/usr/include/af/arith.h is in libarrayfire-dev 3.2.2+dfsg1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 | /*******************************************************
* Copyright (c) 2014, ArrayFire
* All rights reserved.
*
* This file is distributed under 3-clause BSD license.
* The complete license agreement can be obtained at:
* http://arrayfire.com/licenses/BSD-3-Clause
********************************************************/
#include <af/defines.h>
#ifdef __cplusplus
namespace af
{
class array;
/// \ingroup arith_func_min
/// @{
/// \brief C++ interface for min of two arrays
///
/// \param[in] lhs first input
/// \param[in] rhs second input
/// \return minimum of \p lhs and \p rhs
///
AFAPI array min (const array &lhs, const array &rhs);
/// \copydoc min(const array&, const array &)
AFAPI array min (const array &lhs, const double rhs);
/// \copydoc min(const array&, const array &)
AFAPI array min (const double lhs, const array &rhs);
/// @}
/// \ingroup arith_func_max
/// @{
/// C++ Interface for max of two arrays or an array and a scalar
///
/// \param[in] lhs first input
/// \param[in] rhs second input
/// \return maximum of \p lhs and \p rhs
AFAPI array max (const array &lhs, const array &rhs);
/// \copydoc max(const array&, const array&)
AFAPI array max (const array &lhs, const double rhs);
/// \copydoc max(const array&, const array&)
AFAPI array max (const double lhs, const array &rhs);
/// @}
/// \ingroup arith_func_rem
/// @{
/// C++ Interface for remainder when array divides array,
/// scalar divides array or array divides scalar
///
/// \param[in] lhs is numerator
/// \param[in] rhs is denominator
/// \return remainder when \p rhs divides \p lhs
AFAPI array rem (const array &lhs, const array &rhs);
/// \copydoc rem(const array&, const array&)
AFAPI array rem (const array &lhs, const double rhs);
/// \copydoc rem(const array&, const array&)
AFAPI array rem (const double lhs, const array &rhs);
/// @}
/// \ingroup arith_func_mod
/// @{
/// C++ Interface for modulus when dividend and divisor are arrays
/// or one of them is scalar
///
/// \param[in] lhs is dividend
/// \param[in] rhs is divisor
/// \return \p lhs modulo \p rhs
AFAPI array mod (const array &lhs, const array &rhs);
/// \copydoc mod(const array&, const array&)
AFAPI array mod (const array &lhs, const double rhs);
/// \copydoc mod(const array&, const array&)
AFAPI array mod (const double lhs, const array &rhs);
/// @}
/// C++ Interface for absolute value
///
/// \param[in] in is input array
/// \return absolute value of \p in
///
/// \ingroup arith_func_abs
AFAPI array abs (const array &in);
/**
C++ Interface for arg
\param[in] in is input array
\return phase of \p in
\ingroup arith_func_arg
*/
AFAPI array arg (const array &in);
/**
C++ Interface for getting the sign of input
\param[in] in is input array
\return the sign of each element of input
\note output is 1 for negative numbers and 0 for positive numbers
\ingroup arith_func_sign
*/
AFAPI array sign (const array &in);
///C++ Interface for rounding an array of numbers
///
///\param[in] in is input array
///\return values rounded to nearest integer
///
///\note The values are rounded to nearest integer
///
///\ingroup arith_func_round
AFAPI array round (const array &in);
/**
C++ Interface for truncating an array of numbers
\param[in] in is input array
\return values truncated to nearest integer not greater than input values
\ingroup arith_func_trunc
*/
AFAPI array trunc (const array &in);
/// C++ Interface for flooring an array of numbers
///
/// \param[in] in is input array
/// \return values rounded to nearest integer less than or equal to current value
///
/// \ingroup arith_func_floor
AFAPI array floor (const array &in);
/// C++ Interface for ceiling an array of numbers
///
/// \param[in] in is input array
/// \return values rounded to nearest integer greater than or equal to current value
///
/// \ingroup arith_func_ceil
AFAPI array ceil (const array &in);
/// \ingroup arith_func_hypot
/// @{
/// \brief C++ Interface for getting length of hypotenuse of two inputs
///
/// Calculates the hypotenuse of two inputs. The inputs can be both arrays
/// or an array and a scalar.
