This file is indexed.

/usr/share/ada/adainclude/asis/a4g-norm.adb is in libasis2014-dev 2014-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
------------------------------------------------------------------------------
--                                                                          --
--                 ASIS-for-GNAT IMPLEMENTATION COMPONENTS                  --
--                                                                          --
--                             A 4 G . N O R M                              --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--            Copyright (C) 1995-2013, Free Software Foundation, Inc.       --
--                                                                          --
-- ASIS-for-GNAT is free software; you can redistribute it and/or modify it --
-- under terms of the  GNU General Public License  as published by the Free --
-- Software Foundation;  either version 3,  or  (at your option)  any later --
-- version. ASIS-for-GNAT is distributed  in the hope  that it will be use- --
-- ful, but WITHOUT ANY WARRANTY; without even the implied warranty of MER- --
-- CHANTABILITY or  FITNESS FOR A PARTICULAR PURPOSE.                       --
--                                                                          --
--                                                                          --
--                                                                          --
--                                                                          --
--                                                                          --
-- You should have received a copy of the GNU General Public License and    --
-- a copy of the GCC Runtime Library Exception along with this program;     --
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
-- <http://www.gnu.org/licenses/>.                                          --
--                                                                          --
-- ASIS-for-GNAT was originally developed  by the ASIS-for-GNAT team at the --
-- Software  Engineering  Laboratory  of  the Swiss  Federal  Institute  of --
-- Technology (LGL-EPFL) in Lausanne,  Switzerland, in cooperation with the --
-- Scientific  Research  Computer  Center of  Moscow State University (SRCC --
-- MSU), Russia,  with funding partially provided  by grants from the Swiss --
-- National  Science  Foundation  and  the  Swiss  Academy  of  Engineering --
-- Sciences. ASIS-for-GNAT is now maintained by AdaCore                     --
-- (http://www.adacore.com).                                                --
--                                                                          --
------------------------------------------------------------------------------

with Asis.Declarations; use  Asis.Declarations;
with Asis.Elements;     use  Asis.Elements;
with Asis.Expressions;  use  Asis.Expressions;
with Asis.Statements;   use  Asis.Statements;

with Asis.Set_Get;      use  Asis.Set_Get;

with A4G.Asis_Tables;   use A4G.Asis_Tables;
with A4G.A_Debug;       use A4G.A_Debug;
with A4G.A_Output;      use A4G.A_Output;
with A4G.A_Types;       use A4G.A_Types;
with A4G.Contt.UT;      use A4G.Contt.UT;
with A4G.Int_Knds;      use A4G.Int_Knds;
with A4G.Itests;        use A4G.Itests;
with A4G.Mapping;       use A4G.Mapping;

with Atree;             use Atree;
with Einfo;             use Einfo;
with Namet;             use Namet;
with Nlists;            use Nlists;
with Output;            use Output;
with Sinfo;             use Sinfo;

package body A4G.Norm is

   use Asis;

   ----------------------
   --  Local functions --
   ----------------------

   function Get_Type_With_Discr (Constr_Node : Node_Id) return Node_Id;
   --  for a node of N_Index_Or_Discriminant_Constraint type, which
   --  represents a discriminant constraint, this function yields the
   --  node representing the type declaration with a known discriminant
   --  part, where discriminants being constrained are defined. The
   --  intent is to get the right discriminant declarations (as subcomponents
   --  of the results), so these discriminant declarations may be implicit,
   --  as well as the type represented by the result node.
   --
   --  NOTE: this function looks like a particular case of some more
   --        general function useful for finding out the implicit
   --        components of a derived type

   function Unwind_Till_Discriminants (Type_Decl : Node_Id) return Node_Id;
   --  Starting from the node representing the declaration of access or
   --  derived type (ether formal or "normal"), it gives the type
   --  declaration node representing the designated or ancestor type
   --  (unwinding all the intermediate access or derived types) which
   --  has discriminant declarations. This function is supposed to be called
   --  in the situation, when it is known for sure, that the desired
   --  type indeed has discriminants
   --
   --  NOTE: this function looks like a particular case of some more
   --        general function useful for finding out the first non-access
   --        designated/non-derived ancestor type for a given access/derived
   --        type

   ----------------------------
   -- Defining_Gen_Parameter --
   ----------------------------

   function Defining_Gen_Parameter (Gen_Form_Par : Node_Id) return Node_Id is
      Result_Node   : Node_Id;
      Gen_Form_Pars : List_Id;
      Next_Par      : Node_Id;
   begin
      --  ONLY PARTIAL IMPLEMENTATION FOR OPERATOR_SYMBOL!!!!

      --  traversing the tree till the declaration of the corresponding
      --  generic unit:

      Result_Node := Parent (Gen_Form_Par); --  generic association
      Result_Node := Parent (Result_Node);  --  generic instantiation
      Result_Node := Sinfo.Name (Original_Node (Result_Node));

      --  the name of the generic  unit being instantiated
      Result_Node := Entity (Result_Node);

      --  the defining name of the generic  unit being instantiated
      while Nkind (Original_Node (Result_Node)) not in
            N_Generic_Declaration
      loop
         Result_Node := Parent (Result_Node);
      end loop;

      Result_Node := Original_Node (Result_Node); --  ???

