This file is indexed.

/usr/share/ada/adainclude/asis/asis-data_decomposition-aux.adb is in libasis2014-dev 2014-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
------------------------------------------------------------------------------
--                                                                          --
--                 ASIS-for-GNAT IMPLEMENTATION COMPONENTS                  --
--                                                                          --
--          A S I S . D A T A _ D E C O M P O S I T I O N . A U X           --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--            Copyright (C) 1995-2013, Free Software Foundation, Inc.       --
--                                                                          --
-- ASIS-for-GNAT is free software; you can redistribute it and/or modify it --
-- under terms of the  GNU General Public License  as published by the Free --
-- Software  Foundation;  either version 3,  or (at your option)  any later --
-- version.  ASIS-for-GNAT  is  distributed  in  the  hope  that it will be --
-- useful,  but  WITHOUT ANY WARRANTY; without even the implied warranty of --
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                     --
--                                                                          --
--                                                                          --
--                                                                          --
--                                                                          --
--                                                                          --
-- You should have  received  a copy of the  GNU General Public License and --
-- a copy of the  GCC Runtime Library Exception  distributed with GNAT; see --
-- the files COPYING3 and COPYING.RUNTIME respectively.  If not, see        --
-- <http://www.gnu.org/licenses/>.                                          --
--                                                                          --
-- ASIS-for-GNAT was originally developed  by the ASIS-for-GNAT team at the --
-- Software  Engineering  Laboratory  of  the Swiss  Federal  Institute  of --
-- Technology (LGL-EPFL) in Lausanne,  Switzerland, in cooperation with the --
-- Scientific  Research  Computer  Center of  Moscow State University (SRCC --
-- MSU), Russia,  with funding partially provided  by grants from the Swiss --
-- National  Science  Foundation  and  the  Swiss  Academy  of  Engineering --
-- Sciences.  ASIS-for-GNAT is now maintained by  AdaCore                   --
-- (http://www.adacore.com).                                                --
--                                                                          --
------------------------------------------------------------------------------

pragma Ada_2012;

with Asis.Declarations; use Asis.Declarations;
with Asis.Definitions;  use Asis.Definitions;
with Asis.Elements;     use Asis.Elements;
with Asis.Expressions;  use Asis.Expressions;
with Asis.Extensions;   use Asis.Extensions;
with Asis.Iterator;     use Asis.Iterator;

with Asis.Set_Get;      use Asis.Set_Get;

with A4G.DDA_Aux;       use A4G.DDA_Aux;

with Atree;             use Atree;
with Einfo;             use Einfo;
with Elists;            use Elists;
with Sinfo;             use Sinfo;
with Uintp;             use Uintp;

package body Asis.Data_Decomposition.Aux is

   -----------------------
   -- Local subprograms --
   -----------------------

   function Build_Discrim_List_From_Constraint
     (Rec :  Entity_Id)
      return Discrim_List;
   --  Given a record entiti which has discriminants, returns a list
   --  of discriminant values obtained from teh discriminant constraint or,
   --  if there is no constraint, from default discriminant values.
   --  Null_Discrims is returned in case if there is no constraint and no
   --  default values for discriminants. Raises Variable_Rep_Info
   --  if there is a default value which is not a static expression.

   function Elist_Len (List : Elist_Id) return Int;
   --  Computes the length of Entity list. 0 i sreturned in case if No (List).

   function Is_Static_Constraint (Discr_Constr : Elist_Id) return Boolean;
   --  Provided that Discr_Constr is obtained as Discriminant_Constraint
   --  attribute of some type entity, checks if all the constraints are static

   function Has_Variant_Part (Rec_Type_Def : Element) return Boolean;
   --  Supposes Rec_Type_Def to be of A_Record_Type_Definition kind. Checks
   --  if it contains a variant part

   function Is_Empty_Record (Rec_Type_Def : Element) return Boolean;
   --  Supposes Rec_Type_Def to be of A_Record_Type_Definition kind. Checks
   --  if it dnefines a record type with no non-discriminant components

   ----------------------------------------
   -- Build_Discrim_List_From_Constraint --
   ----------------------------------------

   function Build_Discrim_List_From_Constraint
     (Rec :  Entity_Id)
      return Discrim_List
   is
      Constraint  : constant Elist_Id := Discriminant_Constraint (Rec);
      Res_Len     : constant Int      := Elist_Len (Constraint);
      Result      : Discrim_List (1 .. Res_Len);
      Next_Constr : Elmt_Id;
      Next_Expr   : Node_Id;
   begin