///
/// \param[in] lhs is the length of first side
/// \param[in] rhs is the length of second side
/// \return the length of the hypotenuse
AFAPI array hypot (const array &lhs, const array &rhs);
/// \copydoc hypot(const array&, const array&)
AFAPI array hypot (const array &lhs, const double rhs);
/// \copydoc hypot(const array&, const array&)
AFAPI array hypot (const double lhs, const array &rhs);
/// @}
/// C++ Interface for sin
///
/// \param[in] in is input array
/// \return sin of input
///
/// \ingroup arith_func_sin
AFAPI array sin (const array &in);
/// C++ Interface for cos
///
/// \param[in] in is input array
/// \return cos of input
///
/// \ingroup arith_func_cos
AFAPI array cos (const array &in);
/// C++ Interface for tan
///
/// \param[in] in is input array
/// \return tan of input
///
/// \ingroup arith_func_tan
AFAPI array tan (const array &in);
/// C++ Interface for arc sin (sin inverse)
///
/// \param[in] in is input array
/// \return arc sin of input
///
/// \ingroup arith_func_asin
AFAPI array asin (const array &in);
/// C++ Interface for arc cos (cos inverse)
///
/// \param[in] in is input array
/// \return arc cos of input
///
/// \ingroup arith_func_acos
AFAPI array acos (const array &in);
/// C++ Interface for arc tan (tan inverse)
///
/// \param[in] in is input array
/// \return arc tan of input
///
/// \ingroup arith_func_atan
AFAPI array atan (const array &in);
/// \ingroup arith_func_atan
/// @{
/// C++ Interface for arc tan of two arrays
///
/// \param[in] lhs value of numerator
/// \param[in] rhs value of denominator
/// \return arc tan of the inputs
AFAPI array atan2 (const array &lhs, const array &rhs);
/// \copydoc atan2(const array&, const array&)
AFAPI array atan2 (const array &lhs, const double rhs);
/// \copydoc atan2(const array&, const array&)
AFAPI array atan2 (const double lhs, const array &rhs);
/// @}
/// \ingroup trig_func_cplx2
/// @{
/// C++ Interface for creating complex array from two inputs
///
/// Creates a complex number from two sets of inputs. The left hand side is
/// the real part and the right hand side is the imaginary part. This
/// function accepts two \ref af::array or one \ref af::array and a scalar
/// as nputs.
///
/// \param[in] lhs is real value(s)
/// \param[in] rhs is imaginary value(s)
/// \return complex array from inputs
/// \ingroup arith_func_cplx
AFAPI array complex(const array &lhs, const array &rhs);
/// \copydoc complex(const array&, const array&)
/// \ingroup arith_func_cplx
AFAPI array complex(const array &lhs, const double rhs);
/// \copydoc complex(const array&, const array&)
/// \ingroup arith_func_cplx
AFAPI array complex(const double lhs, const array &rhs);
/// C++ Interface for creating complex array from real array
///
/// \param[in] in is real array
/// \return complex array from \p in
///
/// \ingroup arith_func_cplx
AFAPI array complex(const array &in);
/// @}
/// C++ Interface for getting real part from complex array
///
/// \param[in] in is complex array
/// \return the real part of \p in
///
/// \ingroup arith_func_real
AFAPI array real (const array &in);
/// C++ Interface for getting imaginary part from complex array
///
/// \param[in] in is complex array
/// \return the imaginary part of \p in
///
/// \ingroup arith_func_imag
AFAPI array imag (const array &in);
/// C++ Interface for getting the complex conjugate of input array
///
/// \param[in] in is complex array
/// \return the complex conjugate of \p in
///
/// \ingroup arith_func_conjg
AFAPI array conjg (const array &in);
/// C++ Interface for sinh
///
/// \param[in] in is input array
