/usr/include/af/array.h is in libarrayfire-dev 3.2.2+dfsg1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 | /*******************************************************
* Copyright (c) 2014, ArrayFire
* All rights reserved.
*
* This file is distributed under 3-clause BSD license.
* The complete license agreement can be obtained at:
* http://arrayfire.com/licenses/BSD-3-Clause
********************************************************/
#pragma once
#include <af/defines.h>
#include <af/seq.h>
#include <af/util.h>
#include <af/index.h>
#ifdef __cplusplus
#include <af/traits.hpp>
#include <vector>
namespace af
{
class dim4;
///
/// \brief A multi dimensional data container
///
class AFAPI array {
af_array arr;
public:
///
/// \brief Updates the internal \ref af_array object
///
/// \note This function will reduce the reference of the previous
/// \ref af_array object
///
void set(af_array tmp);
///
/// \brief Intermediate data class. Used for assignment and indexing.
///
/// \note This class is for internal book keeping while indexing. This class is not intended for use in user code.
///
class AFAPI array_proxy
{
struct array_proxy_impl; //forward declaration
array_proxy_impl *impl; // implementation
public:
array_proxy(array& par, af_index_t *ssss, bool linear = false);
array_proxy(const array_proxy &other);
#if __cplusplus > 199711L
array_proxy(array_proxy &&other);
array_proxy & operator=(array_proxy &&other);
#endif
~array_proxy();
// Implicit conversion operators
operator array() const;
operator array();
#define ASSIGN(OP) \
array_proxy& operator OP(const array_proxy &a); \
array_proxy& operator OP(const array &a); \
array_proxy& operator OP(const double &a); \
array_proxy& operator OP(const cdouble &a); \
array_proxy& operator OP(const cfloat &a); \
array_proxy& operator OP(const float &a); \
array_proxy& operator OP(const int &a); \
array_proxy& operator OP(const unsigned &a); \
array_proxy& operator OP(const bool &a); \
array_proxy& operator OP(const char &a); \
array_proxy& operator OP(const unsigned char &a); \
array_proxy& operator OP(const long &a); \
array_proxy& operator OP(const unsigned long &a); \
array_proxy& operator OP(const long long &a); \
array_proxy& operator OP(const unsigned long long &a); \
ASSIGN(=)
ASSIGN(+=)
ASSIGN(-=)
ASSIGN(*=)
ASSIGN(/=)
#undef ASSIGN
#if AF_API_VERSION >= 32
#define ASSIGN(OP) \
array_proxy& operator OP(const short &a); \
array_proxy& operator OP(const unsigned short &a); \
ASSIGN(=)
ASSIGN(+=)
ASSIGN(-=)
ASSIGN(*=)
ASSIGN(/=)
#undef ASSIGN
#endif
// af::array member functions. same behavior as those below
af_array get();
af_array get() const;
dim_t elements() const;
template<typename T> T* host() const;
void host(void *ptr) const;
dtype type() const;
dim4 dims() const;
dim_t dims(unsigned dim) const;
unsigned numdims() const;
size_t bytes() const;
array copy() const;
bool isempty() const;
bool isscalar() const;
bool isvector() const;
bool isrow() const;
bool iscolumn() const;
bool iscomplex() const;
inline bool isreal() const { return !iscomplex(); }
bool isdouble() const;
bool issingle() const;
bool isrealfloating() const;
bool isfloating() const;
bool isinteger() const;
bool isbool() const;
void eval() const;
array as(dtype type) const;
array T() const;
array H() const;
template<typename T> T scalar() const;
template<typename T> T* device() const;
void unlock() const;
#if AF_API_VERSION >= 31
void lock() const;
#endif
array::array_proxy row(int index);
const array::array_proxy row(int index) const;
array::array_proxy rows(int first, int last);
const array::array_proxy rows(int first, int last) const;
array::array_proxy col(int index);
const array::array_proxy col(int index) const;
array::array_proxy cols(int first, int last);
const array::array_proxy cols(int first, int last) const;
array::array_proxy slice(int index);
const array::array_proxy slice(int index) const;
array::array_proxy slices(int first, int last);
const array::array_proxy slices(int first, int last) const;
};
//array(af_array in, const array *par, af_index_t seqs[4]);
/**
\ingroup construct_mat
@{
*/
/**
Create undimensioned array (no data, undefined size)
\code
array A, B, C; // creates three arrays called A, B and C
\endcode
*/
array();
/**
Creates an array from an \ref af_array handle
\param handle the af_array object.
*/
explicit
array(const af_array handle);
/**
Creates a copy to the \p in array.
\param in The input \ref array
*/
array(const array& in);
/**
Allocate a one-dimensional array of a specified size with undefined
contents
Declare a two-dimensional array by passing the
number of rows and the number of columns as the first two parameters.
The (optional) second parameter is the type of the array. The default
type is f32 or 4-byte single-precision floating-point numbers.
\code
// allocate space for an array with 10 rows
array A(10); // type is the default f32
// allocate space for a column vector with 100 rows
array A(100, f64); // f64 = double precision
\endcode
\param[in] dim0 number of columns in the array
\param[in] ty optional label describing the data type
(default is f32)
*/
array(dim_t dim0, dtype ty = f32);
/**
Allocate a two-dimensional array of a specified size with undefined
contents
Declare a two-dimensional array by passing the
number of rows and the number of columns as the first two parameters.
The (optional) third parameter is the type of the array. The default
type is f32 or 4-byte single-precision floating-point numbers.