      Next_Constr := First_Elmt (Constraint);

      for J in 1 .. Res_Len loop
         Next_Expr := Node (Next_Constr);

         if Nkind (Next_Expr) = N_Discriminant_Association then
            Next_Expr := Sinfo.Expression (Next_Expr);
         end if;

         Result (J) := Eval_Scalar_Node (Next_Expr);
         Next_Constr := Next_Elmt (Next_Constr);
      end loop;

      return Result;

   end Build_Discrim_List_From_Constraint;

   ------------------------------------------
   -- Build_Discrim_List_If_Data_Presented --
   ------------------------------------------

   function Build_Discrim_List_If_Data_Presented
     (Rec          : Entity_Id;
      Data         : Asis.Data_Decomposition.Portable_Data;
      Ignore_Discs : Boolean := False)
      return         Discrim_List
   is
   begin
      if Data /= Nil_Portable_Data then
         return Build_Discrim_List (Rec, Data);

      elsif not Ignore_Discs and then
            Has_Discriminants (Rec)
      then
         --  Here we have the situation when the record type has
         --  discriminants, but no data stream is provided. Thit means, that
         --  we have to use the default values for discriminants

         return Build_Discrim_List_From_Constraint (Rec);
      else
         return Null_Discrims;
      end if;

   end Build_Discrim_List_If_Data_Presented;

   -------------------------------
   -- Component_Type_Definition --
   -------------------------------

   function Component_Type_Definition (E : Element) return Element is
      Result : Element := Nil_Element;
   begin
      case Int_Kind (E) is
         when A_Component_Declaration =>
            Result := Object_Declaration_View (E);
            Result := Component_Subtype_Indication (Result);
         when A_Subtype_Indication =>
            Result := E;
         when others =>
            pragma Assert (False);
            null;
      end case;

      Result := Asis.Definitions.Subtype_Mark (Result);

      if Int_Kind (Result) = A_Selected_Component then
         Result := Selector (Result);
      end if;

      Result := Corresponding_Name_Declaration (Result);

      Result := Corresponding_First_Subtype (Result);

      Result := Type_Declaration_View (Result);

      return Result;

   end Component_Type_Definition;

   ---------------------------
   -- Constraint_Model_Kind --
   ---------------------------

   function Constraint_Model_Kind
     (C    : Element)
      return Constraint_Model_Kinds
   is
      Arg_Kind : constant Internal_Element_Kinds := Int_Kind (C);
      Result   : Constraint_Model_Kinds := Static_Constraint;
      --  We start from the most optimistic assumption

      Control : Traverse_Control := Continue;

      procedure Analyze_Constraint
        (Element :        Asis.Element;
         Control : in out Traverse_Control;
         State   : in out Constraint_Model_Kinds);
      --  Checks the individual constraint and its components. Used as
      --  Pre-Operation

      procedure No_Op
        (Element :        Asis.Element;
         Control : in out Traverse_Control;
         State   : in out Constraint_Model_Kinds);
      --  Placeholder for Post-Operation

      procedure Traverse_Constraint is new Traverse_Element (
         State_Information => Constraint_Model_Kinds,
         Pre_Operation     => Analyze_Constraint,
         Post_Operation    => No_Op);

      ------------------------
      -- Analyze_Constraint --
      -------------------------

      procedure Analyze_Constraint
        (Element :        Asis.Element;
         Control : in out Traverse_Control;
         State   : in out Constraint_Model_Kinds)
      is
         Arg_Kind : constant Internal_Element_Kinds := Int_Kind (Element);
         Tmp_El   : Asis.Element;
         Tmp_Node : Node_Id;
      begin

         if Arg_Kind = An_Identifier
           and then
            Int_Kind (Enclosing_Element (Element)) =
               A_Discriminant_Association
           and then
            not Is_Equal (Element,
                          Discriminant_Expression
                            (Enclosing_Element (Element)))
         then
            --  If we are here, Element is from discriminant selector names
            return;
         end if;

         case Arg_Kind is

            when A_Discrete_Subtype_Indication =>

               if Is_Nil (Subtype_Constraint (Element)) then
                  --  If we are here then we have a range constraint. Let's try
                  --  to get the information directly from the tree (starting
                  --  from the overpessimistic assumption).

