/usr/include/apop.h is in libapophenia2-dev 1.0+ds-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 | /** \file */
/* Copyright (c) 2005--2014 by Ben Klemens. Licensed under the GPLv2; see COPYING. */
/* Here are the headers for all of apophenia's functions, typedefs, static variables and
macros. All of these begin with the apop_ (or Apop_ or APOP_) prefix.
There used to be a series of sub-headers, but they never provided any serious
benefit. Please use your text editor's word-search feature to find any elements you
may be looking for. About a third of the file is comments and doxygen documentation,
so syntax highlighting that distinguishes code from comments will also help to make
this more navigable.*/
/** \defgroup all_public Public functions, structs, and types
\addtogroup all_public
@{
*/
#pragma once
#ifdef __cplusplus
extern "C" {
#endif
/** \cond doxy_ignore */
#ifndef _GNU_SOURCE
#define _GNU_SOURCE //for asprintf
#endif
#include <assert.h>
#include <signal.h> //raise(SIGTRAP)
#include <string.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_matrix.h>
//////Optional arguments
/* A means of providing more script-like means of sending arguments to a function.
These macros are intended as internal. If you are interested in using this mechanism
in out-of-Apophenia work, grep docs/documentation.h for optionaldetails to find notes
on how these are used (Doxygen doesn't use that page),
*/
#define apop_varad_head(type, name) type variadic_##name(variadic_type_##name varad_in)
#define apop_varad_declare(type, name, ...) \
typedef struct { \
__VA_ARGS__ ; \
} variadic_type_##name; \
apop_varad_head(type, name);
#define apop_varad_var(name, value) name = varad_in.name ? varad_in.name : (value);
#define apop_varad_link(name,...) variadic_##name((variadic_type_##name) {__VA_ARGS__})
/** \endcond */ //End of Doxygen ignore.
//////The types and functions that act on them
/** This structure holds the names of the components of the \ref apop_data set. You may never have to worry about it directly, because most operations on \ref apop_data sets will take care of the names for you.
*/
typedef struct{
char *title;
char * vector;
char ** col;
char ** row;
char ** text;
int colct, rowct, textct;
} apop_name;
/** The \ref apop_data structure represents a data set. See \ref dataoverview.*/
typedef struct apop_data{
gsl_vector *vector;
gsl_matrix *matrix;
apop_name *names;
char ***text;
size_t textsize[2];
gsl_vector *weights;
struct apop_data *more;
char error;
} apop_data;
/* Settings groups. For internal use only; see apop_settings.c and
settings.h for related machinery. */
typedef struct {
char name[101];
unsigned long name_hash;
void *setting_group;
void *copy;
void *free;
} apop_settings_type;
/** A statistical model. See \ref modelsec for details. */
typedef struct apop_model apop_model;
/** The elements of the \ref apop_model type, representing a statistical model. See \ref
modelsec and \ref modeldetails for use and details. */
struct apop_model{
char name[101];
int vsize, msize1, msize2, dsize;
apop_data *data;
apop_data *parameters;
apop_data *info;
void (*estimate)(apop_data * data, apop_model *params);
long double (*p)(apop_data *d, apop_model *params);
long double (*log_likelihood)(apop_data *d, apop_model *params);
long double (*cdf)(apop_data *d, apop_model *params);
long double (*constraint)(apop_data *data, apop_model *params);
int (*draw)(double *out, gsl_rng* r, apop_model *params);
void (*prep)(apop_data *data, apop_model *params);
apop_settings_type *settings;
void *more;
size_t more_size;
char error;
};
/** The global options. */
typedef struct{
int verbose; /**< Set this to zero for silent mode, one for errors and warnings. default = 0. */
char stop_on_warning; /**< See \ref debugging . */
char output_delimiter[100]; /**< The separator between elements of output tables. The default is "\t", but
for LaTeX, use "&\t", or use "|" to get pipe-delimited output. */
char input_delimiters[100]; /**< Deprecated. Please use per-function inputs to \ref apop_text_to_db and \ref apop_text_to_data. Default = "|,\t" */
char *db_name_column; /**< If not NULL or <tt>""</tt>, the name of the column in your tables that holds row names.*/
char *nan_string; /**< The string used to indicate NaN. Default: <tt>"NaN</tt>. Comparisons are case-insensitive.*/
char db_engine; /**< If this is 'm', use mySQL, else use SQLite. */
char db_user[101]; /**< Username for database login. Max 100 chars. */
char db_pass[101]; /**< Password for database login. Max 100 chars. */
FILE *log_file; /**< The file handle for the log. Defaults to \c stderr, but change it with, e.g.,
<tt>apop_opts.log_file = fopen("outlog", "w");</tt> */
#define Autoconf_no_atomics 1
#if __STDC_VERSION__ > 201100L && !defined(__STDC_NO_ATOMICS__) && Autoconf_no_atomics==0
_Atomic(int) rng_seed;
#else
int rng_seed;
#endif
float version;
} apop_opts_type;
extern apop_opts_type apop_opts;
apop_name * apop_name_alloc(void);
int apop_name_add(apop_name * n, char const *add_me, char type);
void apop_name_free(apop_name * free_me);
void apop_name_print(apop_name * n);
#ifdef APOP_NO_VARIADIC
void apop_name_stack(apop_name * n1, apop_name *nadd, char type1, char typeadd) ;
#else
void apop_name_stack_base(apop_name * n1, apop_name *nadd, char type1, char typeadd) ;
apop_varad_declare(void, apop_name_stack, apop_name * n1; apop_name *nadd; char type1; char typeadd);
#define apop_name_stack(...) apop_varad_link(apop_name_stack, __VA_ARGS__)
#endif
apop_name * apop_name_copy(apop_name *in);
int apop_name_find(const apop_name *n, const char *findme, const char type);
void apop_data_add_names_base(apop_data *d, const char type, char const ** names);
/** Add a list of names to a data set.
\li Use this with a list of names that you type in yourself, like
\code
apop_data_add_names(mydata, 'c', "age", "sex", "height");
\endcode
Notice the lack of curly braces around the list.
\li You may have an array of names, probably autogenerated, that you would like to
add. In this case, make certain that the last element of the array is \c NULL, and
call the base function:
\code
char **[] colnames = {"age", "sex", "height", NULL};
apop_data_add_names_base(mydata, 'c', colnames);
\endcode
But if you forget the \c NULL marker, this has good odds of segfaulting. You may prefer to use a \c for loop that inserts each name in turn using \ref apop_name_add.
\see \ref apop_name_add, although \ref apop_data_add_names will be more useful in most cases.
*/
#define apop_data_add_names(dataset, type, ...) apop_data_add_names_base((dataset), (type), (char const*[]) {__VA_ARGS__, NULL})
/** Free an \ref apop_data structure.
\li As with \c free(), it is safe to send in a \c NULL pointer (in which case the function does nothing).
\li If the \c more pointer is not \c NULL, I will free the pointed-to data set first.
If you don't want to free data sets down the chain, set <tt>more=NULL</tt> before calling this.
\li This is actually a macro (that calls \ref apop_data_free_base). It
sets \c freeme to \c NULL when it's done, because there's nothing safe you can do with the
freed location, and you can later safely test conditions like <tt>if (data) ...</tt>.
*/
#define apop_data_free(freeme) (apop_data_free_base(freeme) ? 0 : ((freeme)= NULL))
char apop_data_free_base(apop_data *freeme);
#ifdef APOP_NO_VARIADIC
apop_data * apop_data_alloc(const size_t size1, const size_t size2, const int size3) ;
#else
apop_data * apop_data_alloc_base(const size_t size1, const size_t size2, const int size3) ;
apop_varad_declare(apop_data *, apop_data_alloc, const size_t size1; const size_t size2; const int size3);
#define apop_data_alloc(...) apop_varad_link(apop_data_alloc, __VA_ARGS__)
#endif
#ifdef APOP_NO_VARIADIC
apop_data * apop_data_calloc(const size_t size1, const size_t size2, const int size3) ;
#else
apop_data * apop_data_calloc_base(const size_t size1, const size_t size2, const int size3) ;
apop_varad_declare(apop_data *, apop_data_calloc, const size_t size1; const size_t size2; const int size3);
#define apop_data_calloc(...) apop_varad_link(apop_data_calloc, __VA_ARGS__)
#endif
#ifdef APOP_NO_VARIADIC
apop_data * apop_data_stack(apop_data *m1, apop_data * m2, char posn, char inplace) ;
#else
apop_data * apop_data_stack_base(apop_data *m1, apop_data * m2, char posn, char inplace) ;
apop_varad_declare(apop_data *, apop_data_stack, apop_data *m1; apop_data * m2; char posn; char inplace);
#define apop_data_stack(...) apop_varad_link(apop_data_stack, __VA_ARGS__)
#endif
apop_data ** apop_data_split(apop_data *in, int splitpoint, char r_or_c);
apop_data * apop_data_copy(const apop_data *in);
void apop_data_rm_columns(apop_data *d, int *drop);
void apop_data_memcpy(apop_data *out, const apop_data *in);
#ifdef APOP_NO_VARIADIC
double * apop_data_ptr(apop_data *data, int row, int col, const char *rowname, const char *colname, const char *page) ;
#else
double * apop_data_ptr_base(apop_data *data, int row, int col, const char *rowname, const char *colname, const char *page) ;
apop_varad_declare(double *, apop_data_ptr, apop_data *data; int row; int col; const char *rowname; const char *colname; const char *page);
#define apop_data_ptr(...) apop_varad_link(apop_data_ptr, __VA_ARGS__)
#endif
#ifdef APOP_NO_VARIADIC
double apop_data_get(const apop_data *data, size_t row, int col, const char *rowname, const char *colname, const char *page) ;
#else
double apop_data_get_base(const apop_data *data, size_t row, int col, const char *rowname, const char *colname, const char *page) ;
apop_varad_declare(double, apop_data_get, const apop_data *data; size_t row; int col; const char *rowname; const char *colname; const char *page);
#define apop_data_get(...) apop_varad_link(apop_data_get, __VA_ARGS__)
#endif
#ifdef APOP_NO_VARIADIC
int apop_data_set(apop_data *data, size_t row, int col, const double val, const char *rowname, const char * colname, const char *page) ;
#else
int apop_data_set_base(apop_data *data, size_t row, int col, const double val, const char *rowname, const char * colname, const char *page) ;
apop_varad_declare(int, apop_data_set, apop_data *data; size_t row; int col; const double val; const char *rowname; const char * colname; const char *page);
#define apop_data_set(...) apop_varad_link(apop_data_set, __VA_ARGS__)
#endif
void apop_data_add_named_elmt(apop_data *d, char *name, double val);
int apop_text_set(apop_data *in, const size_t row, const size_t col, const char *fmt, ...);
apop_data * apop_text_alloc(apop_data *in, const size_t row, const size_t col);
void apop_text_free(char ***freeme, int rows, int cols);
#ifdef APOP_NO_VARIADIC
apop_data * apop_data_transpose(apop_data *in, char transpose_text, char inplace) ;
#else
apop_data * apop_data_transpose_base(apop_data *in, char transpose_text, char inplace) ;
apop_varad_declare(apop_data *, apop_data_transpose, apop_data *in; char transpose_text; char inplace);
#define apop_data_transpose(...) apop_varad_link(apop_data_transpose, __VA_ARGS__)
#endif
gsl_matrix * apop_matrix_realloc(gsl_matrix *m, size_t newheight, size_t newwidth);
gsl_vector * apop_vector_realloc(gsl_vector *v, size_t newheight);
#define apop_data_prune_columns(in, ...) apop_data_prune_columns_base((in), (char *[]) {__VA_ARGS__, NULL})
apop_data* apop_data_prune_columns_base(apop_data *d, char **colnames);
#ifdef APOP_NO_VARIADIC
apop_data * apop_data_get_page(const apop_data * data, const char * title, const char match) ;
#else
apop_data * apop_data_get_page_base(const apop_data * data, const char * title, const char match) ;
apop_varad_declare(apop_data *, apop_data_get_page, const apop_data * data; const char * title; const char match);
#define apop_data_get_page(...) apop_varad_link(apop_data_get_page, __VA_ARGS__)
#endif
apop_data * apop_data_add_page(apop_data * dataset, apop_data *newpage,const char *title);
#ifdef APOP_NO_VARIADIC
apop_data* apop_data_rm_page(apop_data * data, const char *title, const char free_p) ;
#else
apop_data* apop_data_rm_page_base(apop_data * data, const char *title, const char free_p) ;
apop_varad_declare(apop_data*, apop_data_rm_page, apop_data * data; const char *title; const char free_p);
#define apop_data_rm_page(...) apop_varad_link(apop_data_rm_page, __VA_ARGS__)
#endif
#ifdef APOP_NO_VARIADIC
apop_data * apop_data_rm_rows(apop_data *in, int *drop, int (*do_drop)(apop_data* , void*), void* drop_parameter) ;
#else