\code
// allocate space for an array with 10 rows and 8 columns
array A(10, 8); // type is the default f32
// allocate space for a column vector with 100 rows (and 1 column)
array A(100, 1, f64); // f64 = double precision
\endcode
\param[in] dim0 number of columns in the array
\param[in] dim1 number of rows in the array
\param[in] ty optional label describing the data type
(default is f32)
*/
array(dim_t dim0, dim_t dim1, dtype ty = f32);
/**
Allocate a three-dimensional (3D) array of a specified size with
undefined contents
This is useful to quickly declare a three-dimensional array by
passing the size as the first three parameters. The (optional)
fourth parameter is the type of the array. The default type is f32
or 4-byte single-precision floating point numbers.
\code
// allocate space for a 10 x 10 x 10 array
array A(10, 10, 10); // type is the default f32
// allocate space for a 3D, double precision array
array A(10, 10, 10, f64); // f64 = double precision
\endcode
\param[in] dim0 first dimension of the array
\param[in] dim1 second dimension of the array
\param[in] dim2 third dimension of the array
\param[in] ty optional label describing the data type
(default is f32)
*/
array(dim_t dim0, dim_t dim1, dim_t dim2, dtype ty = f32);
/**
Allocate a four-dimensional (4D) array of a specified size with
undefined contents
This is useful to quickly declare a four-dimensional array by
passing the size as the first four parameters. The (optional) fifth
parameter is the type of the array. The default type is f32 or
4-byte floating point numbers.
\code
// allocate space for a 10 x 10 x 10 x 20 array
array A(10, 10, 10, 20); // type is the default f32
// allocate space for a 4D, double precision array
array A(10, 10, 10, 20, f64); // f64 = double precision
\endcode
\param[in] dim0 first dimension of the array
\param[in] dim1 second dimension of the array
\param[in] dim2 third dimension of the array
\param[in] dim3 fourth dimension of the array
\param[in] ty optional label describing the data type
(default is f32)
*/
array(dim_t dim0, dim_t dim1, dim_t dim2, dim_t dim3, dtype ty = f32);
/**
Allocate an array of a specified size with undefined contents
This can be useful when the dimensions of the array are calculated
somewhere else within the code. The first parameter specifies the
size of the array via dim4(). The second parameter is the type of
the array. The default type is f32 or 4-byte
single-precision floating point numbers.
\code
// create a two-dimensional 10 x 10 array
dim4 dims(10, 10); // converted to (10, 10, 1, 1)
array a1(dims); // create the array (type is f32, the default)
// create a three-dimensional 10 x 10 x 20 array
dim4 dims(10, 10, 20); // converted to (10, 10, 20, 1)
array a2(dims,f64); // f64 = double precision
\endcode
\param[in] dims size of the array
\param[in] ty optional label describing the data type
(default is f32)
*/
explicit
array(const dim4& dims, dtype ty = f32);
/**
Create a column vector on the device using a host/device pointer
\param[in] dim0 number of elements in the column vector
\param[in] pointer pointer (points to a buffer on the host/device)
\param[in] src source of the data (default is afHost, can also
be afDevice)
\code
// allocate data on the host
int h_buffer[] = {23, 34, 18, 99, 34};
array A(4, h_buffer); // copy host data to device
//
// A = 23
// = 34
// = 18
// = 99
\endcode
\note If \p src is \ref afHost, the first \p dim0 elements are copied. If \p src is \ref afDevice, no copy is done; the array object just wraps the device pointer.
*/
template<typename T>
array(dim_t dim0,
const T *pointer, af::source src=afHost);
/**
Create a 2D array on the device using a host/device pointer
\param[in] dim0 number of rows
\param[in] dim1 number of columns
\param[in] pointer pointer (points to a buffer on the host/device)
\param[in] src source of the data (default is afHost, can also
be \ref afDevice)
\code
int h_buffer[] = {0, 1, 2, 3, 4, 5}; // host array
array A(2, 3, h_buffer); // copy host data to device
\endcode
\image html 2dArray.png
\note If \p src is \ref afHost, the first \p dim0 * \p dim1 elements are copied. If \p src is \ref afDevice, no copy is done; the array object just wraps the device pointer. The data is treated as column major format when performing linear algebra operations.
*/
template<typename T>
array(dim_t dim0, dim_t dim1,
const T *pointer, af::source src=afHost);
/**
Create a 3D array on the device using a host/device pointer
\param[in] dim0 first dimension
\param[in] dim1 second dimension
\param[in] dim2 third dimension
\param[in] pointer pointer (points to a buffer on the host/device)
\param[in] src source of the data (default is \ref afHost, can
also be \ref afDevice)
\code
int h_buffer[] = {0, 1, 2, 3, 4, 5, 6, 7, 8
9, 0, 1, 2, 3, 4, 5, 6, 7}; // host array
array A(3, 3, 2, h_buffer); // copy host data to 3D device array
\endcode
\note If \p src is \ref afHost, the first \p dim0 * \p dim1 * \p dim2 elements are copied. If \p src is \ref afDevice, no copy is done; the array object just wraps the device pointer. The data is treated as column major format when performing linear algebra operations.