                  State  := External;
                  Tmp_El := Asis.Definitions.Subtype_Mark (Element);

                  if Expression_Kind (Tmp_El) = An_Attribute_Reference then
                     --  We are overpessimistic in this rather unusial case:
                     Control := Terminate_Immediately;
                     return;
                  end if;

                  Tmp_Node := R_Node (Tmp_El);
                  Tmp_Node := Entity (Tmp_Node);

                  if Present (Tmp_Node) then
                     Tmp_Node := Scalar_Range (Tmp_Node);

                     if Is_Static_Expression (Low_Bound (Tmp_Node))
                       and then
                        Is_Static_Expression (High_Bound (Tmp_Node))
                     then
                        State := Static_Constraint;
                     end if;

                  end if;

                  Control := Terminate_Immediately;
               end if;

            when A_Discrete_Range_Attribute_Reference =>

               if Is_Static (Element) then
                  Control := Abandon_Children;
               else
                  State   := External;
                  Control := Terminate_Immediately;
               end if;

            when Internal_Expression_Kinds =>
               if Is_True_Expression (Element) then

                  if Is_Static (Element) then
                     --  Nothing to do, no need to change State
                     Control := Abandon_Children;
                  else

                     if Arg_Kind = An_Identifier and then
                        Int_Kind (Corresponding_Name_Declaration (Element)) =
                           A_Discriminant_Specification
                     then
                        --  See RM 95 3.8(12)
                        State   := Discriminated;
                        Control := Abandon_Children;
                     else
                        --  Completely dinamic situation for sure
                        State   := External;
                        Control := Terminate_Immediately;
                     end if;

                  end if;

               else
                  --  The only possibility for those Elements which are in
                  --  Internal_Expression_Kinds, but are not
                  --  Is_True_Expression is a type mark, and we do not have to
                  --  analyze it
                  Control := Abandon_Children;
               end if;

            when An_Index_Constraint                |
                 A_Discriminant_Constraint          |
                 A_Discrete_Simple_Expression_Range |
                 A_Discriminant_Association         |
                 A_Simple_Expression_Range =>

               --  Just go down:
               null;

            when others =>
               pragma Assert (False);
               null;
         end case;

      end Analyze_Constraint;

      -----------
      -- No_Op --
      -----------

      procedure No_Op
        (Element :        Asis.Element;
         Control : in out Traverse_Control;
         State   : in out Constraint_Model_Kinds)
      is
      begin
         pragma Unreferenced (Element);
         pragma Unreferenced (Control);
         pragma Unreferenced (State);

         null;
      end No_Op;

   begin

      if Arg_Kind = An_Index_Constraint or else
         Arg_Kind = A_Discriminant_Constraint
      then
         Traverse_Constraint
           (Element => C,
            Control => Control,
            State   => Result);
      end if;

      return Result;

   end Constraint_Model_Kind;

   ---------------------
   -- De_Linear_Index --
   ---------------------

   function De_Linear_Index
     (Index       : Asis.ASIS_Natural;
      D           : ASIS_Natural;
      Ind_Lengths : Dimention_Length;
      Conv        : Convention_Id := Convention_Ada)
      return        Dimension_Indexes
   is
      Len     : Asis.ASIS_Natural := 1;
      Tmp_Ind : Asis.ASIS_Natural := Index;
      Tmp_Res : Asis.ASIS_Natural;
      Result  : Dimension_Indexes (1 .. D);
   begin

      for J in 1 .. D loop
         Len := Len * Ind_Lengths (J);
      end loop;

      --   Len can never be 0, because this function can never be called
      --   for an empty array

      --  For the normal case, we are row major

      if Conv /= Convention_Fortran then

         for J in Result'Range loop
            Len := Len / Ind_Lengths (J);

            Tmp_Res := Tmp_Ind / Len;

            if Tmp_Res * Len < Tmp_Ind then
               Tmp_Res := Tmp_Res + 1;
            end if;

            Result (J) := Tmp_Res;

            Tmp_Ind := Tmp_Ind - Len * (Result (J) - 1);
         end loop;

      --  For Fortran, we are column major

      else

         for J in reverse Result'Range loop
            Len := Len / Ind_Lengths (J);

            Tmp_Res := Tmp_Ind / Len;

            if Tmp_Res * Len < Tmp_Ind then
               Tmp_Res := Tmp_Res + 1;
            end if;