apop_data * apop_data_rm_rows_base(apop_data *in, int *drop, int (*do_drop)(apop_data* , void*), void* drop_parameter) ;
apop_varad_declare(apop_data *, apop_data_rm_rows, apop_data *in; int *drop; int (*do_drop)(apop_data* , void*); void* drop_parameter);
#define apop_data_rm_rows(...) apop_varad_link(apop_data_rm_rows, __VA_ARGS__)
#endif
//in apop_asst.c:
#ifdef APOP_NO_VARIADIC
apop_data * apop_model_draws(apop_model *model, int count, apop_data *draws) ;
#else
apop_data * apop_model_draws_base(apop_model *model, int count, apop_data *draws) ;
apop_varad_declare(apop_data *, apop_model_draws, apop_model *model; int count; apop_data *draws);
#define apop_model_draws(...) apop_varad_link(apop_model_draws, __VA_ARGS__)
#endif
/* Convenience functions to convert among vectors (gsl_vector), matrices (gsl_matrix),
arrays (double **), and database tables */
//From vector
gsl_vector *apop_vector_copy(const gsl_vector *in);
#ifdef APOP_NO_VARIADIC
gsl_matrix * apop_vector_to_matrix(const gsl_vector *in, char row_col) ;
#else
gsl_matrix * apop_vector_to_matrix_base(const gsl_vector *in, char row_col) ;
apop_varad_declare(gsl_matrix *, apop_vector_to_matrix, const gsl_vector *in; char row_col);
#define apop_vector_to_matrix(...) apop_varad_link(apop_vector_to_matrix, __VA_ARGS__)
#endif
//From matrix
gsl_matrix *apop_matrix_copy(const gsl_matrix *in);
#ifdef APOP_NO_VARIADIC
apop_data *apop_db_to_crosstab(char const*tabname, char const*row, char const*col, char const*data, char is_aggregate) ;
#else
apop_data * apop_db_to_crosstab_base(char const*tabname, char const*row, char const*col, char const*data, char is_aggregate) ;
apop_varad_declare(apop_data *, apop_db_to_crosstab, char const*tabname; char const*row; char const*col; char const*data; char is_aggregate);
#define apop_db_to_crosstab(...) apop_varad_link(apop_db_to_crosstab, __VA_ARGS__)
#endif
//From array
#ifdef APOP_NO_VARIADIC
gsl_vector * apop_array_to_vector(double *in, int size) ;
#else
gsl_vector * apop_array_to_vector_base(double *in, int size) ;
apop_varad_declare(gsl_vector *, apop_array_to_vector, double *in; int size);
#define apop_array_to_vector(...) apop_varad_link(apop_array_to_vector, __VA_ARGS__)
#endif
/** \cond doxy_ignore */ //Deprecated
#define apop_text_add apop_text_set
#define apop_line_to_vector apop_array_to_vector
/** \endcond */
//From text
#ifdef APOP_NO_VARIADIC
apop_data * apop_text_to_data(char const *text_file, int has_row_names, int has_col_names, int const *field_ends, char const *delimiters) ;
#else
apop_data * apop_text_to_data_base(char const *text_file, int has_row_names, int has_col_names, int const *field_ends, char const *delimiters) ;
apop_varad_declare(apop_data *, apop_text_to_data, char const *text_file; int has_row_names; int has_col_names; int const *field_ends; char const *delimiters);
#define apop_text_to_data(...) apop_varad_link(apop_text_to_data, __VA_ARGS__)
#endif
#ifdef APOP_NO_VARIADIC
int apop_text_to_db(char const *text_file, char *tabname, int has_row_names, int has_col_names, char **field_names, int const *field_ends, apop_data *field_params, char *table_params, char const *delimiters, char if_table_exists) ;
#else
int apop_text_to_db_base(char const *text_file, char *tabname, int has_row_names, int has_col_names, char **field_names, int const *field_ends, apop_data *field_params, char *table_params, char const *delimiters, char if_table_exists) ;
apop_varad_declare(int, apop_text_to_db, char const *text_file; char *tabname; int has_row_names; int has_col_names; char **field_names; int const *field_ends; apop_data *field_params; char *table_params; char const *delimiters; char if_table_exists);
#define apop_text_to_db(...) apop_varad_link(apop_text_to_db, __VA_ARGS__)
#endif
//rank data
apop_data *apop_data_rank_expand (apop_data *in);
#ifdef APOP_NO_VARIADIC
apop_data *apop_data_rank_compress (apop_data *in, int min_bins) ;
#else
apop_data * apop_data_rank_compress_base(apop_data *in, int min_bins) ;
apop_varad_declare(apop_data *, apop_data_rank_compress, apop_data *in; int min_bins);
#define apop_data_rank_compress(...) apop_varad_link(apop_data_rank_compress, __VA_ARGS__)
#endif
//From crosstabs
void apop_crosstab_to_db(apop_data *in, char *tabname, char *row_col_name,
char *col_col_name, char *data_col_name);
//packing data into a vector
#ifdef APOP_NO_VARIADIC
gsl_vector * apop_data_pack(const apop_data *in, gsl_vector *out, char more_pages, char use_info_pages) ;
#else
gsl_vector * apop_data_pack_base(const apop_data *in, gsl_vector *out, char more_pages, char use_info_pages) ;
apop_varad_declare(gsl_vector *, apop_data_pack, const apop_data *in; gsl_vector *out; char more_pages; char use_info_pages);
#define apop_data_pack(...) apop_varad_link(apop_data_pack, __VA_ARGS__)
#endif
#ifdef APOP_NO_VARIADIC
void apop_data_unpack(const gsl_vector *in, apop_data *d, char use_info_pages) ;
#else
void apop_data_unpack_base(const gsl_vector *in, apop_data *d, char use_info_pages) ;
apop_varad_declare(void, apop_data_unpack, const gsl_vector *in; apop_data *d; char use_info_pages);
#define apop_data_unpack(...) apop_varad_link(apop_data_unpack, __VA_ARGS__)
#endif
#define apop_vector_fill(avfin, ...) apop_vector_fill_base((avfin), (double []) {__VA_ARGS__})
#define apop_data_fill(adfin, ...) apop_data_fill_base((adfin), (double []) {__VA_ARGS__})
#define apop_text_fill(dataset, ...) apop_text_fill_base((dataset), (char* []) {__VA_ARGS__, NULL})
#define apop_data_falloc(sizes, ...) apop_data_fill(apop_data_alloc sizes, __VA_ARGS__)
apop_data *apop_data_fill_base(apop_data *in, double []);
gsl_vector *apop_vector_fill_base(gsl_vector *in, double []);
apop_data *apop_text_fill_base(apop_data *data, char* text[]);
//// Models and model support functions
extern apop_model *apop_beta;
extern apop_model *apop_bernoulli;
extern apop_model *apop_binomial;
extern apop_model *apop_chi_squared;
extern apop_model *apop_dirichlet;
extern apop_model *apop_exponential;
extern apop_model *apop_f_distribution;
extern apop_model *apop_gamma;
extern apop_model *apop_improper_uniform;
extern apop_model *apop_iv;
extern apop_model *apop_kernel_density;
extern apop_model *apop_loess;
extern apop_model *apop_logit;
extern apop_model *apop_lognormal;
extern apop_model *apop_multinomial;
extern apop_model *apop_multivariate_normal;
extern apop_model *apop_normal;
extern apop_model *apop_ols;
extern apop_model *apop_pmf;
extern apop_model *apop_poisson;
extern apop_model *apop_probit;
extern apop_model *apop_t_distribution;
extern apop_model *apop_uniform;
//extern apop_model *apop_wishart;
extern apop_model *apop_wls;
extern apop_model *apop_yule;
extern apop_model *apop_zipf;
//model transformations
extern apop_model *apop_coordinate_transform;
extern apop_model *apop_composition;
extern apop_model *apop_dconstrain;
extern apop_model *apop_mixture;
extern apop_model *apop_cross;
/** Alias for the \ref apop_normal distribution, qv. */
#define apop_gaussian apop_normal
#define apop_OLS apop_ols
#define apop_PMF apop_pmf
#define apop_F_distribution apop_f_distribution
#define apop_IV apop_iv
void apop_model_free (apop_model * free_me);
#ifdef APOP_NO_VARIADIC
void apop_model_print (apop_model * model, FILE *output_pipe) ;
#else
void apop_model_print_base(apop_model * model, FILE *output_pipe) ;
apop_varad_declare(void, apop_model_print, apop_model * model; FILE *output_pipe);
#define apop_model_print(...) apop_varad_link(apop_model_print, __VA_ARGS__)
#endif
void apop_model_show (apop_model * print_me); //deprecated
apop_model * apop_model_copy(apop_model *in); //in apop_model.c
apop_model * apop_model_clear(apop_data * data, apop_model *model);
apop_model * apop_estimate(apop_data *d, apop_model *m);
void apop_score(apop_data *d, gsl_vector *out, apop_model *m);
double apop_log_likelihood(apop_data *d, apop_model *m);
double apop_p(apop_data *d, apop_model *m);
double apop_cdf(apop_data *d, apop_model *m);
int apop_draw(double *out, gsl_rng *r, apop_model *m);
void apop_prep(apop_data *d, apop_model *m);
apop_model *apop_parameter_model(apop_data *d, apop_model *m);
apop_data * apop_predict(apop_data *d, apop_model *m);
apop_model *apop_beta_from_mean_var(double m, double v); //in apop_beta.c
#define apop_model_set_parameters(in, ...) apop_model_set_parameters_base((in), (double []) {__VA_ARGS__})
apop_model *apop_model_set_parameters_base(apop_model *in, double ap[]);
//apop_mixture.c
/** Produce a model as a linear combination of other models. See the documentation for the \ref apop_mixture model.
\param ... A list of models, either all parameterized or all unparameterized. See
examples in the \ref apop_mixture documentation.
*/
#define apop_model_mixture(...) apop_model_mixture_base((apop_model *[]){__VA_ARGS__, NULL})
apop_model *apop_model_mixture_base(apop_model **inlist);
//transform/apop_cross.c.
apop_model *apop_model_cross_base(apop_model *mlist[]);
#define apop_model_cross(...) apop_model_cross_base((apop_model *[]){__VA_ARGS__, NULL})
////More functions
//The variadic versions, with lots of options to input extra parameters to the
//function being mapped/applied
#ifdef APOP_NO_VARIADIC
apop_data * apop_map(apop_data *in, double (*fn_d)(double), double (*fn_v)(gsl_vector*),
double (*fn_r)(apop_data *), double (*fn_dp)(double, void *), double (*fn_vp)(gsl_vector*, void *),
double (*fn_rp)(apop_data *, void *), double (*fn_dpi)(double, void *, int),
double (*fn_vpi)(gsl_vector*, void *, int), double (*fn_rpi)(apop_data*, void *, int),
double (*fn_di)(double, int), double (*fn_vi)(gsl_vector*, int), double (*fn_ri)(apop_data*, int),
void *param, int inplace, char part, int all_pages) ;
#else
apop_data * apop_map_base(apop_data *in, double (*fn_d)(double), double (*fn_v)(gsl_vector*),
double (*fn_r)(apop_data *), double (*fn_dp)(double, void *), double (*fn_vp)(gsl_vector*, void *),
double (*fn_rp)(apop_data *, void *), double (*fn_dpi)(double, void *, int),
double (*fn_vpi)(gsl_vector*, void *, int), double (*fn_rpi)(apop_data*, void *, int),
double (*fn_di)(double, int), double (*fn_vi)(gsl_vector*, int), double (*fn_ri)(apop_data*, int),
void *param, int inplace, char part, int all_pages) ;
apop_varad_declare(apop_data *, apop_map, apop_data *in; double (*fn_d)(double); double (*fn_v)(gsl_vector*);
double (*fn_r)(apop_data *); double (*fn_dp)(double, void *); double (*fn_vp)(gsl_vector*, void *);
double (*fn_rp)(apop_data *, void *); double (*fn_dpi)(double, void *, int);
double (*fn_vpi)(gsl_vector*, void *, int); double (*fn_rpi)(apop_data*, void *, int);
double (*fn_di)(double, int); double (*fn_vi)(gsl_vector*, int); double (*fn_ri)(apop_data*, int);
void *param; int inplace; char part; int all_pages);
#define apop_map(...) apop_varad_link(apop_map, __VA_ARGS__)
#endif
#ifdef APOP_NO_VARIADIC
double apop_map_sum(apop_data *in, double (*fn_d)(double), double (*fn_v)(gsl_vector*),
double (*fn_r)(apop_data *), double (*fn_dp)(double, void *), double (*fn_vp)(gsl_vector*, void *),
double (*fn_rp)(apop_data *, void *), double (*fn_dpi)(double, void *, int),
double (*fn_vpi)(gsl_vector*, void *, int), double (*fn_rpi)(apop_data*, void *, int),
double (*fn_di)(double, int), double (*fn_vi)(gsl_vector*, int), double (*fn_ri)(apop_data*, int),
void *param, char part, int all_pages) ;
#else
double apop_map_sum_base(apop_data *in, double (*fn_d)(double), double (*fn_v)(gsl_vector*),
double (*fn_r)(apop_data *), double (*fn_dp)(double, void *), double (*fn_vp)(gsl_vector*, void *),
double (*fn_rp)(apop_data *, void *), double (*fn_dpi)(double, void *, int),
double (*fn_vpi)(gsl_vector*, void *, int), double (*fn_rpi)(apop_data*, void *, int),
double (*fn_di)(double, int), double (*fn_vi)(gsl_vector*, int), double (*fn_ri)(apop_data*, int),
void *param, char part, int all_pages) ;
apop_varad_declare(double, apop_map_sum, apop_data *in; double (*fn_d)(double); double (*fn_v)(gsl_vector*);
double (*fn_r)(apop_data *); double (*fn_dp)(double, void *); double (*fn_vp)(gsl_vector*, void *);
double (*fn_rp)(apop_data *, void *); double (*fn_dpi)(double, void *, int);
double (*fn_vpi)(gsl_vector*, void *, int); double (*fn_rpi)(apop_data*, void *, int);
double (*fn_di)(double, int); double (*fn_vi)(gsl_vector*, int); double (*fn_ri)(apop_data*, int);
void *param; char part; int all_pages);
#define apop_map_sum(...) apop_varad_link(apop_map_sum, __VA_ARGS__)
#endif
//the specific-to-a-type versions, quicker and easier when appropriate.