\image html 3dArray.png
*/
template<typename T>
array(dim_t dim0, dim_t dim1, dim_t dim2,
const T *pointer, af::source src=afHost);
/**
Create a 4D array on the device using a host/device pointer
\param[in] dim0 first dimension
\param[in] dim1 second dimension
\param[in] dim2 third dimension
\param[in] dim3 fourth dimension
\param[in] pointer pointer (points to a buffer on the host/device)
\param[in] src source of the data (default is afHost, can also
be \ref afDevice)
\code
int h_buffer[] = {0, 1, 2, 3,
4, 5, 6, 7,
8, 9, 0, 1,
2, 3, 4, 5}; // host array with 16 elements
array A(2, 2, 2, 2, h_buffer); // copy host data to 4D device array
\endcode
\note If \p src is \ref afHost, the first \p dim0 * \p dim1 * \p dim2 * \p dim3 elements are copied. If \p src is \ref afDevice, no copy is done; the array object just wraps the device pointer. The data is treated as column major format when performing linear algebra operations.
*/
template<typename T>
array(dim_t dim0, dim_t dim1, dim_t dim2, dim_t dim3,
const T *pointer, af::source src=afHost);
/**
Create an array of specified size on the device using a host/device
pointer
This function copies data from the location specified by the
pointer to a 1D/2D/3D/4D array on the device. The data is arranged
in "column-major" format (similar to that used by FORTRAN).
\param[in] dims vector data type containing the dimension of the
\ref array
\param[in] pointer pointer (points to a buffer on the host/device)
\param[in] src source of the data (default is afHost, can also
be \ref afDevice)
\code
int h_buffer[] = {0, 1, 2, 3, // host array with 16 elements
4, 5, 6, 7, // written in "row-major" format
8, 9, 0, 1,
2, 3, 4, 5};
dim4 dims(4, 4);
array A(dims, h_buffer); // A = 0 4 8 2
// 1 5 9 3
// 2 6 0 4
// 3 7 1 5
// Note the "column-major" ordering
// used in ArrayFire
\endcode
\note If \p src is \ref afHost, the first dims.elements() elements are copied. If \p src is \ref afDevice, no copy is done; the array object just wraps the device pointer. The data is treated as column major format when performing linear algebra operations.
*/
template<typename T>
explicit
array(const dim4& dims,
const T *pointer, af::source src=afHost);
/**
Adjust the dimensions of an N-D array (fast).
This operation simply rearranges the description of the array.
No memory transfers or transformations are performed. The total
number of elements must not change.
\code
float f[] = {1,2,3,4};
array a(2,2,f);
//a=[1 3]
// [2 4]
array b = array(a, dim4(4));
//b=[1]
// [2]
// [3]
// [4]
array c = array(a, b.T().dims() );
//c=[1 2 3 4]
\endcode
\param[in] input
\param[in] dims total number of elements must not change.
\return same underlying array data with different dimensions
*/
array(const array& input, const dim4& dims);
/**
Adjust the dimensions of an N-D array (fast).
This operation simply rearranges the description of the array.
No memory transfers or transformations are performed. The total
number of elements must not change.
\code
float f[] = {1,2,3,4};
array a(2,2,f);
//a=[1 3]
// [2 4]
array b = array(a, 4);
//b=[1]
// [2]
// [3]
// [4]
array c = array(a, 1, 4);
//c=[1 2 3 4]
\endcode
\param[in] input
\param[in] dim0 first dimension
\param[in] dim1 second dimension
\param[in] dim2 third dimension
\param[in] dim3 fourth dimension
\return same underlying array data with different dimensions
*/
array( const array& input,
const dim_t dim0, const dim_t dim1 = 1,
const dim_t dim2 = 1, const dim_t dim3 = 1);
/**
@}
*/
/**
\ingroup method_mat
@{
*/
/**
get the \ref af_array handle
*/
af_array get();
/**
get the \ref af_array handle
*/
af_array get() const;
/**
get the number of elements in array
*/
dim_t elements() const;
/**
Copy array data to host and return host pointer
*/
template<typename T> T* host() const;
/**
Copy array data to existing host pointer
*/
void host(void *ptr) const;
/**
Perform deep copy from host/device pointer to an existing array
*/
template<typename T> void write(const T *ptr, const size_t bytes, af::source src = afHost);
/**
Get array data type
*/
dtype type() const;
/**
Get dimensions of the array
*/
dim4 dims() const;
/**
Get dimensions of the array
*/
dim_t dims(unsigned dim) const;
/**
Get the number of dimensions of the array
*/
unsigned numdims() const;
/**
Get the size of the array in bytes
*/
size_t bytes() const;
/**
Perform deep copy of the array
*/
array copy() const;
/**
\brief Returns true of the array is empty
*/
bool isempty() const;
/**
\brief Returns true of the array contains only one value
*/
bool isscalar() const;
/**
\brief Returns true if only one of the array dimensions has more than one element
*/
bool isvector() const;
/**
\brief Returns true if only the second dimension has more than one element
*/
bool isrow() const;
/**
\brief Returns true if only the first dimension has more than one element
*/
bool iscolumn() const;
/**
\brief Returns true if the array type is \ref c32 or \ref c64
*/
bool iscomplex() const;
/**
\brief Returns true if the array type is neither \ref c32 nor \ref c64
*/
inline bool isreal() const { return !iscomplex(); }
/**
\brief Returns true if the array type is \ref f64 or \ref c64
*/
bool isdouble() const;
/**
\brief Returns true if the array type is neither \ref f64 nor \ref c64
*/
bool issingle() const;
/**
\brief Returns true if the array type is \ref f32 or \ref f64
*/
bool isrealfloating() const;
/**
\brief Returns true if the array type is \ref f32, \ref f64, \ref c32 or \ref c64
*/
bool isfloating() const;
/**
\brief Returns true if the array type is \ref u8, \ref b8, \ref s32 \ref u32, \ref s64, \ref u64, \ref s16, \ref u16
*/
bool isinteger() const;
/**
\brief Returns true if the array type is \ref b8
*/
bool isbool() const;
/**
\brief Evaluate any JIT expressions to generate data for the array
*/
void eval() const;
/**
\brief Get the first element of the array as a scalar
\note This is recommended for use while debugging. Calling this method constantly reduces performance.