      --  the node representing the declaration of the corresponding generic
      --  unit, but this is a rewritten node in the current GNAT model for
      --  generics, therefore:

      --  looking for the defining occurrence of the corresponding
      --  parameter:

      Gen_Form_Pars := Generic_Formal_Declarations (Result_Node);
      Next_Par      := First_Non_Pragma (Gen_Form_Pars);

      while Present (Next_Par) loop
         --  !!! only partial implementation for generic parameters which
         --  !!! are generic functions-operators
         if Nkind (Next_Par) in N_Formal_Subprogram_Declaration and then
            Nkind (Specification (Next_Par)) = N_Function_Specification
         then
            Result_Node := Defining_Unit_Name (Specification (Next_Par));
            --  cannot have a prefix!!!
            if Chars (Result_Node) = Chars (Gen_Form_Par) then
               --  note, that this is only a "very partial" solution
               --  for generic "+" and "-" functions!!!
               return Result_Node;
            end if;
         end if;

         Next_Par := Next_Non_Pragma (Next_Par);

      end loop;

      return Empty;
      --  to raise an exception in the calling context if we are wrong
   end Defining_Gen_Parameter;

   --------------------
   -- Discr_Def_Name --
   --------------------

   function Discr_Def_Name
     (Association : Asis.Discriminant_Association)
      return        Asis.Defining_Name
   is
      Result_Node     : Node_Id;
      Result_Unit     : Asis.Compilation_Unit;
      Result_Element  : Asis.Defining_Name;
      Inherited_Discr : Boolean;
   begin
      --  a normalized association contains the node on which the result
      --  should be built as the Node field of Association, see the
      --  documentation in the body of Normalized_Discriminant_Associations.
      --  So we may start for creating the "rough" version of Result_Element:

      Result_Node := Node (Association);
      Result_Unit := Enclosing_Unit (Encl_Cont_Id (Association), Result_Node);

      Result_Element := Node_To_Element_New
                          (Node          => Result_Node,
                           Internal_Kind => A_Defining_Identifier,
                           In_Unit       => Result_Unit);

      --  and now we have to correct, if needed, the fields
      --  Is_Part_Of_Implicit, Is_Part_Of_Inherited and Is_Part_Of_Instance
      --  of Result_Element, which are set False by default

      Inherited_Discr := Is_Inherited_Discriminant (Result_Node);

      Set_From_Implicit  (Result_Element, Inherited_Discr);
      Set_From_Inherited (Result_Element, Inherited_Discr);
      --  for discriminants, to be implicit and to be inherited mean the
      --  same
      Set_From_Instance  (Result_Element, Is_From_Instance (Result_Node));

      return Result_Element;
   end Discr_Def_Name;

   -------------------------
   -- Get_Type_With_Discr --
   -------------------------

   function Get_Type_With_Discr (Constr_Node : Node_Id) return Node_Id is
      Result_Node    : Node_Id;
      Curr_Node      : Node_Id;
      Curr_Node_Kind : Node_Kind;
   begin

      -------------------------
      -- Implementation Note --
      -------------------------
      --  The current implementation definitely contains errors and it
      --  is far from being perfect.
      --
      --  For now, at least the problem with the formal types is known
      --  as a real source for ASIS crashes. The problem is that GNAT
      --  rewrites completely all the tree structures for generic
      --  declarations, and the original structures ARE NOT completely
      --  decorated. And (at least, now) ASIS works with original
      --  tree structures only. So some semantic node fields may be
      --  Empty in the original tree structures corresponding to
      --  generics. (ASIS will crash, when a discriminant constraint
      --  being analyzed is in a generic declaration)

      --  first, we have to go from the constraint node to the subtype
      --  indication to which this constraint is applied
      Curr_Node := Sinfo.Subtype_Mark (Parent (Constr_Node));

      --  second, we have to go from this subtype indication to the
      --  corresponding base type
      Curr_Node := Base_Type (Entity (Curr_Node));
      --  this is a defining identifier,
      Curr_Node := Parent (Curr_Node);
      --  and this should be the node representing a type declaration,
      --  the only possible Node Kinds for its *original* node are:
      --
      --     N_Formal_Type_Declaration,
      --     N_Full_Type_Declaration,
      --     N_Incomplete_Type_Declaration,
      --     N_Private_Extension_Declaration,
      --     N_Private_Type_Declaration,
      --     N_Protected_Type_Declaration,
      --
      --  But, for derived and formal derived types, GNAT rewrites the
      --  corresponding tree structures: it replaces the original node
      --  of N_Formal_Type_Declaration or N_Full_Type_Declaration kind
      --  with N_Subtype_Decalration node, but the immediately preceding
      --  node is the (inserted) node of N_Full_Type_Declaration kind,
      --  this type implicitly defines all the discriminants and
      --  components which are inherited by the derived type.

      if Debug_Flag_A then
         Write_Eol;
         Write_Str ("Norm.Get_Type_With_Discr: type on which discriminant ");
         Write_Str ("constraint is imposed");
         Write_Eol;
         Write_Node (Curr_Node);
         Write_Eol;
      end if;

      Curr_Node_Kind := Nkind (Curr_Node);

      --  and now we have to analyze the type declaration (definition?)
      --  and to choose the further traversing depending on this analysis.

      case Curr_Node_Kind is
         when N_Incomplete_Type_Declaration   |
              N_Private_Extension_Declaration |
              N_Private_Type_Declaration      |
              N_Protected_Type_Declaration    =>
            --  these cases are easy: we already have needed discriminants
            --  in the type declaration:
            Result_Node := Curr_Node;

         when N_Formal_Type_Declaration =>
            case Nkind (Sinfo.Formal_Type_Definition (Curr_Node)) is
               when N_Formal_Private_Type_Definition =>
                  --  the situation is the same as for the previous
                  --  alternative of the external case - the discriminant
                  --  declarations are already here
                  Result_Node := Curr_Node;

               --  when N_Formal_Derived_Type_Definition =>
                  --  RM95 12.5.1(11): "The declaration of a formal derived
                  --  type shall not have a known_discriminant_part"
                  --  therefore we have to find implicit discriminant
                  --  declarations