/// \return sinh of input
///
/// \ingroup arith_func_sinh
AFAPI array sinh (const array &in);
/// C++ Interface for cosh
///
/// \param[in] in is input array
/// \return cosh of input
///
/// \ingroup arith_func_cosh
AFAPI array cosh (const array &in);
/// C++ Interface for tanh
///
/// \param[in] in is input array
/// \return tanh of input
///
/// \ingroup arith_func_tanh
AFAPI array tanh (const array &in);
/// C++ Interface for sinh inverse
///
/// \param[in] in is input array
/// \return sinh inverse of input
///
/// \ingroup arith_func_asinh
AFAPI array asinh (const array &in);
/// C++ Interface for cosh inverse
///
/// \param[in] in is input array
/// \return cosh inverse of input
///
/// \ingroup arith_func_acosh
AFAPI array acosh (const array &in);
/// C++ Interface for tanh inverse
///
/// \param[in] in is input array
/// \return tanh inverse of input
///
/// \ingroup arith_func_atanh
AFAPI array atanh (const array &in);
/// C++ Interface for nth root
///
/// \param[in] lhs is nth root
/// \param[in] rhs is value
/// \return \p lhs th root of \p rhs
///
/// \ingroup arith_func_root
AFAPI array root (const array &lhs, const array &rhs);
/// C++ Interface for nth root
///
/// \param[in] lhs is nth root
/// \param[in] rhs is value
/// \return \p lhs th root of \p rhs
///
/// \ingroup arith_func_root
AFAPI array root (const array &lhs, const double rhs);
/// C++ Interface for nth root
///
/// \param[in] lhs is nth root
/// \param[in] rhs is value
/// \return \p lhs th root of \p rhs
///
/// \ingroup arith_func_root
AFAPI array root (const double lhs, const array &rhs);
/// \ingroup arith_func_pow
/// @{
/// \brief C++ Interface for power
///
/// Computes the value of \p lhs raised to the power of \p rhs. The inputs
/// can be two arrays or an array and a scalar.
///
/// \param[in] lhs is base
/// \param[in] rhs is exponent
/// \return \p lhs raised to power \p rhs
AFAPI array pow (const array &lhs, const array &rhs);
/// \copydoc pow(const array&, const array&)
AFAPI array pow (const array &lhs, const double rhs);
/// \copydoc pow(const array&, const array&)
AFAPI array pow (const double lhs, const array &rhs);
/// C++ Interface for power of 2
///
/// \param[in] in is exponent
/// \return 2 raised to power of \p in
///
AFAPI array pow2 (const array &in);
/// @}
#if AF_API_VERSION >= 31
/// C++ Interface for calculating sigmoid function of an array
///
/// \param[in] in is input
/// \return the sigmoid of \p in
///
/// \ingroup arith_func_sigmoid
AFAPI array sigmoid (const array &in);
#endif
/// C++ Interface for exponential of an array
///
/// \param[in] in is exponent
/// \return the exponential of \p in
///
/// \ingroup arith_func_exp
AFAPI array exp (const array &in);
/// C++ Interface for exponential of an array minus 1
///
/// \param[in] in is exponent
/// \return the exponential of \p in - 1
///
/// \note This function is useful when \p in is small
/// \ingroup arith_func_expm1
AFAPI array expm1 (const array &in);
/// C++ Interface for error function value
///
/// \param[in] in is input
/// \return the error function value
///
/// \ingroup arith_func_erf
AFAPI array erf (const array &in);
/// C++ Interface for complementary error function value
///
/// \param[in] in is input
/// \return the complementary error function value
///
/// \ingroup arith_func_erfc
AFAPI array erfc (const array &in);
/// C++ Interface for natural logarithm
///
/// \param[in] in is input
/// \return the natural logarithm of input
///
/// \ingroup arith_func_log
AFAPI array log (const array &in);
/// C++ Interface for natural logarithm of 1 + input