*/
template<typename T> T scalar() const;
/**
@}
*/
/**
\defgroup device_func_device array::device<T>
Get the device pointer from the array and lock the buffer in memory manager.
@{
\ingroup arrayfire_func
\ingroup device_mat
*/
template<typename T> T* device() const;
/**
@}
*/
// INDEXING
// Single arguments
/**
\brief This operator returns a reference of the original array at a given coordinate.
You can pass \ref af::seq, \ref af::array, or an int as it's parameters.
These references can be used for assignment or returning references
to \ref af::array objects.
If the \ref af::array is a multi-dimensional array then this coordinate
will treated as the data as a linear array.
\param[in] s0 is sequence of linear indices
\returns A reference to the array at the given index
\ingroup array_mem_operator_paren
*/
array::array_proxy operator()(const index &s0);
/**
\copydoc operator()(const index &)
\ingroup array_mem_operator_paren
*/
const array::array_proxy operator()(const index &s0) const;
/**
\brief This operator returns a reference of the original array at a
given coordinate.
You can pass \ref af::seq, \ref af::array, or an int as it's parameters.
These references can be used for assignment or returning references
to \ref af::array objects.
\param[in] s0 is sequence of indices along the first dimension
\param[in] s1 is sequence of indices along the second dimension
\param[in] s2 is sequence of indices along the third dimension
\param[in] s3 is sequence of indices along the fourth dimension
\returns A reference to the array at the given index
\ingroup array_mem_operator_paren
*/
array::array_proxy operator()(const index &s0,
const index &s1,
const index &s2 = span,
const index &s3 = span);
/**
\copydoc operator()(const index &, const index &, const index &, const index &)
\ingroup array_mem_operator_paren
*/
const array::array_proxy operator()(const index &s0,
const index &s1,
const index &s2 = span,
const index &s3 = span) const;
/// \ingroup array_mem_row
/// @{
///
/// \brief Returns a reference to a row
///
/// \copydetails array_mem_row
///
/// \param[in] index is the index of the row to be returned
///
/// \returns a reference to a row defined by \p index
///
array::array_proxy row(int index);
const array::array_proxy row(int index) const; ///< \copydoc row
///
/// \brief Returns a reference to sequence of rows
///
/// \copydetails array_mem_row
///
/// \param[in] first is the index of the row to be returned
/// \param[in] last is the index of the row to be returned
///
/// \returns a reference to a set of rows
array::array_proxy rows(int first, int last);
const array::array_proxy rows(int first, int last) const; ///< \copydoc rows
/// @}
/// \ingroup array_mem_col
/// @{
///
/// \brief Returns a reference to a col
///
/// \copydetails array_mem_col
///
/// \param[in] index is the index of the col to be returned
///
/// \returns a reference to a col defined by \p index
///
array::array_proxy col(int index);
const array::array_proxy col(int index) const; ///< \copydoc col
///
/// \brief Returns a reference to sequence of columns
///
/// \copydetails array_mem_col
///
/// \param[in] first is the index of the columns to be returned
/// \param[in] last is the index of the columns to be returned
///
/// \returns a reference to a set of columns
array::array_proxy cols(int first, int last);
const array::array_proxy cols(int first, int last) const; ///< \copydoc cols
/// @}
/// \ingroup array_mem_slice
/// @{
///
/// \brief Returns a reference to a matrix in a volume
///
/// \copydetails array_mem_slice
///
/// \param[in] index is the index of the slice to be returned
///
/// \returns a reference to a col
///
array::array_proxy slice(int index);
const array::array_proxy slice(int index) const; ///< \copydoc slice
/// \brief Returns a reference to a matrix in a volume
///
/// \copydetails array_mem_slice
///
/// \param[in] first is the index of the slices to be returned
/// \param[in] last is the index of the slices to be returned
///
/// \returns a reference to a set of slice
array::array_proxy slices(int first, int last);
const array::array_proxy slices(int first, int last) const; ///< \copydoc slices
/// @}
/// \brief Converts the array into another type
///
/// \param[in] type is the desired type(f32, s64, etc.)