                  --  in fact, this case can never happen - GNAT inserts
                  --  the declaration of (implicit) type having the
                  --  corresponding discriminant declarations just before
                  --  the derived type declaration, and all the semantic
                  --  links in the tree are set to this implicit type

               when N_Access_To_Object_Definition =>
                  --  we have to go to the designated type (unwinding other
                  --  access types, if any) which has these discriminants
                  Result_Node := Unwind_Till_Discriminants (Result_Node);

               when others =>
                  --  We should never be here
                  raise Internal_Implementation_Error;
            end case;

         when N_Full_Type_Declaration =>
            case Nkind (Sinfo.Type_Definition (Curr_Node)) is
            --   when N_Derived_Type_Definition =>
            --      ?????? (it may have its "own" discriminants, and it may
            --      inherit discriminants from an ancestor
            --
            --  in fact, this case can never happen - GNAT inserts
            --  the declaration of (implicit) type having the
            --  corresponding discriminant declarations just before
            --  the derived type declaration, and all the semantic
            --  links in the tree are set to this implicit type

               when N_Record_Definition =>
                  --  the situation is the same as for the previous
                  --  alternative of the external case - the discriminant
                  --  declarations are already here
                  Result_Node := Curr_Node;

               when N_Access_To_Object_Definition =>
                  --  we have to go to the designated type (unwinding other
                  --  access types, if any) which has these discriminants
                  Result_Node := Unwind_Till_Discriminants (Result_Node);

               when others =>
                  --  We should never be here
                  raise Internal_Implementation_Error;
            end case;
         when others =>
            --  We should never be here
            raise Internal_Implementation_Error;
      end case;

      return Result_Node;
   end Get_Type_With_Discr;

   ------------------------------------------
   -- Normalized_Discriminant_Associations --
   ------------------------------------------

   function Normalized_Discriminant_Associations
     (Constr_Elem : Asis.Element;
      Constr_Node : Node_Id)
      return Asis.Association_List
   is
      Association_Node_List : constant List_Id := Constraints (Constr_Node);
      --  Association_Node_List cannot be No_List or Empty_List

      Result_Length         : Natural := 0;
      Curr_Association_Node : Node_Id;
   begin
      -------------------------
      -- Implementation Note --
      -------------------------
      --  This code may be incomplete or it may contain errors originated
      --  from incomplete analyziz of the situation. But we need some code
      --  to start from. So this is the first step of the step-by-step
      --  development of this function

      --  First, we have to compute the length of the result. We cannot use
      --  List_Length (Association_Node_List) for it because of the constraints
      --  like this
      --
      --     T (1, 2, D3|D4 => 3)

      Curr_Association_Node := First_Non_Pragma (Association_Node_List);

      --  First, counting positional associations which go first (if any)
      while Present (Curr_Association_Node) and then
            Nkind (Curr_Association_Node) /= N_Discriminant_Association
      loop
         Result_Length         := Result_Length + 1;
         Curr_Association_Node := Next_Non_Pragma (Curr_Association_Node);
      end loop;

      --  Now, we have to count named associations (if any), taking into
      --  account bad style like D3|D4 => 3 in discriminant constraints :[

      while Present (Curr_Association_Node) loop
         --  and if we are here, Curr_Association_Node may be of
         --  N_Discriminant_Association kind only
         Result_Length := Result_Length +
                          Natural (List_Length
                            (Selector_Names (Curr_Association_Node)));
         Curr_Association_Node := Next_Non_Pragma (Curr_Association_Node);
      end loop;

      declare
         Result_List : Asis.Association_List (1 .. Result_Length);

         --  and now we have to build Result_List in a Element-by-Element
         --  manner
         --
         --  The current implementation approach is:
         --
         --  - GNAT (3.05) does not rewrite the tree structures for
         --    discriminant associations, so we can use the R_Node fields
         --    of the result Elements to point to the corresponding
         --    expression (and, therefore, we can use the general
         --    R_Node-based approach for Enclosing_Element), and we can
         --    use the Node field to point to the defining occurrence
         --    of the corresponding discriminant
         --
         --  - We have to find and to go through the definitions of the
         --    corresponding discriminants anyway - to order the discriminant
         --    associations in the result, as it is required by the
         --    Normalized parameter set True. So it would not make sense to
         --    postpone finding of the discriminant defining name till
         --    it will be required by the
         --    Asis.Expressions.Discriminant_Selector_Names query

         Discr_Spec_Nodes : List_Id;
         --  here we should have the discriminant specifications from the
         --  corresponding discriminant part
         Type_Decl_Node   : Node_Id;
         --  the type declaration containing these discriminant
         --  specifications
         Discr_Spec_Node       : Node_Id;
         Discr_Def_Id_N        : Node_Id;
         Discr_Def_Name        : Name_Id;

         Association_Trav_Node : Node_Id;
         Discr_Sel_N_Node      : Node_Id;

         Is_Positional_Association  : Boolean := True;
         --  flag indicating if the discriminant association to process is
         --  a positional association
      begin
         Type_Decl_Node   := Get_Type_With_Discr (Constr_Node);
         Discr_Spec_Nodes := Discriminant_Specifications (Type_Decl_Node);
         --  we prefer to have this extra step with Type_Decl_Node to
         --  make the maintenance of finding the discriminant specifications
         --  easier

         Discr_Spec_Node       := First_Non_Pragma (Discr_Spec_Nodes);
         Curr_Association_Node := First_Non_Pragma (Association_Node_List);

         for I in 1 .. Result_Length loop
            --  Result_Length is the same as List_Lenght (Discr_Spec_Nodes),
            --  otherwise it is an error!