///
/// \param[in] in is input
/// \return the natural logarithm of (1 + input)
///
/// \note This function is useful when \p is small
/// \ingroup arith_func_log1p
AFAPI array log1p (const array &in);
/// C++ Interface for logarithm base 10
///
/// \param[in] in is input
/// \return the logarithm of input in base 10
///
/// \ingroup arith_func_log10
AFAPI array log10 (const array &in);
/// C++ Interface for logarithm base 2
///
/// \param[in] in is input
/// \return the logarithm of input in base 2
///
/// \ingroup explog_func_log2
AFAPI array log2 (const array &in);
/// C++ Interface for square root of input
///
/// \param[in] in is input
/// \return the square root of input
///
/// \ingroup arith_func_sqrt
AFAPI array sqrt (const array &in);
/// C++ Interface for cube root of input
///
/// \param[in] in is input
/// \return the cube root of input
///
/// \ingroup arith_func_cbrt
AFAPI array cbrt (const array &in);
///
/// C++ Interface for factorial of input
///
/// \param[in] in is input
/// \return the factorial function of input
///
/// \ingroup arith_func_factorial
AFAPI array factorial (const array &in);
/// C++ Interface for gamma function of input
///
/// \param[in] in is input
/// \return the gamma function of input
///
/// \ingroup arith_func_tgamma
AFAPI array tgamma (const array &in);
/// C++ Interface for logarithm of absolute value of gamma function of input
///
/// \param[in] in is input
/// \return the logarithm of absolute value of gamma function of input
///
/// \ingroup arith_func_tgamma
AFAPI array lgamma (const array &in);
/// C++ Interface for checking if values are zero
///
/// \param[in] in is input
/// \return array containing 1's where input is 0, and 0 otherwise.
///
/// \ingroup arith_func_iszero
AFAPI array iszero (const array &in);
/// C++ Interface for checking if values are Infinities
///
/// \param[in] in is input
/// \return array containing 1's where input is Inf or -Inf, and 0 otherwise.
///
/// \ingroup arith_func_isinf
AFAPI array isInf (const array &in);
/// C++ Interface for checking if values are NaNs
///
/// \param[in] in is input
/// \return array containing 1's where input is NaN, and 0 otherwise.
///
/// \ingroup arith_func_isnan
AFAPI array isNaN (const array &in);
}
#endif
#ifdef __cplusplus
extern "C" {
#endif
/**
C Interface for adding arrays
\param[out] out will contain sum of \p lhs and \p rhs
\param[in] lhs first input
\param[in] rhs second input
\param[in] batch specifies if operations need to be performed in batch mode
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_add
*/
AFAPI af_err af_add (af_array *out, const af_array lhs, const af_array rhs, const bool batch);
/**
C Interface for subtracting an array from another
\param[out] out will contain result of \p lhs - \p rhs
\param[in] lhs first input
\param[in] rhs second input
\param[in] batch specifies if operations need to be performed in batch mode
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_sub
*/
AFAPI af_err af_sub (af_array *out, const af_array lhs, const af_array rhs, const bool batch);
/**
C Interface for multiplying two arrays
\param[out] out will contain the product of \p lhs and \p rhs
\param[in] lhs first input
\param[in] rhs second input
\param[in] batch specifies if operations need to be performed in batch mode
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_mul
*/
AFAPI af_err af_mul (af_array *out, const af_array lhs, const af_array rhs, const bool batch);
/**
C Interface for dividing an array by another
\param[out] out will contain result of \p lhs / \p rhs.