/// \returns an array with the type specified by \p type
/// \ingroup method_mat
const array as(dtype type) const;
~array();
/// \brief Get the transposed the array
///
/// \returns Transposed matrix
/// \ingroup method_mat
array T() const;
/// \brief Get the conjugate-transpose of the current array
///
/// \returns conjugate-transpose matrix
/// \ingroup method_mat
array H() const;
#define ASSIGN_(OP) \
array& OP(const array &val); \
array& OP(const double &val); /**< \copydoc OP (const array &) */ \
array& OP(const cdouble &val); /**< \copydoc OP (const array &) */ \
array& OP(const cfloat &val); /**< \copydoc OP (const array &) */ \
array& OP(const float &val); /**< \copydoc OP (const array &) */ \
array& OP(const int &val); /**< \copydoc OP (const array &) */ \
array& OP(const unsigned &val); /**< \copydoc OP (const array &) */ \
array& OP(const bool &val); /**< \copydoc OP (const array &) */ \
array& OP(const char &val); /**< \copydoc OP (const array &) */ \
array& OP(const unsigned char &val); /**< \copydoc OP (const array &) */ \
array& OP(const long &val); /**< \copydoc OP (const array &) */ \
array& OP(const unsigned long &val); /**< \copydoc OP (const array &) */ \
array& OP(const long long &val); /**< \copydoc OP (const array &) */ \
array& OP(const unsigned long long &val); /**< \copydoc OP (const array &) */ \
#if AF_API_VERSION >= 32
#define ASSIGN(OP) \
ASSIGN_(OP) \
array& OP(const short &val); /**< \copydoc OP (const array &) */ \
array& OP(const unsigned short &val); /**< \copydoc OP (const array &) */ \
#else
#define ASSIGN(OP) ASSIGN_(OP)
#endif
/// \ingroup array_mem_operator_eq
/// @{
/// \brief Assignes the value(s) of val to the elements of the array.
///
/// \param[in] val is the value to be assigned to the /ref af::array
/// \returns the reference to this
///
/// \note This is a copy on write operation. The copy only occurs when the
/// operator() is used on the left hand side.
ASSIGN(operator=)
/// @}
/// \ingroup array_mem_operator_plus_eq
/// @{
/// \brief Adds the value(s) of val to the elements of the array.
///
/// \param[in] val is the value to be assigned to the /ref af::array
/// \returns the reference to this
///
/// \note This is a copy on write operation. The copy only occurs when the
/// operator() is used on the left hand side.
ASSIGN(operator+=)
/// @}
/// \ingroup array_mem_operator_minus_eq
/// @{
/// \brief Subtracts the value(s) of val to the elements of the array.
///
/// \param[in] val is the value to be assigned to the /ref af::array
/// \returns the reference to this
///
/// \note This is a copy on write operation. The copy only occurs when the
/// operator() is used on the left hand side.
ASSIGN(operator-=)
/// @}
/// \ingroup array_mem_operator_multiply_eq
/// @{
/// \brief Multiplies the value(s) of val to the elements of the array.
///
/// \param[in] val is the value to be assigned to the /ref af::array
/// \returns the reference to this
///
/// \note This is a copy on write operation. The copy only occurs when the
/// operator() is used on the left hand side.
ASSIGN(operator*=)
/// @}
/// \ingroup array_mem_operator_divide_eq
/// @{
/// \brief Divides the value(s) of val to the elements of the array.
///
/// \param[in] val is the value to be assigned to the /ref af::array
/// \returns the reference to this
///
/// \note This is a copy on write operation. The copy only occurs when the
/// operator() is used on the left hand side.
/// \ingroup array_mem_operator_divide_eq
ASSIGN(operator/=)
/// @}
#undef ASSIGN
#undef ASSIGN_
///
/// \brief Negates the values of the array
/// \ingroup arith_func_neg
///
/// \returns an \ref array with negated values
array operator -() const;
///
/// \brief Performs a not operation on the values of the array
/// \ingroup arith_func_not
///
/// \returns an \ref array with negated values
array operator !() const;
///
/// \brief Get the count of non-zero elements in the array
///
/// For dense matrix, this is the same as count<int>(arr);
int nonzeros() const;
///
/// \brief Locks the device buffer in the memory manager.
///
/// This method can be called to take control of the device pointer from the memory manager.
/// While a buffer is locked, the memory manager does not free the memory.
void lock() const;
///
/// \brief Unlocks the device buffer in the memory manager.
///
/// This method can be called after called after calling \ref array::lock()
/// Calling this method gives back the control of the device pointer to the memory manager.
void unlock() const;
};
// end of class array
#define BIN_OP_(OP) \
AFAPI array OP (const array& lhs, const array& rhs); \
AFAPI array OP (const bool& lhs, const array& rhs); /**< \copydoc OP (const array&, const array&) */ \
AFAPI array OP (const int& lhs, const array& rhs); /**< \copydoc OP (const array&, const array&) */ \
AFAPI array OP (const unsigned& lhs, const array& rhs); /**< \copydoc OP (const array&, const array&) */ \
AFAPI array OP (const char& lhs, const array& rhs); /**< \copydoc OP (const array&, const array&) */ \
AFAPI array OP (const unsigned char& lhs, const array& rhs); /**< \copydoc OP (const array&, const array&) */ \
AFAPI array OP (const long& lhs, const array& rhs); /**< \copydoc OP (const array&, const array&) */ \
AFAPI array OP (const unsigned long& lhs, const array& rhs); /**< \copydoc OP (const array&, const array&) */ \
AFAPI array OP (const long long& lhs, const array& rhs); /**< \copydoc OP (const array&, const array&) */ \
AFAPI array OP (const unsigned long long& lhs, const array& rhs); /**< \copydoc OP (const array&, const array&) */ \
