/usr/include/af/lapack.h is in libarrayfire-dev 3.2.2+dfsg1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 | /*******************************************************
* Copyright (c) 2014, ArrayFire
* All rights reserved.
*
* This file is distributed under 3-clause BSD license.
* The complete license agreement can be obtained at:
* http://arrayfire.com/licenses/BSD-3-Clause
********************************************************/
#pragma once
#include <af/array.h>
#include <af/defines.h>
#ifdef __cplusplus
namespace af
{
#if AF_API_VERSION >= 31
/**
C++ Interface for SVD decomposition
\param[out] u is the output array containing U
\param[out] s is the output array containing the diagonal values of sigma, (singular values of the input matrix))
\param[out] vt is the output array containing V^H
\param[in] in is the input matrix
\ingroup lapack_factor_func_svd
*/
AFAPI void svd(array &u, array &s, array &vt, const array &in);
#endif
#if AF_API_VERSION >= 31
/**
C++ Interface for SVD decomposition
\param[out] u is the output array containing U
\param[out] s is the output array containing the diagonal values of sigma, (singular values of the input matrix))
\param[out] vt is the output array containing V^H
\param[inout] in is the input matrix and will contain random data after this operation
\ingroup lapack_factor_func_svd
*/
AFAPI void svdInPlace(array &u, array &s, array &vt, array &in);
#endif
/**
C++ Interface for LU decomposition in packed format
\param[out] out is the output array containing the packed LU decomposition
\param[out] pivot will contain the permutation indices to map the input to the decomposition
\param[in] in is the input matrix
\param[in] is_lapack_piv specifies if the pivot is returned in original LAPACK compliant format
\note This function is not supported in GFOR
\ingroup lapack_factor_func_lu
*/
AFAPI void lu(array &out, array &pivot, const array &in, const bool is_lapack_piv=true);
/**
C++ Interface for LU decomposition
\param[out] lower will contain the lower triangular matrix of the LU decomposition
\param[out] upper will contain the upper triangular matrix of the LU decomposition
\param[out] pivot will contain the permutation indices to map the input to the decomposition
\param[in] in is the input matrix
\note This function is not supported in GFOR
\ingroup lapack_factor_func_lu
*/
AFAPI void lu(array &lower, array &upper, array &pivot, const array &in);
/**
C++ Interface for in place LU decomposition
\param[out] pivot will contain the permutation indices to map the input to the decomposition
\param[inout] in contains the input on entry, the packed LU decomposition on exit
\param[in] is_lapack_piv specifies if the pivot is returned in original LAPACK compliant format
\note This function is not supported in GFOR
\ingroup lapack_factor_func_lu
*/
AFAPI void luInPlace(array &pivot, array &in, const bool is_lapack_piv=true);
/**
C++ Interface for QR decomposition in packed format
\param[out] out is the output array containing the packed QR decomposition
\param[out] tau will contain additional information needed for unpacking the data
\param[in] in is the input matrix
\note This function is not supported in GFOR
\ingroup lapack_factor_func_qr
*/
AFAPI void qr(array &out, array &tau, const array &in);
/**
C++ Interface for QR decomposition
\param[out] q is the orthogonal matrix from QR decomposition
\param[out] r is the upper triangular matrix from QR decomposition
\param[out] tau will contain additional information needed for solving a least squares problem using \p q and \p r
\param[in] in is the input matrix
\note This function is not supported in GFOR
\ingroup lapack_factor_func_qr
*/
AFAPI void qr(array &q, array &r, array &tau, const array &in);
/**
C++ Interface for QR decomposition
\param[out] tau will contain additional information needed for unpacking the data
\param[inout] in is the input matrix on entry. It contains packed QR decomposition on exit
\note This function is not supported in GFOR
\ingroup lapack_factor_func_qr
*/
AFAPI void qrInPlace(array &tau, array &in);
/**
C++ Interface for cholesky decomposition
\param[out] out contains the triangular matrix. Multiply \p out with its conjugate transpose reproduces the input \p in.
\param[in] in is the input matrix
\param[in] is_upper a boolean determining if \p out is upper or lower triangular
\returns \p 0 if cholesky decomposition passes, if not it returns the rank at which the decomposition failed.
\note The input matrix \b has to be a positive definite matrix, if it is not zero, the cholesky decomposition functions return a non-zero output.
\note This function is not supported in GFOR
\ingroup lapack_factor_func_cholesky
*/
AFAPI int cholesky(array &out, const array &in, const bool is_upper = true);
/**
C++ Interface for in place cholesky decomposition
\param[inout] in is the input matrix on entry. It contains the triangular matrix on exit.
\param[in] is_upper a boolean determining if \p in is upper or lower triangular
\returns \p 0 if cholesky decomposition passes, if not it returns the rank at which the decomposition failed.