            --  We have to process positional and named associations
            --  separately

            --  Positional associations go first, and they do not have
            --  a discriminant names in the tree structures for the constraint
            --  being processed, so we have to pick up elements one-by-one
            --  from two lists - Discr_Spec_Nodes and Association_Node_List -
            --  and to form one component of Result_List from each pair

            --  Named associations go last, one named association may
            --  be transformed into several normalized ASIS discriminant
            --  associations

            Discr_Def_Id_N := Defining_Identifier (Discr_Spec_Node);

            if Nkind (Curr_Association_Node) = N_Discriminant_Association then
               Is_Positional_Association := False;
            end if;

            if Is_Positional_Association then
               --  First, we create A_Discriminant_Association Element
               --  from Curr_Association_Node, as we do it for non-normalized
               --  associations
               Result_List (I) :=  Node_To_Element_New
                              (Starting_Element => Constr_Elem,
                               Node             => Curr_Association_Node,
                               Internal_Kind    => A_Discriminant_Association,
                               Norm_Case        => Is_Normalized);

               --  And now we have to correct the Node field of this Element:
               Set_Node (Result_List (I), Discr_Def_Id_N);

               --  And now we have to prepare the next iteration of the loop:
               Curr_Association_Node :=
                 Next_Non_Pragma (Curr_Association_Node);
            else
               Discr_Def_Name := Chars (Discr_Def_Id_N);
               Association_Trav_Node  := Curr_Association_Node;
               --  as soon as all the positional associations have been
               --  processed, Curr_Association_Node is frozen as pointed to the
               --  first named association (if any)

               Scan_Named_Associations : while Present (Association_Trav_Node)
               loop
                  --  this loop scans all the named associations
                  Discr_Sel_N_Node :=
                     First_Non_Pragma (Selector_Names (Association_Trav_Node));

                  while Present (Discr_Sel_N_Node) loop
                  --  This loop cans all the discriminant selector names
                  --  in a given named discriminant association

                     exit Scan_Named_Associations
                        when Chars (Discr_Sel_N_Node) = Discr_Def_Name;

                     Discr_Sel_N_Node := Next_Non_Pragma (Discr_Sel_N_Node);
                  end loop;

                  Association_Trav_Node :=
                    Next_Non_Pragma (Association_Trav_Node);
               end loop Scan_Named_Associations;

               --  and when we are here, Association_Trav_Node points to the
               --  (named) discriminant association containing the expression
               --  for Discr_Spec_Node and Discr_Def_Id_N being processed. So:

               Result_List (I) := Node_To_Element_New
                 (Starting_Element => Constr_Elem,
                  Node             => Sinfo.Expression (Association_Trav_Node),
                  Internal_Kind    => A_Discriminant_Association,
                  Norm_Case        => Is_Normalized);

               --  And now we have to correct the Node field of this Element,
               --  just as for positional associations:

               Set_Node (Result_List (I), Discr_Def_Id_N);
            end if;
            Discr_Spec_Node := Next_Non_Pragma (Discr_Spec_Node);
            --  this should not be under "if Is_Positional_Association",
            --  because we have to go one step ahead in Discr_Spec_Nodes
            --  for every iteration of this loop
         end loop;

         return Result_List;

      end;
   end Normalized_Discriminant_Associations;

   -------------------------------------
   -- Normalized_Generic_Associations --
   -------------------------------------

   function Normalized_Generic_Associations
     (Inst_Elem          : Asis.Element;
      Templ_Node         : Node_Id)
      return               Asis.Association_List
   is

      Inst_Node           : Node_Id := R_Node (Inst_Elem);
      --  Represents the instantiation

      Exp_Inst_Node : Node_Id := R_Node (Inst_Elem);
      --  Should be set to point to the expanded package created to the
      --  instantiation

      Current_Formal      : Node_Id;
      Curr_Form_Original  : Node_Id;
      --  the generic formal parameter declaration node currently
      --  processed, corresponds to Current_Associationin the Result

      Current_Formal_Def  : Node_Id;
      --  the node representing the defining identifier or the defining
      --  program unit name from Current_Formal

      Current_Actual      : Node_Id;
      --  the node representing the actual parameter being a part of
      --  normalized generic association to be constructed

      Tmp : Node_Id;

      Current_Norm_Case   : Normalization_Cases;

      Next_Renaming_In_Instance : Node_Id;
      --  Next artificial declaration created in the instance to pass
      --  actual parameters

      Still_Positional    : Boolean := True;
      --  during constructing the result we traverse both the formal part
      --  and instantiation. This flag shows if we are in the positional
      --  (if any) or in the named (if any) part of the generic
      --  actual part.
      Next_Positional_Actual : Node_Id := Empty;
      --  This is the next generic association (if any) being traversed in
      --  the positional part of the generic actual part. When all
      --  the positional part is traversed, but there are some named
      --  associations after them it is set to the first named
      --  association. Remains equal to Empty, if there is
      --  no generic actual part.
      Next_Actual : Node_Id;
      --  just needed to traverse the generic actual part, when looking
      --  among the named associations for the explicitly provided actual
      Actual_Found : Boolean;

      No_More_Actual : Boolean := False;
      --  Is set to True, when there is no more actual to investigate
      --  in the generic actual part

      procedure Find_Default;
      --  This procedure works on all the objects declared above in
      --  Normalized_Generic_Associations as on global variables.
      --  It should be called if a generic actual part does not contain
      --  any actual for a given pair of Current_Formal-Current_Association,
      --  and it defines the default to be used in the normalized generic
      --  association, that is, it defines Current_Actual and
      --  Current_Spec_Case.

      procedure Find_Default is
      begin

         --  if we do not have a box in the declaration of the
         --  corresponding actual parameter, then everything is simple:
         if Nkind (Current_Formal) = N_Formal_Object_Declaration then
            Tmp := Current_Formal;

            while Prev_Ids (Tmp) loop
               Tmp := Prev_Non_Pragma (Tmp);
            end loop;

            Current_Actual    := Sinfo.Default_Expression (Tmp);
            Current_Norm_Case := Is_Normalized_Defaulted;
         elsif Nkind (Current_Formal) in
                  N_Formal_Subprogram_Declaration and then
               Present (Default_Name (Current_Formal))
         then
            Current_Actual    := Default_Name (Current_Formal);
            Current_Norm_Case := Is_Normalized_Defaulted;

         elsif Nkind (Current_Formal) in
                  N_Formal_Subprogram_Declaration and then
               Box_Present (Current_Formal)
         then
            --  and this is the most interesting case...
            --  ASIS requires in this case to return some "implicit naming
            --  expression" being a reference to the actual subprogram. The
            --  tree already contains such an expression.