AFAPI array OP (const double& lhs, const array& rhs); /**< \copydoc OP (const array&, const array&) */ \
AFAPI array OP (const float& lhs, const array& rhs); /**< \copydoc OP (const array&, const array&) */ \
AFAPI array OP (const cfloat& lhs, const array& rhs); /**< \copydoc OP (const array&, const array&) */ \
AFAPI array OP (const cdouble& lhs, const array& rhs); /**< \copydoc OP (const array&, const array&) */ \
AFAPI array OP (const array& lhs, const bool& rhs); /**< \copydoc OP (const array&, const array&) */ \
AFAPI array OP (const array& lhs, const int& rhs); /**< \copydoc OP (const array&, const array&) */ \
AFAPI array OP (const array& lhs, const unsigned& rhs); /**< \copydoc OP (const array&, const array&) */ \
AFAPI array OP (const array& lhs, const char& rhs); /**< \copydoc OP (const array&, const array&) */ \
AFAPI array OP (const array& lhs, const unsigned char& rhs); /**< \copydoc OP (const array&, const array&) */ \
AFAPI array OP (const array& lhs, const long& rhs); /**< \copydoc OP (const array&, const array&) */ \
AFAPI array OP (const array& lhs, const unsigned long& rhs); /**< \copydoc OP (const array&, const array&) */ \
AFAPI array OP (const array& lhs, const long long& rhs); /**< \copydoc OP (const array&, const array&) */ \
AFAPI array OP (const array& lhs, const unsigned long long& rhs); /**< \copydoc OP (const array&, const array&) */ \
AFAPI array OP (const array& lhs, const double& rhs); /**< \copydoc OP (const array&, const array&) */ \
AFAPI array OP (const array& lhs, const float& rhs); /**< \copydoc OP (const array&, const array&) */ \
AFAPI array OP (const array& lhs, const cfloat& rhs); /**< \copydoc OP (const array&, const array&) */ \
AFAPI array OP (const array& lhs, const cdouble& rhs); /**< \copydoc OP (const array&, const array&) */ \
#if AF_API_VERSION >= 32
#define BIN_OP(OP) \
BIN_OP_(OP) \
AFAPI array OP (const short& lhs, const array& rhs); /**< \copydoc OP (const array&, const array&) */ \
AFAPI array OP (const unsigned short& lhs, const array& rhs); /**< \copydoc OP (const array&, const array&) */ \
AFAPI array OP (const array& lhs, const short& rhs); /**< \copydoc OP (const array&, const array&) */ \
AFAPI array OP (const array& lhs, const unsigned short& rhs); /**< \copydoc OP (const array&, const array&) */ \
#else
#define BIN_OP(OP) BIN_OP_(OP)
#endif
/// \ingroup arith_func_add
/// @{
/// \brief Adds two arrays or an array and a value.
///
/// \param[in] lhs the left hand side value of the operand
/// \param[in] rhs the right hand side value of the operand
///
/// \returns an array which is the sum of the \p lhs and \p rhs
BIN_OP(operator+ )
/// @}
/// \ingroup arith_func_sub
/// @{
/// \brief Subtracts two arrays or an array and a value.
///
/// \param[in] lhs the left hand side value of the operand
/// \param[in] rhs the right hand side value of the operand
///
/// \returns an array which is the subtraction of the \p lhs and \p rhs
BIN_OP(operator- )
/// @}
/// \ingroup arith_func_mul
/// @{
/// \brief Multiplies two arrays or an array and a value.
///
/// \param[in] lhs the left hand side value of the operand
/// \param[in] rhs the right hand side value of the operand
///
/// \returns an array which is the product of the \p lhs and \p rhs
BIN_OP(operator* )
/// @}
/// \ingroup arith_func_div
/// @{
/// \brief Divides two arrays or an array and a value.
///
/// \param[in] lhs the left hand side value of the operand
/// \param[in] rhs the right hand side value of the operand
///
/// \returns an array which is the quotient of the \p lhs and \p rhs
BIN_OP(operator/ )
/// @}
/// \ingroup arith_func_eq
/// @{
/// \brief Performs an equality operation on two arrays or an array and a value.
///
/// \param[in] lhs the left hand side value of the operand
/// \param[in] rhs the right hand side value of the operand
///
/// \returns an array of type b8 with the equality operation performed on each element
BIN_OP(operator==)
/// @}
/// \ingroup arith_func_neq
/// @{
/// \brief Performs an inequality operation on two arrays or an array and a value.
///
/// \param[in] lhs the left hand side value of the operand
/// \param[in] rhs the right hand side value of the operand
///
/// \returns an array of type b8 with the != operation performed on each element
/// of \p lhs and \p rhs
BIN_OP(operator!=)
/// @}
/// \ingroup arith_func_lt
/// @{
/// \brief Performs a lower than operation on two arrays or an array and a value.
///
/// \param[in] lhs the left hand side value of the operand
/// \param[in] rhs the right hand side value of the operand
///
/// \returns an array of type b8 with the < operation performed on each element
/// of \p lhs and \p rhs
BIN_OP(operator< )
/// @}
/// \ingroup arith_func_le
/// @{
/// \brief Performs an lower or equal operation on two arrays or an array and a value.
///
/// \param[in] lhs the left hand side value of the operand
/// \param[in] rhs the right hand side value of the operand
///
/// \returns an array of type b8 with the <= operation performed on each element
/// of \p lhs and \p rhs
BIN_OP(operator<=)
/// @}
/// \ingroup arith_func_gt
/// @{
/// \brief Performs an greater than operation on two arrays or an array and a value.
///
/// \param[in] lhs the left hand side value of the operand
/// \param[in] rhs the right hand side value of the operand
///
/// \returns an array of type b8 with the > operation performed on each element
/// of \p lhs and \p rhs
BIN_OP(operator> )
/// @}
/// \ingroup arith_func_ge
/// @{
/// \brief Performs an greater or equal operation on two arrays or an array and a value.