gsl_vector *apop_matrix_map(const gsl_matrix *m, double (*fn)(gsl_vector*));
gsl_vector *apop_vector_map(const gsl_vector *v, double (*fn)(double));
void apop_matrix_apply(gsl_matrix *m, void (*fn)(gsl_vector*));
void apop_vector_apply(gsl_vector *v, void (*fn)(double*));
gsl_matrix * apop_matrix_map_all(const gsl_matrix *in, double (*fn)(double));
void apop_matrix_apply_all(gsl_matrix *in, void (*fn)(double *));
double apop_vector_map_sum(const gsl_vector *in, double(*fn)(double));
double apop_matrix_map_sum(const gsl_matrix *in, double (*fn)(gsl_vector*));
double apop_matrix_map_all_sum(const gsl_matrix *in, double (*fn)(double));
// Some output routines
#ifdef APOP_NO_VARIADIC
void apop_matrix_print(const gsl_matrix *data, char const *output_name, FILE *output_pipe, char output_type, char output_append) ;
#else
void apop_matrix_print_base(const gsl_matrix *data, char const *output_name, FILE *output_pipe, char output_type, char output_append) ;
apop_varad_declare(void, apop_matrix_print, const gsl_matrix *data; char const *output_name; FILE *output_pipe; char output_type; char output_append);
#define apop_matrix_print(...) apop_varad_link(apop_matrix_print, __VA_ARGS__)
#endif
#ifdef APOP_NO_VARIADIC
void apop_vector_print(gsl_vector *data, char const *output_name, FILE *output_pipe, char output_type, char output_append) ;
#else
void apop_vector_print_base(gsl_vector *data, char const *output_name, FILE *output_pipe, char output_type, char output_append) ;
apop_varad_declare(void, apop_vector_print, gsl_vector *data; char const *output_name; FILE *output_pipe; char output_type; char output_append);
#define apop_vector_print(...) apop_varad_link(apop_vector_print, __VA_ARGS__)
#endif
#ifdef APOP_NO_VARIADIC
void apop_data_print(const apop_data *data, char const *output_name, FILE *output_pipe, char output_type, char output_append) ;
#else
void apop_data_print_base(const apop_data *data, char const *output_name, FILE *output_pipe, char output_type, char output_append) ;
apop_varad_declare(void, apop_data_print, const apop_data *data; char const *output_name; FILE *output_pipe; char output_type; char output_append);
#define apop_data_print(...) apop_varad_link(apop_data_print, __VA_ARGS__)
#endif
void apop_matrix_show(const gsl_matrix *data);
void apop_vector_show(const gsl_vector *data);
void apop_data_show(const apop_data *data);
//statistics
#ifdef APOP_NO_VARIADIC
double apop_vector_mean(gsl_vector const *v, gsl_vector const *weights);
#else
double apop_vector_mean_base(gsl_vector const *v, gsl_vector const *weights);
apop_varad_declare(double, apop_vector_mean, gsl_vector const *v; gsl_vector const *weights);
#define apop_vector_mean(...) apop_varad_link(apop_vector_mean, __VA_ARGS__)
#endif
#ifdef APOP_NO_VARIADIC
double apop_vector_var(gsl_vector const *v, gsl_vector const *weights);
#else
double apop_vector_var_base(gsl_vector const *v, gsl_vector const *weights);
apop_varad_declare(double, apop_vector_var, gsl_vector const *v; gsl_vector const *weights);
#define apop_vector_var(...) apop_varad_link(apop_vector_var, __VA_ARGS__)
#endif
#ifdef APOP_NO_VARIADIC
double apop_vector_skew_pop(gsl_vector const *v, gsl_vector const *weights);
#else
double apop_vector_skew_pop_base(gsl_vector const *v, gsl_vector const *weights);
apop_varad_declare(double, apop_vector_skew_pop, gsl_vector const *v; gsl_vector const *weights);
#define apop_vector_skew_pop(...) apop_varad_link(apop_vector_skew_pop, __VA_ARGS__)
#endif
#ifdef APOP_NO_VARIADIC
double apop_vector_kurtosis_pop(gsl_vector const *v, gsl_vector const *weights);
#else
double apop_vector_kurtosis_pop_base(gsl_vector const *v, gsl_vector const *weights);
apop_varad_declare(double, apop_vector_kurtosis_pop, gsl_vector const *v; gsl_vector const *weights);
#define apop_vector_kurtosis_pop(...) apop_varad_link(apop_vector_kurtosis_pop, __VA_ARGS__)
#endif
#ifdef APOP_NO_VARIADIC
double apop_vector_cov(gsl_vector const *v1, gsl_vector const *v2,
gsl_vector const *weights);
#else
double apop_vector_cov_base(gsl_vector const *v1, gsl_vector const *v2,
gsl_vector const *weights);
apop_varad_declare(double, apop_vector_cov, gsl_vector const *v1; gsl_vector const *v2;
gsl_vector const *weights);
#define apop_vector_cov(...) apop_varad_link(apop_vector_cov, __VA_ARGS__)
#endif
#ifdef APOP_NO_VARIADIC
double apop_vector_distance(const gsl_vector *ina, const gsl_vector *inb, const char metric, const double norm) ;
#else
double apop_vector_distance_base(const gsl_vector *ina, const gsl_vector *inb, const char metric, const double norm) ;
apop_varad_declare(double, apop_vector_distance, const gsl_vector *ina; const gsl_vector *inb; const char metric; const double norm);
#define apop_vector_distance(...) apop_varad_link(apop_vector_distance, __VA_ARGS__)
#endif
#ifdef APOP_NO_VARIADIC
void apop_vector_normalize(gsl_vector *in, gsl_vector **out, const char normalization_type) ;
#else
void apop_vector_normalize_base(gsl_vector *in, gsl_vector **out, const char normalization_type) ;
apop_varad_declare(void, apop_vector_normalize, gsl_vector *in; gsl_vector **out; const char normalization_type);
#define apop_vector_normalize(...) apop_varad_link(apop_vector_normalize, __VA_ARGS__)
#endif
apop_data * apop_data_covariance(const apop_data *in);
apop_data * apop_data_correlation(const apop_data *in);
long double apop_vector_entropy(gsl_vector *in);
long double apop_matrix_sum(const gsl_matrix *m);
double apop_matrix_mean(const gsl_matrix *data);
void apop_matrix_mean_and_var(const gsl_matrix *data, double *mean, double *var);
apop_data * apop_data_summarize(apop_data *data);
#ifdef APOP_NO_VARIADIC
double * apop_vector_percentiles(gsl_vector *data, char rounding) ;
#else
double * apop_vector_percentiles_base(gsl_vector *data, char rounding) ;
apop_varad_declare(double *, apop_vector_percentiles, gsl_vector *data; char rounding);
#define apop_vector_percentiles(...) apop_varad_link(apop_vector_percentiles, __VA_ARGS__)
#endif
apop_data *apop_test_fisher_exact(apop_data *intab); //in apop_fisher.c
//from apop_t_f_chi.c:
#ifdef APOP_NO_VARIADIC
int apop_matrix_is_positive_semidefinite(gsl_matrix *m, char semi) ;
#else
int apop_matrix_is_positive_semidefinite_base(gsl_matrix *m, char semi) ;
apop_varad_declare(int, apop_matrix_is_positive_semidefinite, gsl_matrix *m; char semi);
#define apop_matrix_is_positive_semidefinite(...) apop_varad_link(apop_matrix_is_positive_semidefinite, __VA_ARGS__)
#endif
double apop_matrix_to_positive_semidefinite(gsl_matrix *m);
long double apop_multivariate_gamma(double a, int p);
long double apop_multivariate_lngamma(double a, int p);
//apop_tests.c
apop_data * apop_t_test(gsl_vector *a, gsl_vector *b);
apop_data * apop_paired_t_test(gsl_vector *a, gsl_vector *b);
#ifdef APOP_NO_VARIADIC
apop_data* apop_anova(char *table, char *data, char *grouping1, char *grouping2) ;
#else
apop_data* apop_anova_base(char *table, char *data, char *grouping1, char *grouping2) ;
apop_varad_declare(apop_data*, apop_anova, char *table; char *data; char *grouping1; char *grouping2);
#define apop_anova(...) apop_varad_link(apop_anova, __VA_ARGS__)
#endif
#define apop_ANOVA apop_anova
#ifdef APOP_NO_VARIADIC
apop_data * apop_f_test (apop_model *est, apop_data *contrast) ;
#else
apop_data * apop_f_test_base(apop_model *est, apop_data *contrast) ;
apop_varad_declare(apop_data *, apop_f_test, apop_model *est; apop_data *contrast);
#define apop_f_test(...) apop_varad_link(apop_f_test, __VA_ARGS__)
#endif
#define apop_F_test apop_f_test
//from the regression code:
#define apop_estimate_r_squared(in) apop_estimate_coefficient_of_determination(in)
apop_data * apop_text_unique_elements(const apop_data *d, size_t col);
gsl_vector * apop_vector_unique_elements(const gsl_vector *v);
#ifdef APOP_NO_VARIADIC
apop_data * apop_data_to_factors(apop_data *data, char intype, int incol, int outcol) ;
#else
apop_data * apop_data_to_factors_base(apop_data *data, char intype, int incol, int outcol) ;
apop_varad_declare(apop_data *, apop_data_to_factors, apop_data *data; char intype; int incol; int outcol);
#define apop_data_to_factors(...) apop_varad_link(apop_data_to_factors, __VA_ARGS__)
#endif
#ifdef APOP_NO_VARIADIC
apop_data * apop_data_get_factor_names(apop_data *data, int col, char type) ;
#else
apop_data * apop_data_get_factor_names_base(apop_data *data, int col, char type) ;
apop_varad_declare(apop_data *, apop_data_get_factor_names, apop_data *data; int col; char type);
#define apop_data_get_factor_names(...) apop_varad_link(apop_data_get_factor_names, __VA_ARGS__)
#endif
#ifdef APOP_NO_VARIADIC
apop_data * apop_data_to_dummies(apop_data *d, int col, char type, int keep_first, char append, char remove) ;
#else
apop_data * apop_data_to_dummies_base(apop_data *d, int col, char type, int keep_first, char append, char remove) ;
apop_varad_declare(apop_data *, apop_data_to_dummies, apop_data *d; int col; char type; int keep_first; char append; char remove);
#define apop_data_to_dummies(...) apop_varad_link(apop_data_to_dummies, __VA_ARGS__)
#endif
#ifdef APOP_NO_VARIADIC
long double apop_model_entropy(apop_model *in, int draws) ;
#else
long double apop_model_entropy_base(apop_model *in, int draws) ;
apop_varad_declare(long double, apop_model_entropy, apop_model *in; int draws);
#define apop_model_entropy(...) apop_varad_link(apop_model_entropy, __VA_ARGS__)
#endif
#ifdef APOP_NO_VARIADIC
long double apop_kl_divergence(apop_model *from, apop_model *to, int draw_ct, gsl_rng *rng) ;
#else
long double apop_kl_divergence_base(apop_model *from, apop_model *to, int draw_ct, gsl_rng *rng) ;
apop_varad_declare(long double, apop_kl_divergence, apop_model *from; apop_model *to; int draw_ct; gsl_rng *rng);
#define apop_kl_divergence(...) apop_varad_link(apop_kl_divergence, __VA_ARGS__)
#endif
apop_data *apop_estimate_coefficient_of_determination (apop_model *);
void apop_estimate_parameter_tests (apop_model *est);
//Bootstrapping & RNG
apop_data * apop_jackknife_cov(apop_data *data, apop_model *model);
#ifdef APOP_NO_VARIADIC
apop_data * apop_bootstrap_cov(apop_data *data, apop_model *model, gsl_rng* rng, int iterations, char keep_boots, char ignore_nans, apop_data **boot_store) ;
#else
apop_data * apop_bootstrap_cov_base(apop_data *data, apop_model *model, gsl_rng* rng, int iterations, char keep_boots, char ignore_nans, apop_data **boot_store) ;
apop_varad_declare(apop_data *, apop_bootstrap_cov, apop_data *data; apop_model *model; gsl_rng* rng; int iterations; char keep_boots; char ignore_nans; apop_data **boot_store);
#define apop_bootstrap_cov(...) apop_varad_link(apop_bootstrap_cov, __VA_ARGS__)
#endif
gsl_rng *apop_rng_alloc(int seed);
double apop_rng_GHgB3(gsl_rng * r, double* a); //in apop_asst.c
#define apop_rng_get_thread(thread_in) apop_rng_get_thread_base(#thread_in[0]=='\0' ? -1: (thread_in+0))
gsl_rng *apop_rng_get_thread_base(int thread);
int apop_arms_draw (double *out, gsl_rng *r, apop_model *m);
// maximum likelihod estimation related functions
#ifdef APOP_NO_VARIADIC
gsl_vector * apop_numerical_gradient(apop_data * data, apop_model* model, double delta) ;
#else
gsl_vector * apop_numerical_gradient_base(apop_data * data, apop_model* model, double delta) ;
apop_varad_declare(gsl_vector *, apop_numerical_gradient, apop_data * data; apop_model* model; double delta);
#define apop_numerical_gradient(...) apop_varad_link(apop_numerical_gradient, __VA_ARGS__)
#endif
#ifdef APOP_NO_VARIADIC
apop_data * apop_model_hessian(apop_data * data, apop_model *model, double delta) ;
#else
apop_data * apop_model_hessian_base(apop_data * data, apop_model *model, double delta) ;
apop_varad_declare(apop_data *, apop_model_hessian, apop_data * data; apop_model *model; double delta);
#define apop_model_hessian(...) apop_varad_link(apop_model_hessian, __VA_ARGS__)
#endif
#ifdef APOP_NO_VARIADIC
apop_data * apop_model_numerical_covariance(apop_data * data, apop_model *model, double delta) ;
#else
apop_data * apop_model_numerical_covariance_base(apop_data * data, apop_model *model, double delta) ;
apop_varad_declare(apop_data *, apop_model_numerical_covariance, apop_data * data; apop_model *model; double delta);
#define apop_model_numerical_covariance(...) apop_varad_link(apop_model_numerical_covariance, __VA_ARGS__)
#endif
void apop_maximum_likelihood(apop_data * data, apop_model *dist);
#ifdef APOP_NO_VARIADIC
apop_model * apop_estimate_restart (apop_model *e, apop_model *copy, char * starting_pt, double boundary) ;
#else
apop_model * apop_estimate_restart_base(apop_model *e, apop_model *copy, char * starting_pt, double boundary) ;
apop_varad_declare(apop_model *, apop_estimate_restart, apop_model *e; apop_model *copy; char * starting_pt; double boundary);
#define apop_estimate_restart(...) apop_varad_link(apop_estimate_restart, __VA_ARGS__)
#endif
//in apop_linear_constraint.c
#ifdef APOP_NO_VARIADIC
long double apop_linear_constraint(gsl_vector *beta, apop_data * constraint, double margin) ;
#else
long double apop_linear_constraint_base(gsl_vector *beta, apop_data * constraint, double margin) ;
apop_varad_declare(long double, apop_linear_constraint, gsl_vector *beta; apop_data * constraint; double margin);
#define apop_linear_constraint(...) apop_varad_link(apop_linear_constraint, __VA_ARGS__)
#endif
//in apop_model_fix_params.c
apop_model * apop_model_fix_params(apop_model *model_in);
apop_model * apop_model_fix_params_get_base(apop_model *model_in);
//////vtables
/** \cond doxy_ignore */
/* This declares the vtable macros for each procedure that uses the mechanism.