            while not (Nkind (Next_Renaming_In_Instance) =
                         N_Subprogram_Renaming_Declaration
                   and then
                       Corresponding_Formal_Spec (Next_Renaming_In_Instance) =
                         Current_Formal_Def)
            loop
               Next_Renaming_In_Instance := Next (Next_Renaming_In_Instance);
            end loop;

            Current_Actual := Sinfo.Name (Next_Renaming_In_Instance);

            Current_Norm_Case := Is_Normalized_Defaulted_For_Box;

         elsif Nkind (Current_Formal) in
                  N_Formal_Subprogram_Declaration and then
               Null_Present (Specification (Current_Formal))
         then
            Current_Norm_Case := Is_Normalized_Defaulted_Null_Procedure;
            pragma Assert
              (Nkind (Next_Renaming_In_Instance) = N_Subprogram_Body);
            Current_Actual :=
              Defining_Unit_Name (Specification (Next_Renaming_In_Instance));
         end if;

      end Find_Default;

   begin --  Normalized_Generic_Associations

      Asis_Element_Table.Init;

      ----------------------------------------------------------
      --  The implementation approach and the representation  --
      --  of the normalized generic associations              --
      ----------------------------------------------------------

      --  Each normalized generic association in ASIS is represented by
      --  three nodes:
      --
      --  R_Node -        represents the corresponding instantiation,
      --                  is used for Enclosing_Element purposes only;
      --  Node   -        represents the defining node of the corresponding
      --                  generic formal parameter;
      --  Node_Field_2 -  represents the actual parameter
      --
      --  See also the documentation of Asis.Expressions.Actual_Parameter
      --  for the details of obtaining the actual parameter from
      --  a normalized generic association

      if Nkind (Inst_Node) not in N_Subprogram_Instantiation then
         Inst_Node := Node (Inst_Elem);
      end if;

      if Is_Rewrite_Substitution (Exp_Inst_Node)
        and then
         Nkind (Original_Node (Exp_Inst_Node)) in N_Generic_Instantiation
      then
         --  This is the case for library-level instantiations
         if Nkind (Exp_Inst_Node) = N_Package_Body then
            Exp_Inst_Node := Corresponding_Spec (Exp_Inst_Node);

            while Nkind (Exp_Inst_Node) /= N_Package_Declaration loop
               Exp_Inst_Node := Parent (Exp_Inst_Node);
            end loop;
         end if;

      elsif Nkind (Exp_Inst_Node) = N_Package_Declaration
          and then
            Nkind (Original_Node (Exp_Inst_Node)) =
              N_Formal_Package_Declaration
      then
         null;

      else
         Exp_Inst_Node := Prev (Exp_Inst_Node);
      end if;

      if Nkind (Exp_Inst_Node) = N_Package_Body then
         --  Skipping expanded body
         Exp_Inst_Node := Prev (Exp_Inst_Node);
      end if;

      pragma Assert (Nkind (Exp_Inst_Node) = N_Package_Declaration);

      Next_Renaming_In_Instance := Specification (Exp_Inst_Node);
      Next_Renaming_In_Instance :=
        First_Non_Pragma (Visible_Declarations (Next_Renaming_In_Instance));

      if No (Generic_Associations (Inst_Node)) then
         Still_Positional := False;
         No_More_Actual   := True;
      else
         Next_Positional_Actual :=
           First_Non_Pragma (Generic_Associations (Inst_Node));

         if Present (Selector_Name (Next_Positional_Actual)) then
            Still_Positional := False;
         end if;

      end if;

      Current_Formal :=
        First_Non_Pragma (Generic_Formal_Declarations (Templ_Node));

      while Present (Current_Formal)
           and then
            (not Comes_From_Source (Original_Node (Current_Formal))
            or else
             Nkind (Current_Formal) = N_Use_Package_Clause
            or else
             Nkind (Current_Formal) = N_Use_Type_Clause)
      loop
         --  This loop is needed because of formal packages - the front-end
         --  creates the artificial package declarations nodes for them, so
         --  we have to skip these nodes
         Current_Formal := Next_Non_Pragma (Current_Formal);
      end loop;

      Curr_Form_Original := Original_Node (Current_Formal);
      --  it cannot be any pragma inside a formal part, so we do not
      --  need First/Next_Non_Pragma here

      --  This is the main loop, where the next normalized generic
      --  association is created

      while Present (Current_Formal) loop
         --  The only thing we really have to compute is the actual
         --  parameter for a given association. Four cases can be possible:
         --  1. an actual is passed in the generic association
         --  2. the default defined in the specification of the corresponding
         --     formal parameter is used
         --  3. the corresponding formal procedure has A_Box_Default, and
         --     the actual is defined at the place of the instantiation
         --  4. There is no actual for a formal procedure with null default,
         --     and we have to create an artificial element to represent this
         --     actual.

         if Nkind (Curr_Form_Original) in N_Formal_Subprogram_Declaration
          or else
            Nkind (Curr_Form_Original) = N_Package_Declaration
         then
            Current_Formal_Def :=
               Defining_Unit_Name (Specification (Curr_Form_Original));
         else
            Current_Formal_Def := Defining_Identifier (Curr_Form_Original);
         end if;

         --  first, trying to define, if there is an actual in the generic
         --  actual part
         if Still_Positional then
            --  well-defined case - we have an actual in the generic
            --  actual part. So, let's just pick it up:
            Current_Actual :=
               Explicit_Generic_Actual_Parameter (Next_Positional_Actual);
            Current_Norm_Case := Is_Normalized;