///
/// \param[in] lhs the left hand side value of the operand
/// \param[in] rhs the right hand side value of the operand
///
/// \returns an array of type b8 with the >= operation performed on each element
/// of \p lhs and \p rhs
BIN_OP(operator>=)
/// @}
/// \ingroup arith_func_and
/// @{
/// \brief Performs a logical AND operation on two arrays or an array and a
/// value.
///
/// \param[in] lhs the left hand side value of the operand
/// \param[in] rhs the right hand side value of the operand
///
/// \returns an array of type b8 with a logical AND operation performed on each
/// element of \p lhs and \p rhs
BIN_OP(operator&&)
/// @}
/// \ingroup arith_func_or
/// @{
/// \brief Performs an logical OR operation on two arrays or an array and a
/// value.
///
/// \param[in] lhs the left hand side value of the operand
/// \param[in] rhs the right hand side value of the operand
///
/// \returns an array of type b8 with a logical OR operation performed on each
/// element of \p lhs and \p rhs
BIN_OP(operator||)
/// @}
/// \ingroup arith_func_mod
/// @{
/// \brief Performs an modulo operation on two arrays or an array and a value.
///
/// \param[in] lhs the left hand side value of the operand
/// \param[in] rhs the right hand side value of the operand
///
/// \returns an array with a modulo operation performed on each
/// element of \p lhs and \p rhs
BIN_OP(operator% )
/// @}
/// \ingroup arith_func_bitand
/// @{
/// \brief Performs an bitwise AND operation on two arrays or an array and
/// a value.
///
/// \param[in] lhs the left hand side value of the operand
/// \param[in] rhs the right hand side value of the operand
///
/// \returns an array with a bitwise AND operation performed on each
/// element of \p lhs and \p rhs
BIN_OP(operator& )
/// @}
/// \ingroup arith_func_bitor
/// @{
/// \brief Performs an bitwise OR operation on two arrays or an array and
/// a value.
///
/// \param[in] lhs the left hand side value of the operand
/// \param[in] rhs the right hand side value of the operand
///
/// \returns an array with a bitwise OR operation performed on each
/// element of \p lhs and \p rhs
BIN_OP(operator| )
/// @}
/// \ingroup arith_func_bitxor
/// @{
/// \brief Performs an bitwise XOR operation on two arrays or an array and
/// a value.
///
/// \param[in] lhs the left hand side value of the operand
/// \param[in] rhs the right hand side value of the operand
///
/// \returns an array with a bitwise OR operation performed on each
/// element of \p lhs and \p rhs
BIN_OP(operator^ )
/// @}
/// \ingroup arith_func_shiftl
/// @{
/// \brief Performs an left shift operation on two arrays or an array and a
/// value.
///
/// \param[in] lhs the left hand side value of the operand
/// \param[in] rhs the right hand side value of the operand
///
/// \returns an array with a left shift operation performed on each
/// element of \p lhs and \p rhs
BIN_OP(operator<<)
/// @}
/// \ingroup arith_func_shiftr
/// @{
/// \brief Performs an right shift operation on two arrays or an array and a
/// value.
///
/// \param[in] lhs the left hand side value of the operand
/// \param[in] rhs the right hand side value of the operand
///
/// \returns an array with a right shift operation performed on each
/// element of \p lhs and \p rhs
BIN_OP(operator>>)
/// @}
#undef BIN_OP
#undef BIN_OP_
/// Evaluate an expression (nonblocking).
/**
\ingroup method_mat
@{
*/
inline array &eval(array &a) { a.eval(); return a; }
inline void eval(array &a, array &b) { eval(a); b.eval(); }
inline void eval(array &a, array &b, array &c) { eval(a, b); c.eval(); }
inline void eval(array &a, array &b, array &c, array &d) { eval(a, b, c); d.eval(); }
inline void eval(array &a, array &b, array &c, array &d, array &e) { eval(a, b, c, d); e.eval(); }
inline void eval(array &a, array &b, array &c, array &d, array &e, array &f) { eval(a, b, c, d, e); f.eval(); }
/**
@}
*/
}
#endif
#ifdef __cplusplus
extern "C" {
#endif
/**
\ingroup construct_mat
@{
*/
/**
Create an \ref af_array handle initialized with user defined data
This function will create an \ref af_array handle from the memory provided in \p data
\param[out] arr The pointer to the returned object.
\param[in] data The data which will be loaded into the array
\param[in] ndims The number of dimensions read from the \p dims parameter
\param[in] dims A C pointer with \p ndims elements. Each value represents the size of that dimension
\param[in] type The type of the \ref af_array object
\returns \ref AF_SUCCESS if the operation was a success
*/
AFAPI af_err af_create_array(af_array *arr, const void * const data, const unsigned ndims, const dim_t * const dims, const af_dtype type);
/**
Create af_array handle
\param[out] arr The pointer to the retured object.
\param[in] ndims The number of dimensions read from the \p dims parameter
\param[in] dims A C pointer with \p ndims elements. Each value represents the size of that dimension
\param[in] type The type of the \ref af_array object
\returns \ref AF_SUCCESS if the operation was a success
*/
AFAPI af_err af_create_handle(af_array *arr, const unsigned ndims, const dim_t * const dims, const af_dtype type);
/**
@}
*/
/**
\ingroup method_mat
@{
Deep copy an array to another
*/
AFAPI af_err af_copy_array(af_array *arr, const af_array in);
/**
Copy data from a C pointer (host/device) to an existing array.