--We want to have type-checking on the functions put into the vtables. Type checking
happens only with functions, not macros, so we need a type_check function for every
vtable.
--Only once in your codebase, you'll need to #define Declare_type_checking_fns to
actually define the type checking function. Everywhere else, the function is merely
declared.
--All other uses point to having a macro, such as using __VA_ARGS__ to allow any sort
of inputs to the hash.
--We want to have such a macro for every vtable. That means that we need a macro
to write macros. We can't do that with C macros, so this file uses m4 macros to
generate C macros.
--After the m4 definition of make_vtab_fns, each new vtable requires a typedef, a hash
definition, and a call to make_vtab_fns to do the rest.
*/
int apop_vtable_add(char const *tabname, void *fn_in, unsigned long hash);
void *apop_vtable_get(char const *tabname, unsigned long hash);
int apop_vtable_drop(char const *tabname, unsigned long hash);
typedef apop_model *(*apop_update_type)(apop_data *, apop_model* , apop_model*);
#define apop_update_hash(m1, m2) ( \
((m1)->log_likelihood ? (size_t)(m1)->log_likelihood : \
(m1)->p ? (size_t)(m1)->p*33 : \
(m1)->draw ? (size_t)(m1)->draw*33*27 \
: 33*27*19) \
+((m2)->log_likelihood ? (size_t)(m2)->log_likelihood : \
(m2)->p ? (size_t)(m2)->p*33 : \
(m2)->draw ? (size_t)(m2)->draw*33*27 \
: 33*27*19 \
) * 37)
#ifdef Declare_type_checking_fns
void apop_update_type_check(apop_update_type in){ };
#else
void apop_update_type_check(apop_update_type in);
#endif
#define apop_update_vtable_add(fn, ...) apop_update_type_check(fn), apop_vtable_add("apop_update", fn, apop_update_hash(__VA_ARGS__))
#define apop_update_vtable_get(...) apop_vtable_get("apop_update", apop_update_hash(__VA_ARGS__))
#define apop_update_vtable_drop(...) apop_vtable_drop("apop_update", apop_update_hash(__VA_ARGS__))
typedef long double (*apop_entropy_type)(apop_model *model);
#define apop_entropy_hash(m1) ((size_t)(m1)->log_likelihood + 33 * (size_t)((m1)->p) + 27*(size_t)((m1)->draw))
#ifdef Declare_type_checking_fns
void apop_entropy_type_check(apop_entropy_type in){ };
#else
void apop_entropy_type_check(apop_entropy_type in);
#endif
#define apop_entropy_vtable_add(fn, ...) apop_entropy_type_check(fn), apop_vtable_add("apop_entropy", fn, apop_entropy_hash(__VA_ARGS__))
#define apop_entropy_vtable_get(...) apop_vtable_get("apop_entropy", apop_entropy_hash(__VA_ARGS__))
#define apop_entropy_vtable_drop(...) apop_vtable_drop("apop_entropy", apop_entropy_hash(__VA_ARGS__))
typedef void (*apop_score_type)(apop_data *d, gsl_vector *gradient, apop_model *params);
#define apop_score_hash(m1) ((size_t)((m1)->log_likelihood ? (m1)->log_likelihood : (m1)->p))
#ifdef Declare_type_checking_fns
void apop_score_type_check(apop_score_type in){ };
#else
void apop_score_type_check(apop_score_type in);
#endif
#define apop_score_vtable_add(fn, ...) apop_score_type_check(fn), apop_vtable_add("apop_score", fn, apop_score_hash(__VA_ARGS__))
#define apop_score_vtable_get(...) apop_vtable_get("apop_score", apop_score_hash(__VA_ARGS__))
#define apop_score_vtable_drop(...) apop_vtable_drop("apop_score", apop_score_hash(__VA_ARGS__))
typedef apop_model* (*apop_parameter_model_type)(apop_data *, apop_model *);
#define apop_parameter_model_hash(m1) ((size_t)((m1)->log_likelihood ? (m1)->log_likelihood : (m1)->p)*33 + (m1)->estimate ? (size_t)(m1)->estimate: 27)
#ifdef Declare_type_checking_fns
void apop_parameter_model_type_check(apop_parameter_model_type in){ };
#else
void apop_parameter_model_type_check(apop_parameter_model_type in);
#endif
#define apop_parameter_model_vtable_add(fn, ...) apop_parameter_model_type_check(fn), apop_vtable_add("apop_parameter_model", fn, apop_parameter_model_hash(__VA_ARGS__))
#define apop_parameter_model_vtable_get(...) apop_vtable_get("apop_parameter_model", apop_parameter_model_hash(__VA_ARGS__))
#define apop_parameter_model_vtable_drop(...) apop_vtable_drop("apop_parameter_model", apop_parameter_model_hash(__VA_ARGS__))
typedef apop_data * (*apop_predict_type)(apop_data *d, apop_model *params);
#define apop_predict_hash(m1) ((size_t)((m1)->log_likelihood ? (m1)->log_likelihood : (m1)->p)*33 + (m1)->estimate ? (size_t)(m1)->estimate: 27)
#ifdef Declare_type_checking_fns
void apop_predict_type_check(apop_predict_type in){ };
#else
void apop_predict_type_check(apop_predict_type in);
#endif
#define apop_predict_vtable_add(fn, ...) apop_predict_type_check(fn), apop_vtable_add("apop_predict", fn, apop_predict_hash(__VA_ARGS__))
#define apop_predict_vtable_get(...) apop_vtable_get("apop_predict", apop_predict_hash(__VA_ARGS__))
#define apop_predict_vtable_drop(...) apop_vtable_drop("apop_predict", apop_predict_hash(__VA_ARGS__))
typedef void (*apop_model_print_type)(apop_model *params, FILE *out);
#define apop_model_print_hash(m1) ((m1)->log_likelihood ? (size_t)(m1)->log_likelihood : \
(m1)->p ? (size_t)(m1)->p*33 : \
(m1)->estimate ? (size_t)(m1)->estimate*33*33 : \
(m1)->draw ? (size_t)(m1)->draw*33*27 : \
(m1)->cdf ? (size_t)(m1)->cdf*27*27 \
: 27)
#ifdef Declare_type_checking_fns
void apop_model_print_type_check(apop_model_print_type in){ };
#else
void apop_model_print_type_check(apop_model_print_type in);
#endif
#define apop_model_print_vtable_add(fn, ...) apop_model_print_type_check(fn), apop_vtable_add("apop_model_print", fn, apop_model_print_hash(__VA_ARGS__))
#define apop_model_print_vtable_get(...) apop_vtable_get("apop_model_print", apop_model_print_hash(__VA_ARGS__))
#define apop_model_print_vtable_drop(...) apop_vtable_drop("apop_model_print", apop_model_print_hash(__VA_ARGS__))
/** \endcond */ //End of Doxygen ignore.
//////Asst
long double apop_generalized_harmonic(int N, double s) __attribute__ ((__pure__));
apop_data * apop_test_anova_independence(apop_data *d);
#define apop_test_ANOVA_independence(d) apop_test_anova_independence(d)
#ifdef APOP_NO_VARIADIC
int apop_regex(const char *string, const char* regex, apop_data **substrings, const char use_case) ;
#else
int apop_regex_base(const char *string, const char* regex, apop_data **substrings, const char use_case) ;
apop_varad_declare(int, apop_regex, const char *string; const char* regex; apop_data **substrings; const char use_case);
#define apop_regex(...) apop_varad_link(apop_regex, __VA_ARGS__)
#endif
int apop_system(const char *fmt, ...) __attribute__ ((format (printf,1,2)));
//Histograms and PMFs
gsl_vector * apop_vector_moving_average(gsl_vector *, size_t);
apop_data * apop_histograms_test_goodness_of_fit(apop_model *h0, apop_model *h1);
apop_data * apop_test_kolmogorov(apop_model *m1, apop_model *m2);
apop_data *apop_data_pmf_compress(apop_data *in);
#ifdef APOP_NO_VARIADIC
apop_data * apop_data_to_bins(apop_data const *indata, apop_data const *binspec, int bin_count, char close_top_bin) ;
#else
apop_data * apop_data_to_bins_base(apop_data const *indata, apop_data const *binspec, int bin_count, char close_top_bin) ;
apop_varad_declare(apop_data *, apop_data_to_bins, apop_data const *indata; apop_data const *binspec; int bin_count; char close_top_bin);
#define apop_data_to_bins(...) apop_varad_link(apop_data_to_bins, __VA_ARGS__)
#endif
#ifdef APOP_NO_VARIADIC
apop_model * apop_model_to_pmf(apop_model *model, apop_data *binspec, long int draws, int bin_count) ;
#else
apop_model * apop_model_to_pmf_base(apop_model *model, apop_data *binspec, long int draws, int bin_count) ;
apop_varad_declare(apop_model *, apop_model_to_pmf, apop_model *model; apop_data *binspec; long int draws; int bin_count);
#define apop_model_to_pmf(...) apop_varad_link(apop_model_to_pmf, __VA_ARGS__)
#endif
//text conveniences
#ifdef APOP_NO_VARIADIC
char* apop_text_paste(apop_data const*strings, char *between, char *before, char *after, char *between_cols, int (*prune)(apop_data* , int , int , void*), void* prune_parameter) ;
#else
char* apop_text_paste_base(apop_data const*strings, char *between, char *before, char *after, char *between_cols, int (*prune)(apop_data* , int , int , void*), void* prune_parameter) ;
apop_varad_declare(char*, apop_text_paste, apop_data const*strings; char *between; char *before; char *after; char *between_cols; int (*prune)(apop_data* , int , int , void*); void* prune_parameter);
#define apop_text_paste(...) apop_varad_link(apop_text_paste, __VA_ARGS__)
#endif
/** Notify the user of errors, warning, or debug info.
writes to \ref apop_opts.log_file, which is a \c FILE handle. The default is \c stderr,
but use \c fopen to attach to a file.
\param verbosity At what verbosity level should the user be warned? E.g., if level==2, then print iff apop_opts.verbosity >= 2.
\param ... The message to write to the log (presuming the verbosity level is high
enough). This can be a printf-style format with following arguments,
e.g., <tt>apop_notify(0, "Beta is currently %g", beta)</tt>.
*/
#define Apop_notify(verbosity, ...) {\
if (apop_opts.verbose != -1 && apop_opts.verbose >= verbosity) { \
if (!apop_opts.log_file) apop_opts.log_file = stderr; \
fprintf(apop_opts.log_file, "%s: ", __func__); fprintf(apop_opts.log_file, __VA_ARGS__); fprintf(apop_opts.log_file, "\n"); \
fflush(apop_opts.log_file); \
} }
/** \cond doxy_ignore */
#define Apop_maybe_abort(level) \
{if ((apop_opts.verbose >= level && apop_opts.stop_on_warning == 'v') \
|| (apop_opts.stop_on_warning=='w') ) \
raise(SIGTRAP);}
/** \endcond */
/** Execute an action and print a message to the current \c FILE handle held by <tt>apop_opts.log_file</tt> (default: \c stderr).
\param test The expression that, if true, triggers the action.
\param onfail If the assertion fails, do this. E.g., <tt>out->error='x'; return GSL_NAN</tt>. Notice that it is OK to include several lines of semicolon-separated code here, but if you have a lot to do, the most readable option may be <tt>goto outro</tt>, plus an appropriately-labeled section at the end of your function.
\param level Print the warning message only if \ref apop_opts_type "apop_opts.verbose" is greater than or equal to this. Zero usually works, but for minor infractions use one, or for more verbose debugging output use 2.
\param ... The error message in printf form, plus any arguments to be inserted into the printf string. I'll provide the function name and a carriage return.
Some examples:
\code
//the typical case, stopping function execution:
Apop_stopif(isnan(x), return NAN, 0, "x is NAN; failing");
//Mark a flag, go to a cleanup step
Apop_stopif(x < 0, needs_cleanup=1; goto cleanup, 0, "x is %g; cleaning up and exiting.", x);
//Print a diagnostic iff <tt>apop_opts.verbose>=1</tt> and continue
Apop_stopif(x < 0, , 1, "warning: x is %g.", x);
\endcode
\li If \c apop_opts.stop_on_warning is nonzero and not <tt>'v'</tt>, then a failed test halts via \c abort(), even if the <tt>apop_opts.verbose</tt> level is set so that the warning message doesn't print to screen. Use this when running via debugger.
\li If \c apop_opts.stop_on_warning is <tt>'v'</tt>, then a failed test halts via \c abort() iff the verbosity level is high enough to print the error.
*/
#define Apop_stopif(test, onfail, level, ...) do {\
if (test) { \
Apop_notify(level, __VA_ARGS__); \
Apop_maybe_abort(level) \
onfail; \
} } while(0)
#define apop_errorlevel -5
/** \cond doxy_ignore */
//For use in stopif, to return a blank apop_data set with an error attached.
