_matrix* c,
ae_state *_state);
void _pexec_spearmancorrm(/* Real */ ae_matrix* x,
ae_int_t n,
ae_int_t m,
/* Real */ ae_matrix* c, ae_state *_state);
void covm2(/* Real */ ae_matrix* x,
/* Real */ ae_matrix* y,
ae_int_t n,
ae_int_t m1,
ae_int_t m2,
/* Real */ ae_matrix* c,
ae_state *_state);
void _pexec_covm2(/* Real */ ae_matrix* x,
/* Real */ ae_matrix* y,
ae_int_t n,
ae_int_t m1,
ae_int_t m2,
/* Real */ ae_matrix* c, ae_state *_state);
void pearsoncorrm2(/* Real */ ae_matrix* x,
/* Real */ ae_matrix* y,
ae_int_t n,
ae_int_t m1,
ae_int_t m2,
/* Real */ ae_matrix* c,
ae_state *_state);
void _pexec_pearsoncorrm2(/* Real */ ae_matrix* x,
/* Real */ ae_matrix* y,
ae_int_t n,
ae_int_t m1,
ae_int_t m2,
/* Real */ ae_matrix* c, ae_state *_state);
void spearmancorrm2(/* Real */ ae_matrix* x,
/* Real */ ae_matrix* y,
ae_int_t n,
ae_int_t m1,
ae_int_t m2,
/* Real */ ae_matrix* c,
ae_state *_state);
void _pexec_spearmancorrm2(/* Real */ ae_matrix* x,
/* Real */ ae_matrix* y,
ae_int_t n,
ae_int_t m1,
ae_int_t m2,
/* Real */ ae_matrix* c, ae_state *_state);
void rankdata(/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_int_t nfeatures,
ae_state *_state);
void _pexec_rankdata(/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_int_t nfeatures, ae_state *_state);
void rankdatacentered(/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_int_t nfeatures,
ae_state *_state);
void _pexec_rankdatacentered(/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_int_t nfeatures, ae_state *_state);
double pearsoncorrelation(/* Real */ ae_vector* x,
/* Real */ ae_vector* y,
ae_int_t n,
ae_state *_state);
double spearmanrankcorrelation(/* Real */ ae_vector* x,
/* Real */ ae_vector* y,
ae_int_t n,
ae_state *_state);
void pearsoncorrelationsignificance(double r,
ae_int_t n,
double* bothtails,
double* lefttail,
double* righttail,
ae_state *_state);
void spearmanrankcorrelationsignificance(double r,
ae_int_t n,
double* bothtails,
double* lefttail,
double* righttail,
ae_state *_state);
void jarqueberatest(/* Real */ ae_vector* x,
ae_int_t n,
double* p,
ae_state *_state);
void mannwhitneyutest(/* Real */ ae_vector* x,
ae_int_t n,
/* Real */ ae_vector* y,
ae_int_t m,
double* bothtails,
double* lefttail,
double* righttail,
ae_state *_state);
void onesamplesigntest(/* Real */ ae_vector* x,
ae_int_t n,
double median,
double* bothtails,
double* lefttail,
double* righttail,
ae_state *_state);
void studentttest1(/* Real */ ae_vector* x,
ae_int_t n,
double mean,
double* bothtails,
double* lefttail,
double* righttail,
ae_state *_state);
void studentttest2(/* Real */ ae_vector* x,
ae_int_t n,
/* Real */ ae_vector* y,
ae_int_t m,
double* bothtails,
double* lefttail,
double* righttail,
ae_state *_state);
void unequalvariancettest(/* Real */ ae_vector* x,
ae_int_t n,
/* Real */ ae_vector* y,
ae_int_t m,
double* bothtails,
double* lefttail,
double* righttail,
ae_state *_state);
void ftest(/* Real */ ae_vector* x,
ae_int_t n,
/* Real */ ae_vector* y,
ae_int_t m,
double* bothtails,
double* lefttail,
double* righttail,
ae_state *_state);
void onesamplevariancetest(/* Real */ ae_vector* x,
ae_int_t n,
double variance,
double* bothtails,
double* lefttail,
double* righttail,
ae_state *_state);
void wilcoxonsignedranktest(/* Real */ ae_vector* x,
ae_int_t n,
double e,
double* bothtails,
double* lefttail,
double* righttail,
ae_state *_state);
}
#endif
|