            --  And now we have to try to move Next_Positional_Actual in the
            --  generic actual part.
            if Present (Next_Non_Pragma (Next_Positional_Actual)) then
               Next_Positional_Actual :=
                 Next_Non_Pragma (Next_Positional_Actual);

               if Present (Selector_Name (Next_Positional_Actual)) then
                  Still_Positional := False;
               end if;
            else
               Still_Positional := False;
               No_More_Actual   := True;
            end if;

         elsif not No_More_Actual then

            --  Here we have to investigate the named generic associations
            --  to see if there is an actual for the currently created
            --  normalized ASIS association. We just go through all the
            --  named associations and compare Current_Formal_Def with
            --  the name of the formal from an association
            Next_Actual := Next_Positional_Actual;
            Actual_Found := False;

            while Present (Next_Actual) loop

               --  comparing Current_Formal_Def with the name of the
               --  formal parameter in a named association all we have
               --  to compare are Chars field
               if Comes_From_Source (Next_Actual) and then
                  (Chars (Current_Formal_Def) =
                   Chars (Selector_Name (Next_Actual)))
               then
                  Current_Actual :=
                     Explicit_Generic_Actual_Parameter (Next_Actual);
                  Current_Norm_Case := Is_Normalized;
                  Actual_Found := True;
                  exit;
               end if;

               Next_Actual := Next_Non_Pragma (Next_Actual);
            end loop;

            if not Actual_Found then
               Find_Default;
            end if;

         else
            --  for sure, no actual is provided in the generic actual
            --  part for a given association. We have to pick up the
            --  corresponding default parameter
            Find_Default;
         end if;

         Asis_Element_Table.Append (
            Node_To_Element_New (Node             => R_Node (Inst_Elem),
                                 Node_Field_2     => Current_Actual,
                                 Starting_Element => Inst_Elem,
                                 Internal_Kind    => A_Generic_Association,
                                 Norm_Case        => Current_Norm_Case));

         --  and here we have to correct the following fields in this
         --  component of the result:

         --  first, Node_To_Element_New set the Node field as Original_Node
         --  of Inst_Node, but we need the defining occurrence of the formal
         --  parameter here, therefore:
         Set_Node
           (Asis_Element_Table.Table (Asis_Element_Table.Last),
            Current_Formal_Def);

         --  then, we have to set On the Is_Part_Of_Implicit flag
         Set_From_Implicit
           (Asis_Element_Table.Table (Asis_Element_Table.Last));

         Current_Formal := Next_Non_Pragma (Current_Formal);

         while Present (Current_Formal)
              and then
               (not Comes_From_Source (Original_Node (Current_Formal))
               or else
                Nkind (Current_Formal) = N_Use_Package_Clause
               or else
                Nkind (Current_Formal) = N_Use_Type_Clause)
         loop
            Current_Formal := Next_Non_Pragma (Current_Formal);
         end loop;

         Curr_Form_Original   := Original_Node (Current_Formal);

         Next_Renaming_In_Instance :=
           Next_Non_Pragma (Next_Renaming_In_Instance);
      end loop;

      return Asis.Association_List
               (Asis_Element_Table.Table (1 .. Asis_Element_Table.Last));
   end Normalized_Generic_Associations;

   -----------------------------------
   -- Normalized_Param_Associations --
   -----------------------------------

   function Normalized_Param_Associations
     (Call_Elem : Asis.Element)
      return      Asis.Association_List
   is
      Call_Node : Node_Id;
      --  This node represents a call construct. It may be either
      --  A_Fuction_Call expression element or a call statement

      Subprogram_Entity : Entity_Id := Empty;
      --  In case if Call_Elem represents the call to inherited subprogram,
      --  should be sent to subprogram entity, otherwise is Empty

      Next_Formal : Node_Id;
      --  The specification of the formal parameters of the called entity. We
      --  iterate through these specifications to construct the list of
      --  normalized associations

      Next_Call_Association : Node_Id := Empty;
      --  The next parameter association in the call construct. We iterate
      --  through these associations one by one while we are in positional
      --  associations (if any). Next_Call_Association is equal to Empty only
      --  before creating the first association (that is, before processing
      --  the first association of the call construct, if any)

      Actual_Node : Node_Id := Empty;
      --  The node representing the actual parameter. Depending on whether this
      --  parameter is submitted explicitly or not, is taken either from
      --  Next_Association node or from Next_Formal node.

      Still_Positional : Boolean := True;
      --  Flag indicating if we are still processing position associations. Is
      --  set of by Get_Actual is it detects that we already are in named
      --  associations or if there are no associations (any more) in the call
      --  context

      Norm_Case : Normalization_Cases;

      function Get_Call_Node (E : Asis.Element) return Node_Id;
      --  Returns the node representing the call.

      function Get_First_Formal (E : Asis.Element) return Entity_Id;
      --  Returns the declaration node of the first formal parameter of the
      --  called entity

      function Get_Actual return Node_Id;
      --  This function tries to get the next actual parameter from the call,
      --  using Next_Call_Association, Still_Positional and Next_Formal as
      --  global variables. In case if the next actual parameter is still from
      --  positional associations from the call, it moves Next_Call_Association
      --  to point to this positional association, otherwise
      --  the value of Next_Call_Association is undefined (but tot Empty!)

      function Get_Default (N : Node_Id) return Node_Id;
      --  Returns the default initialization expression from the declaration
      --  of a formal parameter

      function Get_Subprogram_Entity (N : Node_Id) return Entity_Id;
      --  Provided that N represents a call, checks if this is a call to an
      --  inherited subprogram and if it is, returns the entity node of this
      --  subprogram. Otherwise returns Empty.