#define apop_return_data_error(E) {apop_data *out=apop_data_alloc(); out->error='E'; return out;}
/* The Apop_stopif macro is currently favored, but there's a long history of prior
error-handling setups. Consider all of the Assert... macros below to be deprecated.
*/
#define Apop_assert_c(test, returnval, level, ...) \
Apop_stopif(!(test), return returnval, level, __VA_ARGS__)
#define Apop_assert(test, ...) Apop_assert_c((test), 0, apop_errorlevel, __VA_ARGS__)
//For things that return void. Transitional and deprecated at birth.
#define Apop_assert_n(test, ...) Apop_assert_c((test), , apop_errorlevel, __VA_ARGS__)
#define Apop_assert_negone(test, ...) Apop_assert_c((test), -1, apop_errorlevel, __VA_ARGS__)
/** \endcond */ //End of Doxygen ignore.
//Missing data
#ifdef APOP_NO_VARIADIC
apop_data * apop_data_listwise_delete(apop_data *d, char inplace) ;
#else
apop_data * apop_data_listwise_delete_base(apop_data *d, char inplace) ;
apop_varad_declare(apop_data *, apop_data_listwise_delete, apop_data *d; char inplace);
#define apop_data_listwise_delete(...) apop_varad_link(apop_data_listwise_delete, __VA_ARGS__)
#endif
apop_model * apop_ml_impute(apop_data *d, apop_model* meanvar);
#ifdef APOP_NO_VARIADIC
apop_model *apop_model_metropolis(apop_data *d, gsl_rng* rng, apop_model *m);
#else
apop_model * apop_model_metropolis_base(apop_data *d, gsl_rng* rng, apop_model *m);
apop_varad_declare(apop_model *, apop_model_metropolis, apop_data *d; gsl_rng* rng; apop_model *m);
#define apop_model_metropolis(...) apop_varad_link(apop_model_metropolis, __VA_ARGS__)
#endif
#ifdef APOP_NO_VARIADIC
apop_model * apop_update(apop_data *data, apop_model *prior, apop_model *likelihood, gsl_rng *rng) ;
#else
apop_model * apop_update_base(apop_data *data, apop_model *prior, apop_model *likelihood, gsl_rng *rng) ;
apop_varad_declare(apop_model *, apop_update, apop_data *data; apop_model *prior; apop_model *likelihood; gsl_rng *rng);
#define apop_update(...) apop_varad_link(apop_update, __VA_ARGS__)
#endif
#ifdef APOP_NO_VARIADIC
double apop_test(double statistic, char *distribution, double p1, double p2, char tail) ;
#else
double apop_test_base(double statistic, char *distribution, double p1, double p2, char tail) ;
apop_varad_declare(double, apop_test, double statistic; char *distribution; double p1; double p2; char tail);
#define apop_test(...) apop_varad_link(apop_test, __VA_ARGS__)
#endif
//apop_sort.c
#ifdef APOP_NO_VARIADIC
apop_data *apop_data_sort(apop_data *data, apop_data *sort_order, char asc, char inplace, double *col_order);
#else
apop_data * apop_data_sort_base(apop_data *data, apop_data *sort_order, char asc, char inplace, double *col_order);
apop_varad_declare(apop_data *, apop_data_sort, apop_data *data; apop_data *sort_order; char asc; char inplace; double *col_order);
#define apop_data_sort(...) apop_varad_link(apop_data_sort, __VA_ARGS__)
#endif
//raking
#ifdef APOP_NO_VARIADIC
apop_data * apop_rake(char const *margin_table, char * const*var_list,
int var_ct, char * const *contrasts, int contrast_ct,
char const *structural_zeros, int max_iterations, double tolerance,
char const *count_col, char const *init_table,
char const *init_count_col, double nudge) ;
#else
apop_data * apop_rake_base(char const *margin_table, char * const*var_list,
int var_ct, char * const *contrasts, int contrast_ct,
char const *structural_zeros, int max_iterations, double tolerance,
char const *count_col, char const *init_table,
char const *init_count_col, double nudge) ;
apop_varad_declare(apop_data *, apop_rake, char const *margin_table; char * const*var_list;
int var_ct; char * const *contrasts; int contrast_ct;
char const *structural_zeros; int max_iterations; double tolerance;
char const *count_col; char const *init_table;
char const *init_count_col; double nudge);
#define apop_rake(...) apop_varad_link(apop_rake, __VA_ARGS__)
#endif
#include <gsl/gsl_cdf.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_sf_log.h>
#include <gsl/gsl_sf_exp.h>
#include <gsl/gsl_linalg.h>
#include <gsl/gsl_sf_gamma.h>
#include <gsl/gsl_sf_psi.h>
#include <gsl/gsl_randist.h>
#include <gsl/gsl_histogram.h>
#include <gsl/gsl_statistics_double.h>
//Some linear algebra utilities
double apop_det_and_inv(const gsl_matrix *in, gsl_matrix **out, int calc_det, int calc_inv);
#ifdef APOP_NO_VARIADIC
apop_data * apop_dot(const apop_data *d1, const apop_data *d2, char form1, char form2) ;
#else
apop_data * apop_dot_base(const apop_data *d1, const apop_data *d2, char form1, char form2) ;
apop_varad_declare(apop_data *, apop_dot, const apop_data *d1; const apop_data *d2; char form1; char form2);
#define apop_dot(...) apop_varad_link(apop_dot, __VA_ARGS__)
#endif
#ifdef APOP_NO_VARIADIC
int apop_vector_bounded(const gsl_vector *in, long double max) ;
#else
int apop_vector_bounded_base(const gsl_vector *in, long double max) ;
apop_varad_declare(int, apop_vector_bounded, const gsl_vector *in; long double max);
#define apop_vector_bounded(...) apop_varad_link(apop_vector_bounded, __VA_ARGS__)
#endif
gsl_matrix * apop_matrix_inverse(const gsl_matrix *in) ;
double apop_matrix_determinant(const gsl_matrix *in) ;
//apop_data* apop_sv_decomposition(gsl_matrix *data, int dimensions_we_want);
#ifdef APOP_NO_VARIADIC
apop_data * apop_matrix_pca(gsl_matrix *data, int const dimensions_we_want) ;
#else
apop_data * apop_matrix_pca_base(gsl_matrix *data, int const dimensions_we_want) ;
apop_varad_declare(apop_data *, apop_matrix_pca, gsl_matrix *data; int const dimensions_we_want);
#define apop_matrix_pca(...) apop_varad_link(apop_matrix_pca, __VA_ARGS__)
#endif
#ifdef APOP_NO_VARIADIC
gsl_vector * apop_vector_stack(gsl_vector *v1, gsl_vector const * v2, char inplace) ;
#else
gsl_vector * apop_vector_stack_base(gsl_vector *v1, gsl_vector const * v2, char inplace) ;
apop_varad_declare(gsl_vector *, apop_vector_stack, gsl_vector *v1; gsl_vector const * v2; char inplace);
#define apop_vector_stack(...) apop_varad_link(apop_vector_stack, __VA_ARGS__)
#endif
#ifdef APOP_NO_VARIADIC
gsl_matrix * apop_matrix_stack(gsl_matrix *m1, gsl_matrix const * m2, char posn, char inplace) ;
#else
gsl_matrix * apop_matrix_stack_base(gsl_matrix *m1, gsl_matrix const * m2, char posn, char inplace) ;
apop_varad_declare(gsl_matrix *, apop_matrix_stack, gsl_matrix *m1; gsl_matrix const * m2; char posn; char inplace);
#define apop_matrix_stack(...) apop_varad_link(apop_matrix_stack, __VA_ARGS__)
#endif
void apop_vector_log(gsl_vector *v);
void apop_vector_log10(gsl_vector *v);
void apop_vector_exp(gsl_vector *v);
////Subsetting macros
/** \cond doxy_ignore */
/** These are all deprecated.*/
#define APOP_SUBMATRIX(m, srow, scol, nrows, ncols, o) gsl_matrix apop_mm_##o = gsl_matrix_submatrix((m), (srow), (scol), (nrows),(ncols)).matrix;\
gsl_matrix * o = &( apop_mm_##o ); // Use \ref Apop_subm.
#define Apop_submatrix APOP_SUBMATRIX
#define Apop_col_v(m, col, v) gsl_vector apop_vv_##v = ((col) == -1) ? (gsl_vector){} : gsl_matrix_column((m)->matrix, (col)).vector;\
gsl_vector * v = ((col)==-1) ? (m)->vector : &( apop_vv_##v ); // Use \ref Apop_cv.
#define Apop_row_v(m, row, v) Apop_matrix_row((m)->matrix, row, v) // Use \ref Apop_rv.
#define Apop_rows(d, rownum, len, outd) apop_data *outd = Apop_rs(d, rownum, len) // Use \ref Apop_rs.
#define Apop_row(d, row, outd) Apop_rows(d, row, 1, outd) // Use \ref Apop_r.
#define Apop_cols(d, colnum, len, outd) apop_data *outd = Apop_cs(d, colnum, len); // Use \ref Apop_cs.
/** \endcond */ //End of Doxygen ignore.
/** \def Apop_row_tv(m, row_name, v)
After this call, \c v will hold a \c gsl_vector view of an \ref apop_data set \c m. The view will consist only of the row with name \c row_name.
Unlike \ref Apop_rv, the second argument is a row name, that I'll look up using \ref apop_name_find, and the third is the name of the view to be generated.
\see Apop_rs, Apop_r, Apop_rv, Apop_row_t, Apop_mrv
*/
#define Apop_row_tv(m, row, v) gsl_vector apop_vv_##v = gsl_matrix_row((m)->matrix, apop_name_find((m)->names, row, 'r')).vector;\
gsl_vector * v = &( apop_vv_##v );
/** \def Apop_col_tv(m, col_name, v)
After this call, \c v will hold a \c gsl_vector view of the \ref apop_data set \c m.
The view will consist only of the column with name \c col_name.
Unlike \ref Apop_cv, the second argument is a column name, that I'll look up using \ref apop_name_find, and the third is the name of the view to be generated.
\see Apop_cs, Apop_c, Apop_cv, Apop_col_t, Apop_mcv
*/
#define Apop_col_tv(m, col, v) gsl_vector apop_vv_##v = gsl_matrix_column((m)->matrix, apop_name_find((m)->names, col, 'c')).vector;\
gsl_vector * v = &( apop_vv_##v );
/** \def Apop_row_t(m, row_name, v)
After this call, \c v will hold an \ref apop_data view of an \ref apop_data set \c m. The view will consist only of the row with name \c row_name.
Unlike \ref Apop_r, the second argument is a row name, that I'll look up using \ref apop_name_find, and the third is the name of the view to be generated.
\see Apop_rs, Apop_r, Apop_rv, Apop_row_tv, Apop_mrv
*/
#define Apop_row_t(d, rowname, outd) int apop_row_##outd = apop_name_find((d)->names, rowname, 'r'); Apop_rows(d, apop_row_##outd, 1, outd)
/** \def Apop_col_t(m, col_name, v)
After this call, \c v will hold a view of the \ref apop_data set \c m. The view will consist only of a \c gsl_vector view of the column of the \ref apop_data set \c m with name \c col_name.
Unlike \ref Apop_c, the second argument is a column name, that I'll look up using \ref apop_name_find, and the third is the name of the view to be generated.
\see Apop_cs, Apop_c, Apop_cv, Apop_col_tv, Apop_mcv
*/
#define Apop_col_t(d, colname, outd) int apop_col_##outd = apop_name_find((d)->names, colname, 'c'); Apop_cols(d, apop_col_##outd, 1, outd)
// The above versions relied on gsl_views, which stick to C as of 1989 CE.
// Better to just create the views via designated initializers.
/** \def Apop_subm(data_to_view, srow, scol, nrows, ncols)
Generate a view of a submatrix within a \c gsl_matrix. Like \ref Apop_r, et al., the view is an automatically-allocated variable that is lost once the program flow leaves the scope in which it is declared.
\param data_to_view The root matrix
\param srow the first row (in the root matrix) of the top of the submatrix
\param scol the first column (in the root matrix) of the left edge of the submatrix
\param nrows number of rows in the submatrix
\param ncols number of columns in the submatrix
\return An automatically-allocated view of type \c gsl_matrix.
*/
#define Apop_subm(matrix_to_view, srow, scol, nrows, ncols)( \
(!(matrix_to_view) \
|| (matrix_to_view)->size1 < (srow)+(nrows) || (srow) < 0 \
|| (matrix_to_view)->size2 < (scol)+(ncols) || (scol) < 0) ? NULL \
: &(gsl_matrix){.size1=(nrows), .size2=(ncols), \
.tda=(matrix_to_view)->tda, \
.data=gsl_matrix_ptr((matrix_to_view), (srow), (scol))} \
)
/** Get a vector view of a single row of a \ref gsl_matrix.
\param matrix_to_vew A \ref gsl_matrix.
\param row An integer giving the row to be viewed.
\return A \c gsl_vector view of the given row. The view is automatically allocated,
and disappears as soon as the program leaves the scope in which it is declared.
See \ref apop_vector_correlation for an example of use.
\see Apop_r, Apop_rv
*/
#define Apop_mrv(matrix_to_view, row) Apop_rv(&(apop_data){.matrix=matrix_to_view}, row)
/** Get a vector view of a single column of a \ref gsl_matrix.
\param matrix_to_vew A \ref gsl_matrix.
\param row An integer giving the column to be viewed.
\return A \c gsl_vector view of the given column. The view is automatically allocated,
and disappears as soon as the program leaves the scope in which it is declared.
\code
gsl_matrix *m = apop_query_to_data("select col1, col2, col3 from data")->matrix;
printf("The correlation coefficient between columns two "
"and three is %g.\n", apop_vector_correlation(Apop_mcv(m, 2), Apop_mcv(m, 3)));
\endcode
\see Apop_r, Apop_cv
*/
#define Apop_mcv(matrix_to_view, col) Apop_cv(&(apop_data){.matrix=matrix_to_view}, col)
/** \def Apop_rv(d, row)
A macro to generate a temporary one-row view of the matrix in an \ref apop_data set \c d, pulling out only
row \c row. The view is a \c gsl_vector set.