\param[in] lhs first input
\param[in] rhs second input
\param[in] batch specifies if operations need to be performed in batch mode
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_div
*/
AFAPI af_err af_div (af_array *out, const af_array lhs, const af_array rhs, const bool batch);
/**
C Interface for checking if an array is less than another
\param[out] out will contain result of \p lhs < \p rhs. out is of type b8
\param[in] lhs first input
\param[in] rhs second input
\param[in] batch specifies if operations need to be performed in batch mode
\return \ref AF_SUCCESS if the execution completes properly
\ingroup logic_func_lt
*/
AFAPI af_err af_lt (af_array *out, const af_array lhs, const af_array rhs, const bool batch);
/**
C Interface for checking if an array is greater than another
\param[out] out will contain result of \p lhs > \p rhs. out is of type b8
\param[in] lhs first input
\param[in] rhs second input
\param[in] batch specifies if operations need to be performed in batch mode
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_gt
*/
AFAPI af_err af_gt (af_array *out, const af_array lhs, const af_array rhs, const bool batch);
/**
C Interface for checking if an array is less or equal to another
\param[out] out will contain result of \p lhs <= \p rhs. out is of type b8
\param[in] lhs first input
\param[in] rhs second input
\param[in] batch specifies if operations need to be performed in batch mode
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_le
*/
AFAPI af_err af_le (af_array *out, const af_array lhs, const af_array rhs, const bool batch);
/**
C Interface for checking if an array is greater or equal to another
\param[out] out will contain result of \p lhs >= \p rhs. out is of type b8
\param[in] lhs first input
\param[in] rhs second input
\param[in] batch specifies if operations need to be performed in batch mode
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_ge
*/
AFAPI af_err af_ge (af_array *out, const af_array lhs, const af_array rhs, const bool batch);
/**
C Interface for checking if an array is equal to another
\param[out] out will contain result of \p lhs == \p rhs. out is of type b8
\param[in] lhs first input
\param[in] rhs second input
\param[in] batch specifies if operations need to be performed in batch mode
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_eq
*/
AFAPI af_err af_eq (af_array *out, const af_array lhs, const af_array rhs, const bool batch);
/**
C Interface for checking if an array is not equal to another
\param[out] out will contain result of \p lhs != \p rhs. out is of type b8
\param[in] lhs first input
\param[in] rhs second input
\param[in] batch specifies if operations need to be performed in batch mode
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_neq
*/
AFAPI af_err af_neq (af_array *out, const af_array lhs, const af_array rhs, const bool batch);
/**
C Interface for performing logical and on two arrays
\param[out] out will contain result of \p lhs && \p rhs. out is of type b8
\param[in] lhs first input
\param[in] rhs second input
\param[in] batch specifies if operations need to be performed in batch mode
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_and
*/
AFAPI af_err af_and (af_array *out, const af_array lhs, const af_array rhs, const bool batch);
/**
C Interface for performing logical or on two arrays
\param[out] out will contain result of \p lhs || \p rhs. out is of type b8
\param[in] lhs first input
\param[in] rhs second input
\param[in] batch specifies if operations need to be performed in batch mode
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_or
*/
AFAPI af_err af_or (af_array *out, const af_array lhs, const af_array rhs, const bool batch);
/**
C Interface for performing logical not on input
\param[out] out will contain result of logical not of \p in. out is of type b8
\param[in] in is the input
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_not
*/
AFAPI af_err af_not (af_array *out, const af_array in);
/**
C Interface for performing bitwise and on two arrays
\param[out] out will contain result of \p lhs & \p rhs
\param[in] lhs first input
\param[in] rhs second input
\param[in] batch specifies if operations need to be performed in batch mode
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_bitand
*/
AFAPI af_err af_bitand (af_array *out, const af_array lhs, const af_array rhs, const bool batch);
/**
C Interface for performing bitwise or on two arrays
\param[out] out will contain result of \p lhs & \p rhs
\param[in] lhs first input
\param[in] rhs second input
\param[in] batch specifies if operations need to be performed in batch mode
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_bitor
*/
AFAPI af_err af_bitor (af_array *out, const af_array lhs, const af_array rhs, const bool batch);
/**
C Interface for performing bitwise xor on two arrays
\param[out] out will contain result of \p lhs ^ \p rhs
\param[in] lhs first input
\param[in] rhs second input
\param[in] batch specifies if operations need to be performed in batch mode
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_bitxor