\note The input matrix \b has to be a positive definite matrix, if it is not zero, the cholesky decomposition functions return a non-zero output.
\note This function is not supported in GFOR
\ingroup lapack_factor_func_cholesky
*/
AFAPI int choleskyInPlace(array &in, const bool is_upper = true);
/**
C++ Interface for solving a system of equations
\param[in] a is the coefficient matrix
\param[in] b is the measured values
\param[in] options determining various properties of matrix \p a
\returns \p x, the matrix of unknown variables
\note \p options needs to be one of \ref AF_MAT_NONE, \ref AF_MAT_LOWER or \ref AF_MAT_UPPER
\note This function is not supported in GFOR
\ingroup lapack_solve_func_gen
*/
AFAPI array solve(const array &a, const array &b, const matProp options = AF_MAT_NONE);
/**
C++ Interface for solving a system of equations
\param[in] a is the output matrix from packed LU decomposition of the coefficient matrix
\param[in] piv is the pivot array from packed LU decomposition of the coefficient matrix
\param[in] b is the matrix of measured values
\param[in] options determining various properties of matrix \p a
\returns \p x, the matrix of unknown variables
\ingroup lapack_solve_lu_func_gen
\note \p options currently needs to be \ref AF_MAT_NONE
\note This function is not supported in GFOR
*/
AFAPI array solveLU(const array &a, const array &piv,
const array &b, const matProp options = AF_MAT_NONE);
/**
C++ Interface for inverting a matrix
\param[in] in is input matrix
\param[in] options determining various properties of matrix \p in
\returns \p x, the inverse of the input matrix
\note \p options currently needs to be \ref AF_MAT_NONE
\note This function is not supported in GFOR
\ingroup lapack_ops_func_inv
*/
AFAPI array inverse(const array &in, const matProp options = AF_MAT_NONE);
/**
C++ Interface for finding the rank of a matrix
\param[in] in is input matrix
\param[in] tol is the tolerance value
\returns the rank of the matrix
\ingroup lapack_ops_func_rank
*/
AFAPI unsigned rank(const array &in, const double tol=1E-5);
/**
C++ Interface for finding the determinant of a matrix
\param[in] in is input matrix
\returns the determinant of the matrix
\ingroup lapack_ops_func_det
*/
template<typename T> T det(const array &in);
/**
C++ Interface for norm of a matrix
\param[in] in is the input matrix
\param[in] type specifies the \ref af::normType. Default: \ref AF_NORM_VECTOR_1
\param[in] p specifies the value of P when \p type is one of \ref AF_NORM_VECTOR_P, AF_NORM_MATRIX_L_PQ is used. It is ignored for other values of \p type
\param[in] q specifies the value of Q when \p type is AF_NORM_MATRIX_L_PQ. This parameter is ignored if \p type is anything else
\returns the norm of \p inbased on \p type
\ingroup lapack_ops_func_norm
*/
AFAPI double norm(const array &in, const normType type=AF_NORM_EUCLID,
const double p=1, const double q=1);
}
#endif
#ifdef __cplusplus
extern "C" {
#endif
#if AF_API_VERSION >= 31
/**
C Interface for SVD decomposition
\param[out] u is the output array containing U
\param[out] s is the output array containing the diagonal values of sigma, (singular values of the input matrix))
\param[out] vt is the output array containing V^H
\param[in] in is the input matrix
\ingroup lapack_factor_func_svd
*/
AFAPI af_err af_svd(af_array *u, af_array *s, af_array *vt, const af_array in);
#endif
#if AF_API_VERSION >= 31
/**
C Interface for SVD decomposition
\param[out] u is the output array containing U
\param[out] s is the output array containing the diagonal values of sigma, (singular values of the input matrix))
\param[out] vt is the output array containing V^H
\param[inout] in is the input matrix that will contain random data after this operation
\ingroup lapack_factor_func_svd
*/
AFAPI af_err af_svd_inplace(af_array *u, af_array *s, af_array *vt, af_array in);
#endif
/**
C Interface for LU decomposition
\param[out] lower will contain the lower triangular matrix of the LU decomposition
\param[out] upper will contain the upper triangular matrix of the LU decomposition
\param[out] pivot will contain the permutation indices to map the input to the decomposition
\param[in] in is the input matrix
\ingroup lapack_factor_func_lu
*/
AFAPI af_err af_lu(af_array *lower, af_array *upper, af_array *pivot, const af_array in);
/**
C Interface for in place LU decomposition
\param[out] pivot will contain the permutation indices to map the input to the decomposition
\param[inout] in contains the input on entry, the packed LU decomposition on exit
\param[in] is_lapack_piv specifies if the pivot is returned in original LAPACK compliant format
\ingroup lapack_factor_func_lu
*/
AFAPI af_err af_lu_inplace(af_array *pivot, af_array in, const bool is_lapack_piv);
/**
C Interface for QR decomposition
\param[out] q is the orthogonal matrix from QR decomposition
\param[out] r is the upper triangular matrix from QR decomposition
\param[out] tau will contain additional information needed for solving a least squares problem using \p q and \p r
\param[in] in is the input matrix
\ingroup lapack_factor_func_qr
*/
AFAPI af_err af_qr(af_array *q, af_array *r, af_array *tau, const af_array in);
/**
C Interface for QR decomposition
\param[out] tau will contain additional information needed for unpacking the data
\param[inout] in is the input matrix on entry. It contains packed QR decomposition on exit
\ingroup lapack_factor_func_qr
*/
AFAPI af_err af_qr_inplace(af_array *tau, af_array in);
/**
C++ Interface for cholesky decomposition
\param[out] out contains the triangular matrix. Multiply \p out with it conjugate transpose reproduces the input \p in.