\code
gsl_vector *v = Apop_rv(your_data, i);
for (int i=0; i< your_data->matrix->size1; i++)
printf("Σ_%i = %g\n", i, apop_vector_sum(Apop_r(your_data, i)));
\endcode
The view is automatically allocated, and disappears as soon as the program leaves the scope in which it is declared.
\see Apop_r, Apop_rv, Apop_row_tv, Apop_row_t, Apop_mrv
*/
#define Apop_rv(data_to_view, row) ( \
((data_to_view) == NULL || (data_to_view)->matrix == NULL \
|| (data_to_view)->matrix->size1 <= (row) || (row) < 0) ? NULL \
: &(gsl_vector){.size=(data_to_view)->matrix->size2, \
.stride=1, .data=gsl_matrix_ptr((data_to_view)->matrix, (row), 0)} \
)
/** \def Apop_cv(d, col)
A macro to generate a temporary one-column view of the matrix in an \ref apop_data
set \c d, pulling out only column \c col. The view is a \c gsl_vector set.
As usual, column -1 is the vector element of the \ref apop_data set.
\code
gsl_vector *v = Apop_cv(your_data, i);
for (int i=0; i< your_data->matrix->size2; i++)
printf("Σ_%i = %g\n", i, apop_vector_sum(Apop_c(your_data, i)));
\endcode
The view is automatically allocated, and disappears as soon as the program leaves the
scope in which it is declared.
\see Apop_cs, Apop_c, Apop_col_tv, Apop_col_t, Apop_mcv
*/
#define Apop_cv(data_to_view, col) ( \
!(data_to_view) ? NULL \
: (col)==-1 ? (data_to_view)->vector \
: (!(data_to_view)->matrix \
|| (data_to_view)->matrix->size2 <= (col) || ((int)(col)) < -1) ? NULL \
: &(gsl_vector){.size=(data_to_view)->matrix->size1, \
.stride=(data_to_view)->matrix->tda, .data=gsl_matrix_ptr((data_to_view)->matrix, 0, (col))} \
)
/** \cond doxy_ignore */
/* Not (yet) for public use. */
#define Apop_subvector(v, start, len) ( \
((v) == NULL || (v)->size < ((start)+(len)) || (start) < 0) ? NULL \
: &(gsl_vector){.size=(len), .stride=(v)->stride, .data=(v)->data+(start*(v)->stride)})
/** \endcond */
/** \def Apop_rs(d, row, len)
A macro to generate a temporary view of \ref apop_data set \c d pulling only certain rows, beginning at row \c row
and having height \c len.
The view is automatically allocated, and disappears as soon as the program leaves the scope in which it is declared.
\see Apop_r, Apop_rv, Apop_row_tv, Apop_row_t, Apop_mrv
*/
#define Apop_rs(d, rownum, len)( \
(!(d) || (rownum) < 0) ? NULL \
: &(apop_data){ \
.names= ( !((d)->names) ? NULL : \
&(apop_name){ \
.title = (d)->names->title, \
.vector = (d)->names->vector, \
.col = (d)->names->col, \
.row = ((d)->names->row && (d)->names->rowct > (rownum)) ? &((d)->names->row[rownum]) : NULL, \
.text = (d)->names->text, \
.colct = (d)->names->colct, \
.rowct = (d)->names->row ? (GSL_MIN(1, GSL_MAX((d)->names->rowct - (int)(rownum), 0))) \
: 0, \
.textct = (d)->names->textct }), \
.vector= Apop_subvector((d->vector), (rownum), (len)), \
.matrix = Apop_subm(((d)->matrix), (rownum), 0, (len), (d)->matrix?(d)->matrix->size2:0), \
.weights = Apop_subvector(((d)->weights), (rownum), (len)), \
.textsize[0]=(d)->textsize[0]> (rownum)+(len)-1 ? (len) : 0, \
.textsize[1]=(d)->textsize[1], \
.text = (d)->text ? &((d)->text[rownum]) : NULL, \
})
/** \def Apop_cs(d, col, len)
A macro to generate a temporary view of \ref apop_data set \c d including only certain columns, beginning at column \c col and having length \c len.
The view is automatically allocated, and disappears as soon as the program leaves the scope in which it is declared.
\see Apop_c, Apop_cv, Apop_col_tv, Apop_col_t, Apop_mcv
*/
#define Apop_cs(d, colnum, len) ( \
(!(d)||!(d)->matrix || (d)->matrix->size2 <= (colnum)+(len)-1) \
? NULL \
: &(apop_data){ \
.vector= NULL, \
.weights= (d)->weights, \
.matrix = Apop_subm((d)->matrix, 0, colnum, (d)->matrix->size1, (len)),\
.textsize[0] = 0, \
.textsize[1] = 0, \
.text = NULL, \
.names= (d)->names ? &(apop_name){ \
.title = (d)->names->title, \
.vector = NULL, \
.row = (d)->names->row, \
.col = ((d)->names->col && (d)->names->colct > colnum) ? &((d)->names->col[colnum]) : NULL, \
.text = NULL, \
.rowct = (d)->names->rowct, \
.colct = (d)->names->col ? (GSL_MIN(len, GSL_MAX((d)->names->colct - colnum, 0))) \
: 0, \
.textct = (d)->names->textct } : NULL \
})
/** \def Apop_r(d, row)
A macro to generate a temporary one-row view of \ref apop_data set \c d, pulling out only
row \c row. The view is also an \ref apop_data set, with names and other decorations.
\code
//pull a single row
apop_data *v = Apop_r(your_data, 7);
//or loop through a sequence of one-row data sets.
apop_model *std = apop_model_set_parameters(apop_normal, 0, 1);
for (int i=0; i< your_data->matrix->size1; i++)
printf("Std Normal CDF up to observation %i is %g\n",
i, apop_cdf(Apop_r(your_data, i), std));
\endcode
The view is automatically allocated, and disappears as soon as the program leaves the
scope in which it is declared.
\see Apop_rs, Apop_row_v, Apop_row_tv, Apop_row_t, Apop_mrv
*/
#define Apop_r(d, rownum) Apop_rs(d, rownum, 1)
/** \def Apop_c(d, col)
A macro to generate a temporary one-column view of \ref apop_data set \c d, pulling out only
column \c col.
After this call, \c outd will be a pointer to this temporary
view, that you can use as you would any \ref apop_data set.
\see Apop_cs, Apop_cv, Apop_col_tv, Apop_col_t, Apop_mcv
*/
#define Apop_c(d, col) Apop_cs(d, col, 1)
/** \cond doxy_ignore */
#define APOP_COL Apop_col
#define apop_col Apop_col
#define APOP_COL_T Apop_col_t
#define apop_col_t Apop_col_t
#define APOP_COL_TV Apop_col_tv
#define apop_col_tv Apop_col_tv
#define APOP_ROW Apop_row
#define apop_row Apop_row
#define APOP_COLS Apop_cols
#define apop_cols Apop_cols
#define APOP_COL_V Apop_col_v
#define apop_col_v Apop_col_v
#define APOP_ROW_V Apop_row_v
#define apop_row_v Apop_row_v
#define APOP_ROWS Apop_rows
#define apop_rows Apop_rows
#define Apop_data_row Apop_row #deprecated
#define APOP_ROW_T Apop_row_t
#define apop_row_t Apop_row_t
#define APOP_ROW_TV Apop_row_tv
#define apop_row_tv Apop_row_tv
/** Deprecated. Use Apop_mrv */
#define Apop_matrix_row(m, row, v) gsl_vector apop_vv_##v = gsl_matrix_row((m), (row)).vector;\
gsl_vector * v = &( apop_vv_##v );
/* Deprecated. Use Apop_mcv */
#define Apop_matrix_col(m, col, v) gsl_vector apop_vv_##v = gsl_matrix_column((m), (col)).vector;\
gsl_vector * v = &( apop_vv_##v );
#define APOP_MATRIX_ROW Apop_matrix_row
#define apop_matrix_row Apop_matrix_row
#define APOP_MATRIX_COL Apop_matrix_col
#define apop_matrix_col Apop_matrix_col
/** \endcond */
long double apop_vector_sum(const gsl_vector *in);
double apop_vector_var_m(const gsl_vector *in, const double mean);
#ifdef APOP_NO_VARIADIC
double apop_vector_correlation(const gsl_vector *ina, const gsl_vector *inb, const gsl_vector *weights) ;
#else
double apop_vector_correlation_base(const gsl_vector *ina, const gsl_vector *inb, const gsl_vector *weights) ;
apop_varad_declare(double, apop_vector_correlation, const gsl_vector *ina; const gsl_vector *inb; const gsl_vector *weights);
#define apop_vector_correlation(...) apop_varad_link(apop_vector_correlation, __VA_ARGS__)
#endif
double apop_vector_kurtosis(const gsl_vector *in);
double apop_vector_skew(const gsl_vector *in);
#define apop_sum apop_vector_sum
#define apop_var apop_vector_var
#define apop_mean apop_vector_mean
//////database utilities
#ifdef APOP_NO_VARIADIC
int apop_table_exists(char const *name, char remove) ;
#else
int apop_table_exists_base(char const *name, char remove) ;
apop_varad_declare(int, apop_table_exists, char const *name; char remove);
#define apop_table_exists(...) apop_varad_link(apop_table_exists, __VA_ARGS__)
#endif
int apop_db_open(char const *filename);
#ifdef APOP_NO_VARIADIC
int apop_db_close(char vacuum) ;
#else
int apop_db_close_base(char vacuum) ;
apop_varad_declare(int, apop_db_close, char vacuum);
#define apop_db_close(...) apop_varad_link(apop_db_close, __VA_ARGS__)
#endif
int apop_query(const char *q, ...) __attribute__ ((format (printf,1,2)));
apop_data * apop_query_to_text(const char * fmt, ...) __attribute__ ((format (printf,1,2)));
apop_data * apop_query_to_data(const char * fmt, ...) __attribute__ ((format (printf,1,2)));
apop_data * apop_query_to_mixed_data(const char *typelist, const char * fmt, ...) __attribute__ ((format (printf,2,3)));
gsl_vector * apop_query_to_vector(const char * fmt, ...) __attribute__ ((format (printf,1,2)));
double apop_query_to_float(const char * fmt, ...) __attribute__ ((format (printf,1,2)));
int apop_data_to_db(const apop_data *set, const char *tabname, char);
//////Settings groups
//Part I: macros and fns for getting/setting settings groups and elements
/** \cond doxy_ignore */
void * apop_settings_get_grp(apop_model *m, char *type, char fail);
void apop_settings_remove_group(apop_model *m, char *delme);
void apop_settings_copy_group(apop_model *outm, apop_model *inm, char *copyme);
void *apop_settings_group_alloc(apop_model *model, char *type, void *free_fn, void *copy_fn, void *the_group);
apop_model *apop_settings_group_alloc_wm(apop_model *model, char *type, void *free_fn, void *copy_fn, void *the_group);
/** \endcond */ //End of Doxygen ignore.
/** Retrieves a settings group from a model. See \ref Apop_settings_get
to just pull a single item from within the settings group.
This macro returns NULL if a group of type \c type_settings isn't found attached
to model \c m, so you can easily put it in a conditional like
\code
if (!apop_settings_get_group(m, "apop_ols")) ...
\endcode
\param m An \ref apop_model
\param type A string giving the type of the settings group you are retrieving. E.g., for an \ref apop_mle_settings group, use only \c apop_mle.
\return A void pointer to the desired struct (or \c NULL if not found).
*/
#define Apop_settings_get_group(m, type) apop_settings_get_grp(m, #type, 'c')
/** Removes a settings group from a model's list.
\li If the so-named group is not found, do nothing.
*/
#define Apop_settings_rm_group(m, type) apop_settings_remove_group(m, #type)
/** Add a settings group. The first two arguments (the model you are
attaching to and the settings group name) are mandatory, and then you
can use the \ref designated syntax to specify default values (if any).
\return A pointer to the newly-prepped group.
See \ref modelsettings or \ref maxipage for examples.
\li If a settings group of the given type is already attached to the model,
the previous version is removed. Use \ref Apop_settings_get to check whether a group
of the given type is already attached to a model, and \ref Apop_settings_set to modify
an existing group.
*/
#define Apop_settings_add_group(model, type, ...) \
apop_settings_group_alloc(model, #type, type ## _settings_free, type ## _settings_copy, type ##_settings_init ((type ## _settings) {__VA_ARGS__}))
/** Copy a model and add a settings group. Useful for models that require a settings group to function. See \ref Apop_settings_add_group.
\return A pointer to the newly-prepped model.
*/
#define apop_model_copy_set(model, type, ...) \
apop_settings_group_alloc_wm(apop_model_copy(model), #type, type ## _settings_free, type ## _settings_copy, type ##_settings_init ((type ## _settings) {__VA_ARGS__}))
/** This is the complement to \ref apop_model_set_parameters, for those models that are
set up by adding settings group, rather than filling in a list of parameters.
For example, the \ref apop_kernel_density model is built by adding a \ref apop_kernel_density_settings group. From the example on the \ref apop_kernel_density page:
\code
apop_model *k2 = apop_model_set_settings(apop_kernel_density,
.base_data=d,
.set_fn = set_uniform_edges,
.kernel = apop_uniform);
\endcode
The name of the model and the settings group to be built must match, which is the case
for many model transformations, including \ref apop_dconstrain and \ref apop_cross. If the names do not match, use \ref apop_model_copy_set.
*/
#define Apop_model_set_settings(model, ...) \
apop_settings_group_alloc_wm(apop_model_copy(model), #model, model ## _settings_free, model ## _settings_copy, model ##_settings_init ((model ## _settings) {__VA_ARGS__}))
#define apop_model_set_settings Apop_model_set_settings
/** Retrieves a setting from a model. See \ref Apop_settings_get_group to pull the entire group.