*/
AFAPI af_err af_bitxor (af_array *out, const af_array lhs, const af_array rhs, const bool batch);
/**
C Interface for left shift on integer arrays
\param[out] out will contain result of the left shift
\param[in] lhs first input
\param[in] rhs second input
\param[in] batch specifies if operations need to be performed in batch mode
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_shiftl
*/
AFAPI af_err af_bitshiftl(af_array *out, const af_array lhs, const af_array rhs, const bool batch);
/**
C Interface for right shift on integer arrays
\param[out] out will contain result of the right shift
\param[in] lhs first input
\param[in] rhs second input
\param[in] batch specifies if operations need to be performed in batch mode
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_shiftr
*/
AFAPI af_err af_bitshiftr(af_array *out, const af_array lhs, const af_array rhs, const bool batch);
/**
C Interface for casting an array from one type to another
\param[out] out will contain the values in the specified type
\param[in] in is the input
\param[in] type is the target data type \ref af_dtype
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_cast
*/
AFAPI af_err af_cast (af_array *out, const af_array in, const af_dtype type);
/**
C Interface for min of two arrays
\param[out] out will contain minimum of \p lhs and \p rhs
\param[in] lhs first input
\param[in] rhs second input
\param[in] batch specifies if operations need to be performed in batch mode
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_min
*/
AFAPI af_err af_minof (af_array *out, const af_array lhs, const af_array rhs, const bool batch);
/**
C Interface for max of two arrays
\param[out] out will contain maximum of \p lhs and \p rhs
\param[in] lhs first input
\param[in] rhs second input
\param[in] batch specifies if operations need to be performed in batch mode
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_max
*/
AFAPI af_err af_maxof (af_array *out, const af_array lhs, const af_array rhs, const bool batch);
/**
C Interface for remainder
\param[out] out will contain the remainder of \p lhs divided by \p rhs
\param[in] lhs is numerator
\param[in] rhs is denominator
\param[in] batch specifies if operations need to be performed in batch mode
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_rem
*/
AFAPI af_err af_rem (af_array *out, const af_array lhs, const af_array rhs, const bool batch);
/**
C Interface for modulus
\param[out] out will contain the output of \p lhs modulo \p rhs
\param[in] lhs is dividend
\param[in] rhs is divisor
\param[in] batch specifies if operations need to be performed in batch mode
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_mod
*/
AFAPI af_err af_mod (af_array *out, const af_array lhs, const af_array rhs, const bool batch);
/**
C Interface for absolute value
\param[out] out will contain the absolute value of \p in
\param[in] in is input array
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_abs
*/
AFAPI af_err af_abs (af_array *out, const af_array in);
/**
C Interface for finding the phase
\param[out] out will the phase of \p in
\param[in] in is input array
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_arg
*/
AFAPI af_err af_arg (af_array *out, const af_array in);
/**
C Interface for finding the sign of the input
\param[out] out will contain the sign of each element of the input arrays
\param[in] in is input array
\return \ref AF_SUCCESS if the execution completes properly
\note output is 1 for negative numbers and 0 for positive numbers
\ingroup arith_func_round
*/
AFAPI af_err af_sign (af_array *out, const af_array in);
/**
C Interface for rounding an array of numbers
\param[out] out will contain values rounded to nearest integer
\param[in] in is input array
\return \ref AF_SUCCESS if the execution completes properly
\note The values are rounded to nearest integer
\ingroup arith_func_round
*/
AFAPI af_err af_round (af_array *out, const af_array in);
/**
C Interface for truncating an array of numbers
\param[out] out will contain values truncated to nearest integer not greater than input
\param[in] in is input array
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_trunc
*/
AFAPI af_err af_trunc (af_array *out, const af_array in);
/**
C Interface for flooring an array of numbers
\param[out] out will contain values rounded to nearest integer less than or equal to in
\param[in] in is input array
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_floor
*/
AFAPI af_err af_floor (af_array *out, const af_array in);
/**
C Interface for ceiling an array of numbers
\param[out] out will contain values rounded to nearest integer greater than or equal to in
\param[in] in is input array
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_ceil
*/
AFAPI af_err af_ceil (af_array *out, const af_array in);
/**
C Interface for getting length of hypotenuse of two arrays
\param[out] out will contain the length of the hypotenuse
\param[in] lhs is the length of first side
\param[in] rhs is the length of second side