      ----------------
      -- Get_Actual --
      ----------------

      function Get_Actual return Node_Id is
         Result           : Node_Id := Empty;
         Next_Association : Node_Id;
      begin

         if No (Next_Call_Association) then
            --  This is the first call to this function. we have to check if
            --  there are positional associations:

            if Nkind (Call_Node) in N_Binary_Op then
               Next_Call_Association := Left_Opnd (Call_Node);
            elsif Nkind (Call_Node) in N_Op then
               Next_Call_Association := Right_Opnd (Call_Node);
            else
               Next_Call_Association :=
                 First_Non_Pragma (Parameter_Associations (Call_Node));
            end if;

            if Nkind (Next_Call_Association) /= N_Parameter_Association then
               Result := Next_Call_Association;
            else
               Still_Positional := False;
            end if;

         end if;

         --  Try to get the next appropriate positional association
         if No (Result)
           and then
            Still_Positional
         then
            if Nkind (Call_Node) in N_Binary_Op then
               Next_Call_Association := Right_Opnd (Call_Node);
            elsif Nkind (Call_Node) in N_Op then
               Next_Call_Association := Empty;
            else
               Next_Call_Association :=
                 Next_Non_Pragma (Next_Call_Association);
            end if;

            if Nkind (Next_Call_Association) /=
               N_Parameter_Association
            then
               Result := Next_Call_Association;
            else
               Still_Positional := False;
            end if;

         end if;

         --  Try to get the actual from the appropriate named association
         if No (Result) then

            pragma Assert (not Still_Positional);
            Next_Association := Next_Call_Association;

            while Present (Next_Association) loop

               pragma Assert
                 (Nkind (Next_Association) = N_Parameter_Association);

               if Comes_From_Source (Next_Association)
                and then
                  Chars (Selector_Name (Next_Association)) =
                  Chars (Defining_Identifier (Next_Formal))
               then
                  Result := Explicit_Actual_Parameter (Next_Association);
                  exit;
               end if;

               Next_Association := Next_Non_Pragma (Next_Association);
            end loop;

         end if;

         return Result;

      end Get_Actual;

      -------------------
      -- Get_Call_Node --
      -------------------

      function Get_Call_Node (E : Asis.Element) return Node_Id is
         Result : Node_Id := Node (E);
      begin

         if Is_Prefix_Notation (E) then
            Result := R_Node (E);

            if Is_Rewrite_Substitution (Result)         and then
               Nkind (Result) = N_Explicit_Dereference  and then
               Nkind (Prefix (Result)) = N_Function_Call
            then
               Result := Prefix (Result);
            end if;
         end if;

         if Nkind (R_Node (E)) = N_Function_Call
           and then
            (Nkind (Result) in  N_Op
            or else
             Nkind (Result) /= N_Function_Call)
         then
            --  Call to a user-defined operator function
            Result := R_Node (E);
         end if;

         return Result;
      end Get_Call_Node;

      -----------------
      -- Get_Default --
      -----------------

      function Get_Default (N : Node_Id) return Node_Id is
         Result : Node_Id := N;
      begin

         while Prev_Ids (Result) loop
            Result := Prev_Non_Pragma (Result);
         end loop;

         Result := Sinfo.Expression (Result);
         pragma Assert (Present (Result));

         return Result;
      end Get_Default;

      ----------------------
      -- Get_First_Formal --
      ----------------------

      function Get_First_Formal (E : Asis.Element) return Entity_Id is
         Called_Entity_Element : Asis.Element;
         Result                : Entity_Id;
      begin
         --  We use the ASIS semantic queries here to minimize the
         --  maintenance efforts.

         if Expression_Kind (Call_Elem) = A_Function_Call then
            Called_Entity_Element := Corresponding_Called_Function (E);
         else
            Called_Entity_Element := Corresponding_Called_Entity (E);
         end if;

         if Declaration_Kind (Called_Entity_Element) in
            A_Procedure_Instantiation .. A_Function_Instantiation
         then
            Called_Entity_Element :=
              Corresponding_Declaration (Called_Entity_Element);
         end if;

         pragma Assert (not Is_Nil (Called_Entity_Element));

         Result := Node (Called_Entity_Element);

         if Nkind (Result) /= N_Entry_Declaration then
            Result := Specification (Result);
         end if;

         Result := First_Non_Pragma (Parameter_Specifications (Result));

         return Result;

      end Get_First_Formal;

      ---------------------------
      -- Get_Subprogram_Entity --
      ---------------------------

      function Get_Subprogram_Entity (N : Node_Id) return Entity_Id is
         Tmp    : Node_Id   := N;
         Result : Entity_Id := Empty;
      begin

         if Nkind (N) not in N_Op then
            Tmp := Sinfo.Name (N);
         end if;

         if Nkind (Tmp) in N_Has_Entity then
            Tmp := Entity (Tmp);

            if Nkind (Parent (Tmp)) = N_Subtype_Declaration then
               Result := Tmp;
            end if;

         end if;

         return Result;

      end Get_Subprogram_Entity;

   begin  --  Normalized_Param_Associations

      --  ??? Should we have the common code for this function and for
      --  Normalized_Generic_Associations???

      ----------------------------------------------------------
      --  The implementation approach and the representation  --
      --  of the normalized parameter associations            --
      ----------------------------------------------------------

      --  Each normalized generic association in ASIS is represented by
      --  three nodes:
      --
      --  R_Node -        represents the corresponding call,
      --                  is used for Enclosing_Element purposes only;
      --  Node   -        represents the defining node of the corresponding
      --                  formal parameter;
      --  Node_Field_1 -  in case of a call to implicit inherited subprogram
      --                  points to subprogram defining node, otherwise Empty
      --  Node_Field_2 -  represents the actual parameter

      Call_Node         := Get_Call_Node    (Call_Elem);
      Subprogram_Entity := Get_Subprogram_Entity (Call_Node);
      Next_Formal       := Get_First_Formal (Call_Elem);

      Asis_Element_Table.Init;

      while Present (Next_Formal) loop

         Actual_Node := Get_Actual;
         Norm_Case   := Is_Normalized;

         if No (Actual_Node) then
            Actual_Node := Get_Default (Next_Formal);
            Norm_Case   := Is_Normalized_Defaulted;
         end if;