            Result (J) := Tmp_Res;

            Tmp_Ind := Tmp_Ind - Len * (Result (J) - 1);
         end loop;

      end if;

      return Result;
   end De_Linear_Index;

   --------------------------------------------
   -- Discriminant_Part_From_Type_Definition --
   --------------------------------------------

   function Discriminant_Part_From_Type_Definition
     (T    : Element)
      return Element
   is
      Type_Entity   : Node_Id;
      Tmp_Element   : Element;
      Result        : Element := Nil_Element;
   begin

      Type_Entity := R_Node (T);

      if Nkind (Type_Entity) /= N_Private_Type_Declaration then
         Type_Entity := Parent (Type_Entity);
      end if;

      Type_Entity := Sinfo.Defining_Identifier (Type_Entity);

      if Einfo.Has_Discriminants (Type_Entity) then

         Result := Enclosing_Element (T);

         Result := Discriminant_Part (Result);

         if Is_Nil (Result) then
            --  Here we already know, that the type defined by T has
            --  discriminants. The only possibility is that it is derived
            --  from a type with known discriminant part. So we have to
            --  traverse backward the derivation chain and return the first
            --  known discriminant part found
            Tmp_Element := Corresponding_Parent_Subtype (T);
            Tmp_Element := Corresponding_First_Subtype (Tmp_Element);

            loop
               Result := Discriminant_Part (Tmp_Element);

               exit when not Is_Nil (Result);

               Tmp_Element := Type_Declaration_View (Tmp_Element);
               Tmp_Element := Corresponding_Parent_Subtype (Tmp_Element);
               Tmp_Element := Corresponding_First_Subtype (Tmp_Element);

            end loop;

         end if;

      end if;

      return Result;

   end Discriminant_Part_From_Type_Definition;

   ---------------
   -- Elist_Len --
   ---------------

   function Elist_Len (List : Elist_Id) return Int is
      Result  : Int := 0;
      Next_El : Elmt_Id;
   begin

      if Present (List) then
         Next_El := First_Elmt (List);

         while Present (Next_El) loop
            Result  := Result + 1;
            Next_El := Next_Elmt (Next_El);
         end loop;

      end if;

      return Result;
   end Elist_Len;

   ----------------------
   -- Has_Variant_Part --
   ----------------------

   function Has_Variant_Part (Rec_Type_Def : Element) return Boolean is
      Result :           Boolean      := False;
      Def    : constant Asis.Element :=
        Asis.Definitions.Record_Definition (Rec_Type_Def);
   begin
      if Definition_Kind (Def) = A_Record_Definition then
         declare
            Comps : constant Asis.Element_List := Record_Components (Def);
         begin
            for C in Comps'Range loop
               if Definition_Kind (Comps (C)) = A_Variant_Part then
                  Result := True;
                  exit;
               end if;
            end loop;
         end;
      end if;

      return Result;
   end Has_Variant_Part;

   ----------------------------
   -- Is_Derived_From_Record --
   ----------------------------

   function Is_Derived_From_Record (TD : Element) return Boolean is
      Result           : Boolean := False;
      Type_Entity_Node : Node_Id;
   begin

      if Int_Kind (TD) = A_Derived_Type_Definition then
         Type_Entity_Node := R_Node (TD);
         Type_Entity_Node := Defining_Identifier (Parent (Type_Entity_Node));
         Result := Is_Record_Type (Type_Entity_Node);
      end if;

      return Result;
   end Is_Derived_From_Record;

   ---------------------------
   -- Is_Derived_From_Array --
   ---------------------------

   function Is_Derived_From_Array (TD : Element) return Boolean is
      Result           : Boolean := False;
      Type_Entity_Node : Node_Id;
   begin

      if Int_Kind (TD) = A_Derived_Type_Definition then
         Type_Entity_Node := R_Node (TD);
         Type_Entity_Node := Defining_Identifier (Parent (Type_Entity_Node));
         Result := Is_Array_Type (Type_Entity_Node);
      end if;

      return Result;
   end Is_Derived_From_Array;

   ---------------------
   -- Is_Empty_Record --
   ---------------------

   function Is_Empty_Record (Rec_Type_Def : Element) return Boolean is
      Result   : Boolean          := False;
      Arg_Node : constant Node_Id := R_Node (Rec_Type_Def);

   begin
      if Null_Present (Arg_Node) or else
         Null_Present (Component_List (Arg_Node))
      then
         Result := True;
      end if;

      return Result;
   end Is_Empty_Record;