\param[in] batch specifies if operations need to be performed in batch mode
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_floor
*/
AFAPI af_err af_hypot (af_array *out, const af_array lhs, const af_array rhs, const bool batch);
/**
C Interface for sin
\param[out] out will contain sin of input
\param[in] in is input array
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_sin
*/
AFAPI af_err af_sin (af_array *out, const af_array in);
/**
C Interface for cos
\param[out] out will contain cos of input
\param[in] in is input array
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_cos
*/
AFAPI af_err af_cos (af_array *out, const af_array in);
/**
C Interface for tan
\param[out] out will contain tan of input
\param[in] in is input array
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_tan
*/
AFAPI af_err af_tan (af_array *out, const af_array in);
/**
C Interface for arc sin
\param[out] out will contain arc sin of input
\param[in] in is input array
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_asin
*/
AFAPI af_err af_asin (af_array *out, const af_array in);
/**
C Interface for arc cos
\param[out] out will contain arc cos of input
\param[in] in is input array
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_acos
*/
AFAPI af_err af_acos (af_array *out, const af_array in);
/**
C Interface for arc tan
\param[out] out will contain arc tan of input
\param[in] in is input array
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_atan
*/
AFAPI af_err af_atan (af_array *out, const af_array in);
/**
C Interface for arc tan of two inputs
\param[out] out will arc tan of the inputs
\param[in] lhs value of numerator
\param[in] rhs value of denominator
\param[in] batch specifies if operations need to be performed in batch mode
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_atan
*/
AFAPI af_err af_atan2 (af_array *out, const af_array lhs, const af_array rhs, const bool batch);
/**
C Interface for creating complex array from two input arrays
\param[out] out will contain the complex array generated from inputs
\param[in] lhs is real array
\param[in] rhs is imaginary array
\param[in] batch specifies if operations need to be performed in batch mode
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_cplx
*/
AFAPI af_err af_cplx2 (af_array *out, const af_array lhs, const af_array rhs, const bool batch);
/**
C Interface for creating complex array from real array
\param[out] out will contain complex array created from real input \p in
\param[in] in is real array
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_cplx
*/
AFAPI af_err af_cplx (af_array *out, const af_array in);
/**
C Interface for getting real part from complex array
\param[out] out will contain the real part of \p in
\param[in] in is complex array
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_real
*/
AFAPI af_err af_real (af_array *out, const af_array in);
/**
C Interface for getting imaginary part from complex array
\param[out] out will contain the imaginary part of \p in
\param[in] in is complex array
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_imag
*/
AFAPI af_err af_imag (af_array *out, const af_array in);
/**
C Interface for getting the complex conjugate of input array
\param[out] out will contain the complex conjugate of \p in
\param[in] in is complex array
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_conjg
*/
AFAPI af_err af_conjg (af_array *out, const af_array in);
/**
C Interface for sinh
\param[out] out will contain sinh of input
\param[in] in is input array
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_sinh
*/
AFAPI af_err af_sinh (af_array *out, const af_array in);
/**
C Interface for cosh
\param[out] out will contain cosh of input
\param[in] in is input array
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_cosh
*/
AFAPI af_err af_cosh (af_array *out, const af_array in);
/**
C Interface for tanh
\param[out] out will contain tanh of input
\param[in] in is input array
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_tanh
*/
AFAPI af_err af_tanh (af_array *out, const af_array in);
/**
C Interface for asinh
\param[out] out will contain inverse sinh of input
\param[in] in is input array
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_asinh
*/
AFAPI af_err af_asinh (af_array *out, const af_array in);
/**
C Interface for acosh
\param[out] out will contain inverse cosh of input
\param[in] in is input array
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_acosh
*/
AFAPI af_err af_acosh (af_array *out, const af_array in);
/**
C Interface for atanh
\param[out] out will contain inverse tanh of input
\param[in] in is input array
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_atanh
*/
AFAPI af_err af_atanh (af_array *out, const af_array in);
/**
C Interface for root
\param[out] out will contain \p lhs th root of \p rhs
\param[in] lhs is nth root
\param[in] rhs is value
\param[in] batch specifies if operations need to be performed in batch mode
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_root
*/
AFAPI af_err af_root (af_array *out, const af_array lhs, const af_array rhs, const bool batch);