         Asis_Element_Table.Append (
            Node_To_Element_New
              (Node             => Call_Node,
               Node_Field_1     => Subprogram_Entity,
               Node_Field_2     => Actual_Node,
               Starting_Element => Call_Elem,
               Internal_Kind    => A_Parameter_Association,
               Norm_Case        => Norm_Case));

            --  first, Node_To_Element_New set the Node field as Original_Node
            --  of Call_Node, but we need the defining occurrence of the formal
            --  parameter here, therefore:
            Set_Node
              (Asis_Element_Table.Table (Asis_Element_Table.Last),
               Defining_Identifier (Next_Formal));

            --  then, we have to set On the Is_Part_Of_Implicit flag
            Set_From_Implicit
              (Asis_Element_Table.Table (Asis_Element_Table.Last));

            Next_Formal := Next_Non_Pragma (Next_Formal);
      end loop;

      return Asis.Association_List
               (Asis_Element_Table.Table (1 .. Asis_Element_Table.Last));
   end Normalized_Param_Associations;

   ----------------------------------------------
   -- Normalized_Record_Component_Associations --
   ----------------------------------------------

   --  PARTIALLY IMPLEMENTED, CAN NOT PROCESS VARIANT PARTS!

   function Normalized_Record_Component_Associations
     (Aggregate : Asis.Element)
      return      Asis.Element_List
   is
      Next_Association : Node_Id;
      pragma Unreferenced (Next_Association);
      --  This node represents the next association in (rewritten) aggregate

      Next_Component : Entity_Id;
      pragma Unreferenced (Next_Component);
      --  Next component entity

      In_Discriminants : constant Boolean := False;
      pragma Unreferenced (In_Discriminants);
      --  Flag that indicates if we are iterating through discriminants

      Arg_Node : Node_Id;
      --  For Ada95-oriented temporary placeholder implementation!

   begin
      --  This routine is supposed to generate the list of normalized record
      --  component associations for Ada 2005 record aggregates. At the
      --  moment it just repeats a simple-minded approach used for Ada 95 code.
      --  So it is no more that a placeholder that works on Ada 95 code and
      --  on Ada 2005 aggregates that do not contain boxes. The commented
      --  code is a part of the attempts to provide a proper Ada 2005
      --  implementation

      Arg_Node := R_Node (Aggregate);

      return N_To_E_List_New
               (List             => Component_Associations (Arg_Node),
                Node_Knd         => N_Component_Association,
                Internal_Kind    => A_Record_Component_Association,
                Norm_Case        => Is_Normalized,
                Starting_Element => Aggregate);

--      Asis_Element_Table.Init;

--     Next_Association := First (Component_Associations (R_Node (Aggregate)));

--      Next_Component := Etype (R_Node (Aggregate));

--      while Ekind (Next_Component) = E_Record_Subtype loop
--         Next_Component := Etype (Next_Component);
--      end loop;

--      Next_Component := Parent (Next_Component);

--      pragma Assert (Nkind (Next_Component) = N_Full_Type_Declaration);
--      --  ??? This may be wrong - what about private or derived types?

--      if Present (Discriminant_Specifications (Next_Component)) then
--         Next_Component :=
--           First (Discriminant_Specifications (Next_Component));
--         In_Discriminants := True;
--      else
--         --  We know for sure that the record type has components!
--         Next_Component :=
--           Component_List (Sinfo.Type_Definition (Next_Component));
--      end if;

--      Not_Implemented_Yet
--        (Diagnosis => "Normalized_Record_Component_Associations");

--      return Asis.Association_List
--               (Asis_Element_Table.Table (1 .. Asis_Element_Table.Last));
   end Normalized_Record_Component_Associations;

   -------------------------------
   -- Unwind_Till_Discriminants --
   -------------------------------

   function Unwind_Till_Discriminants (Type_Decl : Node_Id) return Node_Id is
      Result_Node : Node_Id;
      Curr_Node   : Node_Id;
   begin
      Result_Node := Type_Decl;

      while not Has_Discriminants (Defining_Identifier (Result_Node)) loop
         --  each iteration of the loop unwinds one step of "deriving"
         --  or "accessing"
         --
         --  !!!???!!!??? What really happens with private types in the tree
         if Nkind (Result_Node) = N_Full_Type_Declaration then
            Curr_Node := Sinfo.Type_Definition (Result_Node);

            if Nkind (Curr_Node) = N_Derived_Type_Definition or else
               --  ??can it really happen???
               Nkind (Curr_Node) = N_Access_To_Object_Definition
            then
               Curr_Node := Sinfo.Subtype_Mark (Curr_Node);
            else
               goto Error;
            end if;

            if Nkind (Curr_Node) = N_Subtype_Indication then
               --  this is an error situation - we cannot get any type
               --  with discriminants
               goto Error;
            end if;

         elsif Nkind (Result_Node) = N_Formal_Type_Declaration then
            Curr_Node := Sinfo.Formal_Type_Definition (Result_Node);

            if Nkind (Curr_Node) = N_Formal_Derived_Type_Definition then
               --  ??can it really happen???
               Curr_Node := Sinfo.Subtype_Mark (Curr_Node);
            elsif Nkind (Curr_Node) = N_Access_To_Object_Definition then
               Curr_Node := Sinfo.Subtype_Indication (Curr_Node);
               if Nkind (Curr_Node) = N_Subtype_Indication then
                  --  this is an error situation - we cannot get any type
                  --  with discriminants
                  goto Error;
               end if;
               Curr_Node := Base_Type (Curr_Node);
            else
               goto Error;
            end if;
         else
            goto Error;
         end if;

         --  as the result of this if statement, we have the subtype mark
         --  of the designated/parent subtype

         Curr_Node   := Base_Type (Entity (Curr_Node));
         Result_Node := Parent (Curr_Node);
      end loop;

      return Result_Node;

      <<Error>> raise Internal_Implementation_Error;
   end Unwind_Till_Discriminants;

end A4G.Norm;