   --------------------------
   -- Is_Static_Constraint --
   --------------------------

   function Is_Static_Constraint (Discr_Constr : Elist_Id) return Boolean is
      Result  : Boolean := True;
      Next_DA : Elmt_Id;
   begin
      Next_DA := First_Elmt (Discr_Constr);

      while Present (Next_DA) loop

         if not Is_Static_Expression (Node (Next_DA)) then
            Result := False;
            exit;
         end if;

         Next_DA := Next_Elmt (Next_DA);
      end loop;

      return Result;

   end Is_Static_Constraint;

   ------------------
   -- Linear_Index --
   ------------------

   function Linear_Index
     (Inds        : Dimension_Indexes;
      Ind_Lengths : Dimention_Length;
      Conv        : Convention_Id := Convention_Ada)
      return        Asis.ASIS_Natural
   is
      Indx : Asis.ASIS_Natural := 0;
   begin
      --  For the normal case, we are row major

      if Conv /= Convention_Fortran then
         for J in Inds'Range loop
            Indx := Indx * Ind_Lengths (J) + Inds (J) - 1;
         end loop;

      --  For Fortran, we are column major

      else
         for J in reverse Inds'Range loop
            Indx := Indx * Ind_Lengths (J) + Inds (J) - 1;
         end loop;
      end if;

      return Indx + 1;
   end Linear_Index;

   -------------
   -- Max_Len --
   -------------

   function Max_Len (Component : Array_Component) return Asis.ASIS_Natural is
      Result : Asis.ASIS_Natural;
   begin
      if Component.Length (1) = 0 then
         --  the case of an empty array
         return 0;
      else
         Result := 1;
      end if;

      for J in Component.Length'Range loop
         exit when Component.Length (J) = 0;
         Result := Result * Component.Length (J);
      end loop;

      return Result;

   end Max_Len;

   -----------------------
   -- Record_Model_Kind --
   -----------------------

   function Record_Model_Kind (R : Element) return Type_Model_Kinds is
      Type_Entity : Node_Id;
      Result      : Type_Model_Kinds := Not_A_Type_Model;

      Control : Traverse_Control := Continue;

      procedure Analyze_Component_Definition
        (Element :        Asis.Element;
         Control : in out Traverse_Control;
         State   : in out Type_Model_Kinds);
      --  Checks the individual component definition. Used as Pre-Operation.

      procedure No_Op
        (Element :        Asis.Element;
         Control : in out Traverse_Control;
         State   : in out Type_Model_Kinds);
      --  Placeholder for Post-Operation

      procedure Traverse_Record_Definition is new Traverse_Element (
         State_Information => Type_Model_Kinds,
         Pre_Operation     => Analyze_Component_Definition,
         Post_Operation    => No_Op);

      ----------------------------------
      -- Analyze_Component_Definition --
      ----------------------------------

      procedure Analyze_Component_Definition
        (Element :        Asis.Element;
         Control : in out Traverse_Control;
         State   : in out Type_Model_Kinds)
      is
      begin

         pragma Unreferenced (State);

         if Int_Kind (Element) = A_Component_Declaration then

            case Subtype_Model_Kind
                   (Component_Definition_View
                      (Object_Declaration_View (Element)))
            is

               when A_Simple_Static_Model =>
                  Control := Abandon_Children;

               when A_Simple_Dynamic_Model =>
                  State   := A_Simple_Dynamic_Model;
                  Control := Abandon_Children;

               when A_Complex_Dynamic_Model =>
                  State   := A_Complex_Dynamic_Model;
                  Control := Terminate_Immediately;

               when Not_A_Type_Model =>
                  State   := Not_A_Type_Model;
                  Control := Terminate_Immediately;

            end case;

         end if;

      end Analyze_Component_Definition;