/**
C Interface for power
\param[out] out will contain \p lhs raised to power \p rhs
\param[in] lhs is base
\param[in] rhs is exponent
\param[in] batch specifies if operations need to be performed in batch mode
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_pow
*/
AFAPI af_err af_pow (af_array *out, const af_array lhs, const af_array rhs, const bool batch);
/**
C Interface for power of two
\param[out] out will contain the values of 2 to the power \p in
\param[in] in is exponent
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_pow2
*/
AFAPI af_err af_pow2 (af_array *out, const af_array in);
/**
C Interface for exponential of an array
\param[out] out will contain the exponential of \p in
\param[in] in is exponent
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_exp
*/
AFAPI af_err af_exp (af_array *out, const af_array in);
#if AF_API_VERSION >= 31
/**
C Interface for calculating sigmoid function of an array
\param[out] out will contain the sigmoid of \p in
\param[in] in is input
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_sigmoid
*/
AFAPI af_err af_sigmoid (af_array *out, const af_array in);
#endif
/**
C Interface for exponential of an array minus 1
\param[out] out will contain the exponential of \p in - 1
\param[in] in is input
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_expm1
*/
AFAPI af_err af_expm1 (af_array *out, const af_array in);
/**
C Interface for error function value
\param[out] out will contain the error function value of \p in
\param[in] in is input
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_erf
*/
AFAPI af_err af_erf (af_array *out, const af_array in);
/**
C Interface for complementary error function value
\param[out] out will contain the complementary error function value of \p in
\param[in] in is input
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_erfc
*/
AFAPI af_err af_erfc (af_array *out, const af_array in);
/**
C Interface for natural logarithm
\param[out] out will contain the natural logarithm of \p in
\param[in] in is input
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_log
*/
AFAPI af_err af_log (af_array *out, const af_array in);
/**
C Interface for logarithm of (in + 1)
\param[out] out will contain the logarithm of of (in + 1)
\param[in] in is input
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_log1p
*/
AFAPI af_err af_log1p (af_array *out, const af_array in);
/**
C Interface for logarithm base 10
\param[out] out will contain the base 10 logarithm of \p in
\param[in] in is input
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_log10
*/
AFAPI af_err af_log10 (af_array *out, const af_array in);
/**
C Interface for logarithm base 2
\param[out] out will contain the base 2 logarithm of \p in
\param[in] in is input
\return \ref AF_SUCCESS if the execution completes properly
\ingroup explog_func_log2
*/
AFAPI af_err af_log2 (af_array *out, const af_array in);
/**
C Interface for square root
\param[out] out will contain the square root of \p in
\param[in] in is input
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_sqrt
*/
AFAPI af_err af_sqrt (af_array *out, const af_array in);
/**
C Interface for cube root
\param[out] out will contain the cube root of \p in
\param[in] in is input
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_cbrt
*/
AFAPI af_err af_cbrt (af_array *out, const af_array in);
/**
C Interface for the factorial
\param[out] out will contain the result of factorial of \p in
\param[in] in is input
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_factorial
*/
AFAPI af_err af_factorial (af_array *out, const af_array in);
/**
C Interface for the gamma function
\param[out] out will contain the result of gamma function of \p in
\param[in] in is input
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_tgamma
*/
AFAPI af_err af_tgamma (af_array *out, const af_array in);
/**
C Interface for the logarithm of absolute values of gamma function
\param[out] out will contain the result of logarithm of absolute values of gamma function of \p in
\param[in] in is input
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_lgamma
*/
AFAPI af_err af_lgamma (af_array *out, const af_array in);
/**
C Interface for checking if values are zero
\param[out] out will contain 1's where input is 0, and 0 otherwise.
\param[in] in is input
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_iszero
*/
AFAPI af_err af_iszero (af_array *out, const af_array in);
/**
C Interface for checking if values are infinities
\param[out] out will contain 1's where input is Inf or -Inf, and 0 otherwise.
\param[in] in is input
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_isinf
*/
AFAPI af_err af_isinf (af_array *out, const af_array in);
/**
C Interface for checking if values are NaNs
\param[out] out will contain 1's where input is NaN, and 0 otherwise.
\param[in] in is input
\return \ref AF_SUCCESS if the execution completes properly
\ingroup arith_func_isnan
*/
AFAPI af_err af_isnan (af_array *out, const af_array in);
#ifdef __cplusplus
}
#endif
|