*/
AFAPI af_err af_write_array(af_array arr, const void *data, const size_t bytes, af_source src);
/**
Copy data from an af_array to a C pointer.
Needs to used in conjunction with the two functions above
*/
AFAPI af_err af_get_data_ptr(void *data, const af_array arr);
/**
\brief Reduce the reference count of the \ref af_array
*/
AFAPI af_err af_release_array(af_array arr);
/**
Increments an \ref af_array reference count
*/
AFAPI af_err af_retain_array(af_array *out, const af_array in);
#if AF_API_VERSION >= 31
/**
\ingroup method_mat
@{
Get the use count of `af_array`
*/
AFAPI af_err af_get_data_ref_count(int *use_count, const af_array in);
#endif
/**
Evaluate any expressions in the Array
*/
AFAPI af_err af_eval(af_array in);
/**
@}
*/
/**
\ingroup method_mat
@{
*/
/**
\brief Gets the number of elements in an array.
\param[out] elems is the output that contains number of elements of \p arr
\param[in] arr is the input array
\returns error codes
*/
AFAPI af_err af_get_elements(dim_t *elems, const af_array arr);
/**
\brief Gets the type of an array.
\param[out] type is the output that contains the type of \p arr
\param[in] arr is the input array
\returns error codes
*/
AFAPI af_err af_get_type(af_dtype *type, const af_array arr);
/**
\brief Gets the dimseions of an array.
\param[out] d0 is the output that contains the size of first dimension of \p arr
\param[out] d1 is the output that contains the size of second dimension of \p arr
\param[out] d2 is the output that contains the size of third dimension of \p arr
\param[out] d3 is the output that contains the size of fourth dimension of \p arr
\param[in] arr is the input array
\returns error codes
*/
AFAPI af_err af_get_dims(dim_t *d0, dim_t *d1, dim_t *d2, dim_t *d3,
const af_array arr);
/**
\brief Gets the number of dimensions of an array.
\param[out] result is the output that contains the number of dims of \p arr
\param[in] arr is the input array
\returns error codes
*/
AFAPI af_err af_get_numdims(unsigned *result, const af_array arr);
/**
\brief Check if an array is empty.
\param[out] result is true if elements of arr is 0, otherwise false
\param[in] arr is the input array
\returns error codes
*/
AFAPI af_err af_is_empty (bool *result, const af_array arr);
/**
\brief Check if an array is scalar, ie. single element.
\param[out] result is true if elements of arr is 1, otherwise false
\param[in] arr is the input array
\returns error codes
*/
AFAPI af_err af_is_scalar (bool *result, const af_array arr);
/**
\brief Check if an array is row vector.
\param[out] result is true if arr has dims [1 x 1 1], false otherwise
\param[in] arr is the input array
\returns error codes
*/
AFAPI af_err af_is_row (bool *result, const af_array arr);
/**
\brief Check if an array is a column vector
\param[out] result is true if arr has dims [x 1 1 1], false otherwise
\param[in] arr is the input array
\returns error codes
*/
AFAPI af_err af_is_column (bool *result, const af_array arr);
/**
\brief Check if an array is a vector
A vector is any array that has exactly 1 dimension not equal to 1.
\param[out] result is true if arr is a vector, false otherwise
\param[in] arr is the input array
\returns error codes
*/
AFAPI af_err af_is_vector (bool *result, const af_array arr);
/**
\brief Check if an array is complex type
\param[out] result is true if arr is of type \ref c32 or \ref c64, otherwise false
\param[in] arr is the input array
\returns error codes
*/
AFAPI af_err af_is_complex (bool *result, const af_array arr);
/**
\brief Check if an array is real type
This is mutually exclusive to \ref af_is_complex
\param[out] result is true if arr is NOT of type \ref c32 or \ref c64, otherwise false
\param[in] arr is the input array
\returns error codes
*/
AFAPI af_err af_is_real (bool *result, const af_array arr);
/**
\brief Check if an array is double precision type
\param[out] result is true if arr is of type \ref f64 or \ref c64, otherwise false
\param[in] arr is the input array
\returns error codes
*/
AFAPI af_err af_is_double (bool *result, const af_array arr);
/**
\brief Check if an array is single precision type
\param[out] result is true if arr is of type \ref f32 or \ref c32, otherwise false
\param[in] arr is the input array
\returns error codes
*/
AFAPI af_err af_is_single (bool *result, const af_array arr);
/**
\brief Check if an array is real floating point type
\param[out] result is true if arr is of type \ref f32 or \ref f64, otherwise false
\param[in] arr is the input array
\returns error codes
*/
AFAPI af_err af_is_realfloating (bool *result, const af_array arr);
/**
\brief Check if an array is floating precision type
This is a combination of \ref af_is_realfloating and \ref af_is_complex
\param[out] result is true if arr is of type \ref f32, \ref f64, \ref c32 or \ref c64, otherwise false
\param[in] arr is the input array
\returns error codes
*/
AFAPI af_err af_is_floating (bool *result, const af_array arr);
/**
\brief Check if an array is integer type
\param[out] result is true if arr is of integer types, otherwise false
\param[in] arr is the input array
\returns error codes
*/
AFAPI af_err af_is_integer (bool *result, const af_array arr);
/**
\brief Check if an array is bool type
\param[out] result is true if arr is of \ref b8 type, otherwise false
\param[in] arr is the input array
\returns error codes
*/
AFAPI af_err af_is_bool (bool *result, const af_array arr);
/**
@}
*/
#ifdef __cplusplus
}
#endif
|