      -----------
      -- No_Op --
      -----------

      procedure No_Op
        (Element :        Asis.Element;
         Control : in out Traverse_Control;
         State   : in out Type_Model_Kinds)
      is
      begin
         pragma Unreferenced (Element);
         pragma Unreferenced (Control);
         pragma Unreferenced (State);

         null;
      end No_Op;

   begin
      Type_Entity := R_Node (Enclosing_Element (R));
      Type_Entity := Sinfo.Defining_Identifier (Type_Entity);

      if Is_Empty_Record (R)
        or else
         (not (Has_Discriminants (Type_Entity)
            and then
             not Is_Constrained (Type_Entity))
        and then
          (RM_Size (Type_Entity) > 0))
      then
         Result := A_Simple_Static_Model;

      elsif RM_Size (Type_Entity) = Uint_0 or else
            RM_Size (Type_Entity) = No_Uint
      then
         --  This is the case when the front-end consider the type to be
         --  essentially dynamic and therefore it can not set Esize field
         --  at all
         Result := A_Complex_Dynamic_Model;

      else
         --  We start from the most optimistic assumption
         if Has_Variant_Part (R) then
            Result := A_Simple_Dynamic_Model;
         else
            Result := A_Simple_Static_Model;
         end if;

         Traverse_Record_Definition
           (Element => R,
            Control => Control,
            State   => Result);

      end if;

      return Result;
   end Record_Model_Kind;

   ---------------------------
   -- Root_Array_Definition --
   ---------------------------

   function Root_Array_Definition  (Type_Def : Element) return Element is
      Result : Element := Type_Def;
   begin

      if Is_Derived_From_Array (Type_Def) then
         Result := Corresponding_Root_Type (Type_Def);
         Result := Type_Declaration_View (Result);
      end if;

      return Result;

   end Root_Array_Definition;

   ----------------------------
   -- Root_Record_Definition --
   ----------------------------

   function Root_Record_Definition (Type_Def : Element) return Element is
      Result : Element := Type_Def;
   begin

      if Is_Derived_From_Record (Type_Def) then
         Result := Corresponding_Root_Type (Type_Def);
         Result := Type_Declaration_View (Result);
      end if;

      return Result;

   end Root_Record_Definition;

   --------------------
   -- Subtype_Entity --
   --------------------

   function Subtype_Entity (E : Element) return Entity_Id is
      Result   : Node_Id   := Node (E);
      Res_Kind : Node_Kind := Nkind (Result);
   begin

      while Present (Result) and then
            not (Res_Kind = N_Subtype_Declaration     or else
                 Res_Kind = N_Object_Declaration      or else
                 Res_Kind = N_Derived_Type_Definition or else
                 Res_Kind = N_Full_Type_Declaration   or else
                 Res_Kind = N_Component_Declaration)
      loop
         Result   := Parent (Result);
         Res_Kind := Nkind (Result);
      end loop;

      pragma Assert (Present (Result));

      case Res_Kind is
         when N_Subtype_Declaration =>
            Result := Defining_Identifier (Result);

         when N_Object_Declaration | N_Component_Declaration =>
            Result := Etype (Defining_Identifier (Result));

         when N_Derived_Type_Definition =>
            Result := Defining_Identifier (Parent (Result));

         when N_Full_Type_Declaration =>
            --  Here we are expecting the component subtype definition from
            --  array type declaration as the only possible case
            Result := Defining_Identifier (Result);

            pragma Assert (Is_Array_Type (Result));

            Result := Component_Type (Result);

         when others =>
            null;
      end case;

      return Result;

   end Subtype_Entity;

   ------------------------
   -- Subtype_Model_Kind --
   ------------------------

   function Subtype_Model_Kind (S : Element) return Type_Model_Kinds is
      Result         : Type_Model_Kinds := Not_A_Type_Model;

      Type_Mark_Elem : Element;
      Type_Mark_Def  : Element;
      Constr_Elem    : Element;

      Constraint_Model : Constraint_Model_Kinds := Not_A_Constraint_Model;

      Type_Entity    : Entity_Id;

   begin

      if Int_Kind (S) in Internal_Access_Definition_Kinds then
         return A_Simple_Static_Model;
      end if;

      pragma Assert (Int_Kind (S) = A_Subtype_Indication);

      Type_Mark_Elem := Asis.Definitions.Subtype_Mark (S);
      Constr_Elem    := Subtype_Constraint (S);

      if Int_Kind (Type_Mark_Elem) = A_Selected_Component then
         Type_Mark_Elem := Selector (Type_Mark_Elem);
      end if;

      if Attribute_Kind (Type_Mark_Elem) = A_Base_Attribute then
         return A_Simple_Static_Model;
      elsif Attribute_Kind (Type_Mark_Elem) = A_Class_Attribute then
         return A_Complex_Dynamic_Model;
      end if;