\param[out] info is \p 0 if cholesky decomposition passes, if not it returns the rank at which the decomposition failed.
\param[in] in is the input matrix
\param[in] is_upper a boolean determining if \p out is upper or lower triangular
\note The input matrix \b has to be a positive definite matrix, if it is not zero, the cholesky decomposition functions return a non zero output.
\ingroup lapack_factor_func_cholesky
*/
AFAPI af_err af_cholesky(af_array *out, int *info, const af_array in, const bool is_upper);
/**
C Interface for in place cholesky decomposition
\param[out] info is \p 0 if cholesky decomposition passes, if not it returns the rank at which the decomposition failed.
\param[inout] in is the input matrix on entry. It contains the triangular matrix on exit.
\param[in] is_upper a boolean determining if \p in is upper or lower triangular
\note The input matrix \b has to be a positive definite matrix, if it is not zero, the cholesky decomposition functions return a non zero output.
\ingroup lapack_factor_func_cholesky
*/
AFAPI af_err af_cholesky_inplace(int *info, af_array in, const bool is_upper);
/**
C Interface for solving a system of equations
\param[out] x is the matrix of unknown variables
\param[in] a is the coefficient matrix
\param[in] b is the measured values
\param[in] options determining various properties of matrix \p a
\ingroup lapack_solve_func_gen
\note \p options needs to be one of \ref AF_MAT_NONE, \ref AF_MAT_LOWER or \ref AF_MAT_UPPER
*/
AFAPI af_err af_solve(af_array *x, const af_array a, const af_array b,
const af_mat_prop options);
/**
C Interface for solving a system of equations
\param[out] x will contain the matrix of unknown variables
\param[in] a is the output matrix from packed LU decomposition of the coefficient matrix
\param[in] piv is the pivot array from packed LU decomposition of the coefficient matrix
\param[in] b is the matrix of measured values
\param[in] options determining various properties of matrix \p a
\ingroup lapack_solve_lu_func_gen
\note \p options currently needs to be \ref AF_MAT_NONE
\note This function is not supported in GFOR
*/
AFAPI af_err af_solve_lu(af_array *x, const af_array a, const af_array piv,
const af_array b, const af_mat_prop options);
/**
C Interface for inverting a matrix
\param[out] out will contain the inverse of matrix \p in
\param[in] in is input matrix
\param[in] options determining various properties of matrix \p in
\ingroup lapack_ops_func_inv
\note currently options needs to be \ref AF_MAT_NONE
*/
AFAPI af_err af_inverse(af_array *out, const af_array in, const af_mat_prop options);
/**
C Interface for finding the rank of a matrix
\param[out] rank will contain the rank of \p in
\param[in] in is input matrix
\param[in] tol is the tolerance value
\ingroup lapack_ops_func_rank
*/
AFAPI af_err af_rank(unsigned *rank, const af_array in, const double tol);
/**
C Interface for finding the determinant of a matrix
\param[out] det_real will contain the real part of the determinant of \p in
\param[out] det_imag will contain the imaginary part of the determinant of \p in
\param[in] in is input matrix
\ingroup lapack_ops_func_det
*/
AFAPI af_err af_det(double *det_real, double *det_imag, const af_array in);
/**
C Interface for norm of a matrix
\param[out] out will contain the norm of \p in
\param[in] in is the input matrix
\param[in] type specifies the \ref af::normType. Default: \ref AF_NORM_VECTOR_1
\param[in] p specifies the value of P when \p type is one of \ref AF_NORM_VECTOR_P, AF_NORM_MATRIX_L_PQ is used. It is ignored for other values of \p type
\param[in] q specifies the value of Q when \p type is AF_NORM_MATRIX_L_PQ. This parameter is ignored if \p type is anything else
\ingroup lapack_ops_func_norm
*/
AFAPI af_err af_norm(double *out, const af_array in, const af_norm_type type, const double p, const double q);
#ifdef __cplusplus
}
#endif
|