\param model An \ref apop_model.
\param type A string giving the type of the settings group you are retrieving, without the \c _settings ending. E.g., for an \ref apop_mle_settings group, use \c apop_mle.
\param setting The struct element you want to retrieve.
*/
#define Apop_settings_get(model, type, setting) \
(((type ## _settings *) apop_settings_get_grp(model, #type, 'f'))->setting)
/** Modifies a single element of a settings group to the given value.
\li If <tt>model==NULL</tt>, fails silently.
\li If <tt>model!=NULL</tt> but the given settings group is not found attached to the model, set <tt>model->error='s'</tt>.
*/
#define Apop_settings_set(model, type, setting, data) \
do { \
if (!(model)) continue; /* silent fail. */ \
type ## _settings *apop_tmp_settings = apop_settings_get_grp(model, #type, 'c'); \
Apop_stopif(!apop_tmp_settings, (model)->error='s', 0, "You're trying to modify a setting in " \
#model "'s setting group of type " #type " but that model doesn't have such a group."); \
apop_tmp_settings->setting = (data); \
} while (0);
/** \cond doxy_ignore */
#define Apop_settings_add Apop_settings_set
#define APOP_SETTINGS_ADD Apop_settings_set
#define apop_settings_set Apop_settings_set
#define APOP_SETTINGS_GET Apop_settings_get
#define apop_settings_get Apop_settings_get
#define APOP_SETTINGS_ADD_GROUP Apop_settings_add_group
#define apop_settings_add_group Apop_settings_add_group
#define APOP_SETTINGS_GET_GROUP Apop_settings_get_group
#define apop_settings_get_group Apop_settings_get_group
#define APOP_SETTINGS_RM_GROUP Apop_settings_rm_group
#define apop_settings_rm_group Apop_settings_rm_group
#define Apop_model_copy_set apop_model_copy_set
//deprecated:
#define Apop_model_add_group Apop_settings_add_group
/** \endcond */ //End of Doxygen ignore.
/** Put this in your header file to declare the init, copy, and
free functions for ysg_settings. Of course, these functions will also have to be defined
in a .c file using \ref Apop_settings_init, \ref Apop_settings_copy, and \ref Apop_settings_free. */
#define Apop_settings_declarations(ysg) \
ysg##_settings * ysg##_settings_init(ysg##_settings); \
void * ysg##_settings_copy(ysg##_settings *); \
void ysg##_settings_free(ysg##_settings *);
/** A convenience macro for declaring the initialization function for a new settings group.
See \ref settingswriting for details and an example.
*/
#define Apop_settings_init(name, ...) \
name##_settings *name##_settings_init(name##_settings in) { \
name##_settings *out = malloc(sizeof(name##_settings)); \
*out = in; \
__VA_ARGS__; \
return out; \
}
/** \cond doxy_ignore */
#define Apop_varad_set(var, value) (out)->var = (in).var ? (in).var : (value);
/** \endcond */
/** A convenience macro for declaring the copy function for a new settings group.
See \ref settingswriting for details and an example.
*/
#define Apop_settings_copy(name, ...) \
void * name##_settings_copy(name##_settings *in) {\
name##_settings *out = malloc(sizeof(name##_settings)); \
*out = *in; \
__VA_ARGS__; \
return out; \
}
/** A convenience macro for declaring the delete function for a new settings group.
See \ref settingswriting for details and an example.
*/
#define Apop_settings_free(name, ...) \
void name##_settings_free(name##_settings *in) {\
__VA_ARGS__; \
free(in); \
}
//Part II: the details of extant settings groups.
/** The settings for maximum likelihood estimation (including simulated annealing). */
typedef struct{
double *starting_pt; /**< An array of doubles (e.g., <tt>(double*){2,4,6,8}</tt>) suggesting a starting point.
If NULL, use an all-ones vector. If \c startv is a \c gsl_vector
and is not a view of a matrix, use <tt>.starting_pt=startv->data</tt>.*/
char *method; /**< The method to be used for the optimization. All strings are case-insensitive.
<table>
<tr>
<td> String <td></td> Name <td></td> Notes
</td> </tr>
<tr><td> "NM simplex" </td><td> Nelder-Mead simplex </td><td> Does not use gradients at all. Can sometimes get stuck.</td></tr>
<tr><td> "FR cg" </td><td> Conjugate gradient (Fletcher-Reeves) (default) </td><td> CG methods use derivatives. The converge to the optimum of a quadratic function in one step; performance degrades as the objective digresses from quadratic.</td></tr>
<tr><td> "BFGS cg" </td><td> Broyden-Fletcher-Goldfarb-Shanno conjugate gradient </td><td> </td></tr>
<tr><td> "PR cg" </td><td> Polak-Ribiere conjugate gradient </td><td> </td></tr>
<tr><td> "Annealing" </td><td> \ref simanneal "simulated annealing" </td><td> Slow but works for objectives of arbitrary complexity, including stochastic objectives.</td></tr>
<tr><td> "Newton"</td><td> Newton's method </td><td> Search by finding a root of the derivative. Expects that gradient is reasonably well-behaved. </td></tr>
<tr><td> "Newton hybrid"</td><td> Newton's method/gradient descent hybrid </td><td> Find a root of the derivative via the Hybrid method </td> If Newton proposes stepping outside of a certain interval, use an alternate method. See <a href="https://www.gnu.org/software/gsl/manual/gsl-ref_35.html#SEC494">the GSL manual</a> for discussion.</tr>
<tr><td> "Newton hybrid no scale"</td><td> Newton's method/gradient descent hybrid with spherical scale</td><td> As above, but use a simplified trust region. </td></tr>
</table> */
double step_size, /**< The initial step size. */
tolerance, /**< The precision the minimizer uses in its stopping rule. Only vaguely related to the precision of the actual MLE.*/
delta;
int max_iterations; /**< Ignored by simulated annealing. Other methods halt (and set the \c "status" element of the output estimate's info page) if
they do this many iterations without finding an optimum. */
int verbose; /**< Give status updates as we go. This is orthogonal to the
<tt>apop_opts.verbose</tt> setting. */
double dim_cycle_tolerance; /**< If zero (the default), the usual procedure.
If \f$>0\f$, cycle across dimensions: fix all but the first dimension at the starting
point, optimize only the first dim. Then fix the all but the second dim, and optimize the
second dim. Continue through all dims, until the log likelihood at the outset of one cycle
through the dimensions is within this amount of the previous cycle's log likelihood. There
will be at least two cycles.
*/
//simulated annealing (also uses step_size);
int n_tries, iters_fixed_T;
double k, t_initial, mu_t, t_min ;
gsl_rng *rng;
apop_data **path; /**< If not \c NULL, record each vector tried by the optimizer as one row of this \ref apop_data set.
Each row of the \c matrix element holds the vector tried; the corresponding element in the \c vector is the evaluated value at that vector (after out-of-constraints penalties have been subtracted).
A new \ref apop_data set is allocated at the pointer you send in. This data set has no names; add them as desired. For a sample use, see \ref maxipage.
*/
} apop_mle_settings;
/** Settings for least-squares type models such as \ref apop_ols or \ref apop_iv */
typedef struct {
int destroy_data; /**< If \c 'y', then the input data set may be normalized or otherwise mangled. */
apop_data *instruments; /**< Use for the \ref apop_iv regression, qv. */
char want_cov; /**< Deprecated. Please use \ref apop_parts_wanted_settings. */
char want_expected_value; /**< Deprecated. Please use \ref apop_parts_wanted_settings. */
apop_model *input_distribution; /**< The distribution of \f$P(Y|X)\f$ is specified by the model holding this struct, but the distribution of \f$X\f$ needs to be specified as well for any calculation of \f$P(Y)\f$. See the notes in the RNG section of the \ref apop_ols documentation. */
} apop_lm_settings;
/** The default is for the estimation routine to give some auxiliary information,
such as a covariance matrix, predicted values, and common hypothesis tests.
Some uses of a model depend on these items, but if they are a waste
of time for your purposes, this settings group gives a quick way to bypass them all.
Adding this settings group to your model without changing any default values---
\code
Apop_model_add_group(your_model, apop_parts_wanted);
\endcode
---will turn off all of the auxiliary calculations covered, because the default value
for all the switches is <tt>'n'</tt>, indicating that all elements are not wanted.
From there, you can change some of the default <tt>'n'</tt>s to <tt>'y'</tt>s to retain some but not all auxiliary elements. If you just want the parameters themselves and the covariance matrix:
\code
Apop_model_add_group(your_model, apop_parts_wanted, .covariance='y');
\endcode
\li Not all models support this, although the models with especially compute-intensive
auxiliary info do (e.g., the maximum likelihood estimation system). Check the model's documentation.
\li Tests may depend on covariance, so <tt>.covariance='n', .tests='y'</tt> may be
treated as <tt>.covariance='y', .tests='y'</tt>.
*/
typedef struct {
//init/copy/free are in apop_mle.c
char covariance; /*< If 'y', calculate the covariance matrix. Default 'n'. */
char predicted;/*< If 'y', calculate the predicted values. This is typically as many
items as rows in your data set. Default 'n'. */
char tests;/*< If 'y', run any hypothesis tests offered by the model's estimation routine. Default 'n'. */
char info;/*< If 'y', add an info table with elements such as log likelihood or AIC. Default 'n'. */
} apop_parts_wanted_settings;
/** For use by \ref apop_cdf when the CDF is generated via Monte Carlo methods. */
typedef struct {
int draws; /**< For random draw methods, how many draws? Default: 10,000.*/
gsl_rng *rng; /**< For random draw methods. See \ref apop_rng_get_thread on the default. */
gsl_matrix *draws_made; /**< A store of random draws used to calcuate the CDF. Need only be generated once, and so stored here. */
int *draws_refcount; /**< For internal use.*/
} apop_cdf_settings;
/** Settings for getting parameter models (i.e. the distribution of parameter estimates) */
typedef struct {
apop_model *base;
int index;
gsl_rng *rng;
int draws;
} apop_pm_settings;
/** Settings to accompany the \ref apop_pmf. */
typedef struct {
gsl_vector *cmf; /**< A cumulative mass function, for the purposes of making random draws.*/
char draw_index; /**< If \c 'y', then draws from the PMF return the integer index of the row drawn.
If \c 'n' (the default), then return the data in the vector/matrix elements of the data set. */
long double total_weight; /**< Keep the total weight, in case the input weights aren't normalized to sum to one. */
int *cmf_refct; /**< For internal use, so I can garbage-collect the CMF when needed. */
} apop_pmf_settings;
/** Settings for the \ref apop_kernel_density model. */
typedef struct{
apop_data *base_data; /**< The data that will be smoothed by the KDE. */
apop_model *base_pmf; /**< I actually need the data in a \ref apop_pmf. You can give
that to me explicitly, or I can wrap the <tt>.base_data</tt> in a PMF. */
apop_model *kernel; /**< The distribution to be centered over each data point. Default,
\ref apop_normal with std dev 1. */
void (*set_fn)(apop_data*, apop_model*); /**< The function I will use for each data
point to center the kernel over each point.
Default: set the upper-left element of the parameter set to the upper-left scalar in the data:
<tt>apop_data_set(m->parameters, .val= apop_data_get(in));</tt>.
*/
int own_pmf, own_kernel; /**< For internal use only. */
}apop_kernel_density_settings;
struct apop_mcmc_settings;
/** A proposal distribution for \ref apop_mcmc_settings and its accompanying functions and
information. By default, these will be \ref apop_multivariate_normal models. The \c
step_fn and \c adapt_fn have to be written around the model and your preferences.
For the defaults, the step function recenters the mean of the distribution around the
last accepted proposal, and the adapt function widens \f$\Sigma\f$ for the Normal if the
accept rate is too low; narrows it if the accept rate is too large.
You may provide an array of proposals. The length of the list of proposals
must match the number of chunks, as per the \c gibbs_chunks setting in the \ref
apop_mcmc_settings group that the array of proposals is a part of. Each proposal must
be initialized to include all elements, and the step and adapt functions probably have
to be written anew for each type of model.
*/
typedef struct apop_mcmc_proposal_s {
apop_model *proposal; /**< The distribution from which test parameters will be
drawn. After getting the draw using the \c draw method of the proposal, the base
model's \c parameters element is filled using \ref apop_data_fill.
If \c NULL, \ref apop_model_metropolis will use a Multivariate Normal with the
appropriate dimension, mean zero, and covariance matrix I. If not \c NULL, be sure to
parameterize your model with an initial position. */
void (*step_fn)(double const *, struct apop_mcmc_proposal_s*, struct apop_mcmc_settings *); /**< Modifies the parameters of the
proposal distribution given a successful draw. Typically, this function writes the
drawn data point to the parameter set. If the draw is a scalar, the default
function sets the 0th element of the model's \c parameter set with the draw
(works for the \ref apop_normal and other models). If the draw has multiple
dimensions, they are all copied to the parameter set, which must have the same
size. */
int (*adapt_fn)(struct apop_mcmc_proposal_s *ps, struct apop_mcmc_settings *ms); /**< Called
every step, to adapt the proposal distribution using information to this point in
the chain. */
int accept_count, reject_count; /**< If there are multiple \ref apop_mcmc_proposal_s structs for
multiple chunks, These count accepts/rejects for
this chunk. The \ref apop_mcmc_settings group has
a total for the aggregate across all chunks. */
} apop_mcmc_proposal_s;
/** Method settings for a model to be put through Bayesian updating. */
typedef struct apop_mcmc_settings {
apop_data *data;
long int periods; /**< For how many steps should the MCMC chain run? */
double burnin; /**< What <em>percentage</em> of the periods should be ignored
as initialization. That is, this is a number between zero and one. */
int histosegments; /**< If outputting a binned PMF, how many segments should it have? */
double last_ll; /**< If you have already run MCMC, the last log likelihood in the chain.*/
apop_model *pmf; /**< If you have already run MCMC, I keep a pointer to the model
so far here. Use \ref apop_model_metropolis_draw to get one more draw.*/
apop_model *base_model; /**< The model you provided with a \c log_likelihood or
\c p element (which need not sum to one). You do not have to set this: if it is
\c NULL on input to \ref apop_model_metropolis, I will fill it in.*/
apop_mcmc_proposal_s *proposals; /**< The list of proposals. You can probably use
the default of adaptive multivariate normals. See the \ref apop_mcmc_proposal_s
struct for details. */
int proposal_count; /**< The number of proposal sets; see \c gibbs_chunks below. */
double target_accept_rate; /**< The desired acceptance rate, for use by adaptive proposals. Default: .35 */
int accept_count; /**< After calling \ref apop_model_metropolis, this will have the number of accepted proposals.*/
int reject_count; /**< After calling \ref apop_model_metropolis, this will have the number of rejected proposals.*/
char gibbs_chunks; /**< See the \ref apop_model_metropolis documentation for discussion.