      Type_Mark_Def := Corresponding_Name_Declaration (Type_Mark_Elem);

      if Declaration_Kind (Type_Mark_Def) in
           A_Tagged_Incomplete_Type_Declaration |
           A_Private_Extension_Declaration
      then
         return A_Complex_Dynamic_Model;
      end if;

      while Declaration_Kind (Type_Mark_Def) in
              A_Private_Type_Declaration |
              An_Incomplete_Type_Declaration
      loop
         Type_Mark_Def := Corresponding_Type_Completion (Type_Mark_Def);

         if Is_Nil (Type_Mark_Def) then
            --  We have no information about the full type, so we are
            --  pessimistic
            return A_Complex_Dynamic_Model;
         end if;

      end loop;

      if Declaration_Kind (Type_Mark_Def) =
           An_Incomplete_Type_Declaration
      then
         return A_Complex_Dynamic_Model;
      end if;

      Type_Entity   := Sinfo.Defining_Identifier (R_Node (Type_Mark_Def));

      --  Type_Mark_Def can only be either type or subtype declaration

      Type_Mark_Def := Type_Declaration_View (Type_Mark_Def);

      case Int_Kind (Type_Mark_Def) is
         when Internal_Type_Kinds =>
            Result := Type_Model_Kind (Type_Mark_Def);

         when A_Subtype_Indication =>
            Result := Subtype_Model_Kind (Type_Mark_Def);

         when others =>
            Result := A_Complex_Dynamic_Model;
      end case;

      if Result in A_Simple_Static_Model .. A_Simple_Dynamic_Model then
         --  Here we have to chech if the constraint (if any) affects the
         --  result
         case Int_Kind (Constr_Elem) is

            when An_Index_Constraint |
                 A_Discriminant_Constraint =>
               Constraint_Model := Constraint_Model_Kind (Constr_Elem);

            when Not_An_Element =>

               if Has_Discriminants (Type_Entity)
                 and then
                 not Is_Empty_Elmt_List (Discriminant_Constraint (Type_Entity))
               then
                  --  This is the case, when a subtype indication to analyze
                  --  does not contain any explicit constraint, but
                  --  the corresponding discriminanted subtype might be
                  --  constrained by explicit constraint or default values
                  --  somewhere before in subtyping and/or derivation chain

                  if Is_Static_Constraint
                       (Discriminant_Constraint (Type_Entity))
                  then
                     Constraint_Model := Static_Constraint;
                  end if;

               end if;

            when others =>
               --  We consider, that other kinds of the constraint can not
               --  affect the result
               null;
         end case;

         case Constraint_Model is
            when External =>
               Result := A_Complex_Dynamic_Model;

            when Discriminated =>
               Result := A_Simple_Dynamic_Model;

            when Static_Constraint =>
               Result := A_Simple_Static_Model;

            when others =>
               null;
         end case;

      end if;

      return Result;

   end Subtype_Model_Kind;

   ---------------------------------------
   -- Type_Definition_From_Subtype_Mark --
   ---------------------------------------

   function Type_Definition_From_Subtype_Mark (S : Element) return Element is
      Result : Element;
   begin

      if Int_Kind (S) = A_Selected_Component then
         Result := Selector (S);
      else
         Result := S;
      end if;

      Result := Corresponding_Name_Declaration (Result);
      Result := Corresponding_First_Subtype    (Result);

      if Declaration_Kind (Result) in
           A_Private_Type_Declaration |
           A_Private_Extension_Declaration
      then
         Result := Corresponding_Type_Completion (Result);
      end if;

      Result := Type_Declaration_View          (Result);

      return Result;
   end Type_Definition_From_Subtype_Mark;

   -------------------
   -- Wrong_Indexes --
   -------------------

   function Wrong_Indexes
     (Component : Array_Component;
      Indexes   : Dimension_Indexes)
      return Boolean
   is
      D      : constant ASIS_Natural := Component.Dimension;
      Result : Boolean               := True;
   begin

      if D = Indexes'Length then
         Result := False;

         for J in 1 .. D loop
            if Indexes (J) > Component.Length (J) then
               Result := True;
               exit;
            end if;
         end loop;
      end if;

      return Result;
   end Wrong_Indexes;

end Asis.Data_Decomposition.Aux;