\c 'a': One step draws and accepts/rejects all parameters as a unit<br>
\c 'b': draw in blocks: the vector is a block, the matrix
is a separate block, the weights are a separate
block, and so on through every page of the model
parameters. Each block of parameters is drawn and
accepted/rejected as a unit. <br>
\c '1': draw each parameter and accept/reject separately. One
MCMC step consists of a set of draws for every
parameter.<br> */
size_t *block_starts; /**< For internal use */
int block_count, proposal_is_cp; /**< For internal use. */
char start_at; /**< If \c '1' (the default), start with a first proposal of all
1s. Even when this is a far-from-useful starting point, MCMC typically does a good
job of crawling to better spots early in the chain.<br>
The default when this is unset is to start at the \c parameters of the \ref apop_model sent in to \ref
apop_model_metropolis.*/
void (*base_step_fn)(double const *, struct apop_mcmc_proposal_s*, struct apop_mcmc_settings *); /**< If an \ref apop_mcmc_proposal_s struct has \c NULL \c step_fn, use this. If you don't want a step function, set this to a do-nothing function. */
int (*base_adapt_fn)(struct apop_mcmc_proposal_s *ps, struct apop_mcmc_settings *ms); /**< If a \ref apop_mcmc_proposal_s has \c NULL \c adapt_fn, use this. If you don't want an adapt function, set this to a do-nothing function.*/
} apop_mcmc_settings;
/** \cond doxy_ignore */
//Loess, including the old FORTRAN-to-C.
struct loess_struct {
struct {
long n, p;
double *y, *x;
double *weights;
} in;
struct {
double span;
long degree;
long normalize;
long parametric[8];
long drop_square[8];
char *family;
} model;
struct {
char *surface;
char *statistics;
double cell;
char *trace_hat;
long iterations;
} control;
struct {
long *parameter, *a;
double *xi, *vert, *vval;
} kd_tree;
struct {
double *fitted_values;
double *fitted_residuals;
double enp, s;
double one_delta, two_delta;
double *pseudovalues;
double trace_hat;
double *diagonal;
double *robust;
double *divisor;
} out;
};
/** \endcond */ //End of Doxygen ignore.
/** The code for the loess system is based on FORTRAN code from 1988,
overhauled in 1992, linked in to Apophenia in 2009. The structure that
does all the work, then, is a \c loess_struct that you should
basically take as opaque.
The useful settings from that struct re-appear in the \ref
apop_loess_settings struct so you can set them directly, and then the
settings init function will copy your preferences into the working struct.
The documentation for the elements is cut/pasted/modified from Cleveland,
Grosse, and Shyu.
*/
typedef struct {
apop_data *data;
struct loess_struct lo_s; /**<
<tt>.data</tt>: Mandatory. Your input data set.
<tt>.lo_s.model.span</tt>: smoothing parameter. Default is 0.75.
<tt>.lo_s.model.degree</tt>: overall degree of locally-fitted polynomial. 1 is
locally-linear fitting and 2 is locally-quadratic fitting. Default is 2.
<tt>.lo_s.normalize</tt>: Should numeric predictors
be normalized? If \c 'y' - the default - the standard normalization
is used. If \c 'n', no normalization is carried out.
\c .lo_s.model.parametric: for two or more numeric predictors, this argument
specifies those variables that should be
conditionally-parametric. The argument should be a logical
vector of length \c p, specified in the order of the predictor
group ordered in \c x. Default is a vector of 0's of length \c p.
\c .lo_s.model.drop_square: for cases with degree = 2, and with two or more
numeric predictors, this argument specifies those numeric
predictors whose squares should be dropped from the set of
fitting variables. The method of specification is the same as
for parametric. Default is a vector of 0's of length p.
\c .lo_s.model.family: the assumed distribution of the errors. The values may be
<tt>"gaussian"</tt> or <tt>"symmetric"</tt>. The first value is the default.
If the second value is specified, a robust fitting procedure is used.
\c lo_s.control.surface: determines whether the fitted surface is computed
<tt>"directly"</tt> at all points or whether an <tt>"interpolation"</tt>
method is used. The default, interpolation, is what most users should use
unless special circumstances warrant.
\c lo_s.control.statistics: determines whether the statistical quantities are
computed <tt>"exactly"</tt> or approximately, where <tt>"approximate"</tt>
is the default. The former should only be used for testing the approximation in
statistical development and is not meant for routine usage because computation
time can be horrendous.
\c lo_s.control.cell: if interpolation is used to compute the surface,
this argument specifies the maximum cell size of the k-d tree. Suppose k =
floor(n*cell*span) where n is the number of observations. Then a cell is
further divided if the number of observations within it is greater than or
equal to k. default=0.2
\c lo_s.control.trace_hat: Options are <tt>"approximate"</tt>, <tt>"exact"</tt>, and <tt>"wait.to.decide"</tt>.
When lo_s.control.surface is <tt>"approximate"</tt>, determines
the computational method used to compute the trace of the hat
matrix, which is used in the computation of the statistical
quantities. If "exact", an exact computation is done; normally
this goes quite fast on the fastest machines until n, the number
of observations is 1000 or more, but for very slow machines,
things can slow down at n = 300. If "wait.to.decide" is selected,
then a default is chosen in loess(); the default is "exact" for
n < 500 and "approximate" otherwise. If surface is "exact", an
exact computation is always done for the trace. Set trace_hat to
"approximate" for large dataset will substantially reduce the
computation time.
\c lo_s.model.iterations: if family is <tt>"symmetric"</tt>, the number of iterations
of the robust fitting method. Default is 0 for
lo_s.model.family = gaussian; 4 for family=symmetric.
That's all you can set. Here are some output parameters:
\c fitted_values: fitted values of the local regression model
\c fitted_residuals: residuals of the local regression fit
\c enp: equivalent number of parameters.
\c s: estimate of the scale of the residuals.
\c one_delta: a statistical parameter used in the computation of standard errors.
\c two_delta: a statistical parameter used in the computation of standard errors.
\c pseudovalues: adjusted values of the response when robust estimation is used.
\c trace_hat: trace of the operator hat matrix.
\c diagonal: diagonal of the operator hat matrix.
\c robust: robustness weights for robust fitting.
\c divisor: normalization divisor for numeric predictors.
*/
int want_predict_ci; /**< If \c 'y' (the default), calculate the
confidence bands for predicted values */
double ci_level; /**< If running a prediction, the level at which
to calculate the confidence interval. default: 0.95 */
} apop_loess_settings;
/** \cond doxy_ignore */
typedef struct point { /* a point in the x,y plane */
double x,y; /* x and y coordinates */
double ey; /* exp(y-ymax+YCEIL) */
double cum; /* integral up to x of rejection envelope */
int f; /* is y an evaluated point of log-density */
struct point *pl,*pr; /* envelope points to left and right of x */
} POINT;
/* This includes the envelope info and the metropolis steps. */
typedef struct { /* attributes of the entire rejection envelope */
int cpoint; /* number of POINTs in current envelope */
int npoint; /* max number of POINTs allowed in envelope */
double ymax; /* the maximum y-value in the current envelope */
POINT *p; /* start of storage of envelope POINTs */
double *convex; /* adjustment for convexity */
double metro_xprev; /* previous Markov chain iterate */
double metro_yprev; /* current log density at xprev */
} arms_state;
/** \endcond */
/** For use with \ref apop_arms_draw, to perform derivative-free adaptive rejection sampling with metropolis step.
That function generates default values for this struct if you do not attach one to the
model beforehand, via a form like <tt>apop_model_add_group(your_model, apop_arms,
.model=your_model, .xl=8, .xr =14);</tt>. If you initialize it manually via \ref
apop_settings_add_group, the \c model element is mandatory; you'll get a run-time
complaint if you forget it.
*/
typedef struct {
double *xinit; /**< A <tt>double*</tt> giving starting values for x in ascending
order, e.g., <tt>(double *){1, 10, 100}</tt>. . Default: -1,
0, 1. If this isn't \c NULL, I need at least three items, and
the length in \c ninit. */
double xl; /**< Left bound. If you don't give me one, I'll use min[min(xinit)/10, min(xinit)*10].*/
double xr; /**< Right bound. If you don't give me one, I'll use max[max(xinit)/10, max(xinit)*10]. */
double convex; /**< Adjustment for convexity */
int ninit; /**< The length of \c xinit.*/
int npoint; /**< Maximum number of envelope points. I \c malloc space for this many <tt>double</tt>s at the outset. Default = 1e5. */
char do_metro; /**< Set to \c 'y' if the metropolis step is required (i.e.,
if you're not sure if the function is log-concave).*/
double xprev; /**< For internal use; please ignore. Previous value from Markov chain. */
int neval; /**< On exit, the number of function evaluations performed */
arms_state *state;
apop_model *model; /**< The model from which to draw. Mandatory. Must have either a \c log_likelihood or \c p method.*/
} apop_arms_settings;
/** The settings to accompany the \ref apop_cross model, representing the cross product of two models (or, via recursion, a list of models of arbitrary length).*/
typedef struct {
char *splitpage; /**< The name of the page at which to split the data. If \c NULL, I send the entire data set to both models as needed. */
apop_model *model1; /**< The first model in the stack.*/
apop_model *model2; /**< The second model.*/
} apop_cross_settings;
typedef struct {
apop_data *(*base_to_transformed)(apop_data*); /**< The function to transform the model from pre-transform space to post-transform space. */
apop_data *(*transformed_to_base)(apop_data*); /**< The function to transform from post-transform space back to pre-transform space. If this function does not exist, using a Jacobian-based transformation is probably not mathematically correct. */
double (*jacobian_to_base)(apop_data*); /**< The derivative of the \c transformed_to_base function. */
apop_model *base_model; /**< The pre-transformation model. */
} apop_coordinate_transform_settings;/**< Settings for an \ref apop_coordinate_transform model; see its documentation for notes and an example.
*/
/** For use with the \ref apop_dconstrain model. See its documentation for an example.
*/
typedef struct {
apop_model *base_model; /**< The model, before constraint. */
double (*constraint)(apop_data *, apop_model *); /**< The constraint. Return 1 if the data is in the constraint; zero if out. */
double (*scaling)(apop_model *); /**< Optional. Return the percent of the model density inside the constraint. */
gsl_rng *rng; /**< If you don't provide a \c scaling function, I calculate the in-constraint model density via random draws.
If no \c rng is provided, I use a default RNG; see \ref apop_rng_get_thread. */
int draw_ct; /**< How many draws to make for calculating the in-constraint model density via random draws. Current default: 1e4. */
} apop_dconstrain_settings;
typedef struct {
apop_model *generator_m;
apop_model *ll_m;
int draw_ct;
} apop_composition_settings;/**< All of the elements of this struct should be considered private.*/
/** For mixture distributions, typically set up using \ref apop_model_mixture. See
\ref apop_mixture for discussion. Please consider all elements but \c model_list and \c
weights as private and subject to change. See the examples for use of these elements.
*/
typedef struct {
gsl_vector *weights; /**< The likelihood of a draw from each component. */
apop_model **model_list; /**< A \c NULL-terminated list of component models. */
int model_count;
int *param_sizes; /**< The number of parameters for each model. Useful for unpacking the params. */
apop_model *cmf; /**< For internal use by the draw method. */
int *cmf_refct; /**< For internal use, so I can garbage-collect the CMF when needed. */
} apop_mixture_settings;
//Models built via call to apop_model_copy_set.
#define apop_model_dcompose(...) Apop_model_set_settings(apop_composition, __VA_ARGS__)
#define apop_model_dconstrain(...) Apop_model_set_settings(apop_dconstrain, __VA_ARGS__)
#define apop_model_coordinate_transform(...) Apop_model_set_settings(apop_coordinate_transform, __VA_ARGS__)
//Doxygen drops whatever is after these declarations, so I put them last.
Apop_settings_declarations(apop_lm)
Apop_settings_declarations(apop_pm)
Apop_settings_declarations(apop_pmf)
Apop_settings_declarations(apop_mle)
Apop_settings_declarations(apop_cdf)
Apop_settings_declarations(apop_arms)
Apop_settings_declarations(apop_mcmc)
Apop_settings_declarations(apop_loess)
Apop_settings_declarations(apop_cross)
Apop_settings_declarations(apop_mixture)
Apop_settings_declarations(apop_dconstrain)
Apop_settings_declarations(apop_composition)
Apop_settings_declarations(apop_parts_wanted)
Apop_settings_declarations(apop_kernel_density)
Apop_settings_declarations(apop_coordinate_transform)
#ifdef __cplusplus
}
#endif
/** @} */ //End doxygen's all_public grouping
//Part of the intent of a convenience header like this is that you
//don't have to remember what else you're including. So here are
//some other common GSL headers:
#include <math.h>
#include <gsl/gsl_sort.h>
#include <gsl/gsl_eigen.h>
#include <gsl/gsl_sort_vector.h>
#include <gsl/gsl_permutation.h>
#include <gsl/gsl_integration.h>
|