This file is indexed.

/usr/include/ASL/num/aslFDStefanMaxwell.h is in libasl-dev 0.1.6-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
/*
 * Advanced Simulation Library <http://asl.org.il>
 * 
 * Copyright 2015 Avtech Scientific <http://avtechscientific.com>
 *
 *
 * This file is part of Advanced Simulation Library (ASL).
 *
 * ASL is free software: you can redistribute it and/or modify it
 * under the terms of the GNU Affero General Public License as
 * published by the Free Software Foundation, version 3 of the License.
 *
 * ASL is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU Affero General Public License for more details.
 *
 * You should have received a copy of the GNU Affero General Public License
 * along with ASL. If not, see <http://www.gnu.org/licenses/>.
 *
 */


#ifndef ASLFDSTEFANMAXWELL_H
#define ASLFDSTEFANMAXWELL_H

#include "aslSingleKernelNM.h"

namespace acl
{
	class VectorOfElementsData;
	class VectorOfElements;
}

namespace asl
{
	class VectorTemplate;
	template <typename V> class DataWithGhostNodes;
	typedef DataWithGhostNodes<acl::VectorOfElementsData> DataWithGhostNodesACLData;
	typedef std::shared_ptr<DataWithGhostNodesACLData> SPDataWithGhostNodesACLData;
	class AbstractDataWithGhostNodes;
	typedef std::shared_ptr<AbstractDataWithGhostNodes> SPAbstractDataWithGhostNodes;
	
	/// Numerical method which computes multicomponent transport processes
	/**
		 \ingroup TransportProcesses
		 \ingroup NumMethods
		 
		 \f[ \partial_t c_i= - \vec \nabla \cdot \vec J - \vec \nabla \cdot (\vec v c_i) \f]
		 \f[ -\nabla c_i = \sum_{j, i\neq j} \frac{c_j\vec J_i-c_i\vec J_j}{c_tD_{ij}} + \frac{\vec J_i}{D_{i,D}}\f]						
		 where \f$c_i\f$ is a molar concentration, \f$ v \f$ is the flow velocity, 
		 \f$J_i\f$ is the molar flux, \f$D_{i,D}\f$ is the component-dust diffusion coefficient, 
         \f$D_{ij}\f$ is the pair diffusion coefficient. 

		 The second equation can be rewritten in the matrix form:
		 \f[ -\vec \nabla c_i = \sum_k A_{ik} \vec J_k,\;\;\; 
             A_{ik} \equiv \delta_{ik} \left(\frac{1}{D_{i,D}} + 
											 \Lambda_i + 
                                             \frac{c_i}{c_tD_{ik}} \right) - 
				          \frac{c_i}{c_tD_{ik}},\;\;\;
             \Lambda_i \equiv \sum_{j, j\neq i} \frac{c_j}{c_tD_{ij}}\f]
		 
		class parameters are related to the quation ones as follows 	 
		 \param cData corresponds to \f$c_i\f$
		 \param diffusionCoefficients corresponds to \f$D_{ij}\f$
		 \param velocity corresponds to \f$\vec v\f$	 
	*/
	class FDStefanMaxwell: public SingleKernelNM
	{
		public:
			typedef SPDataWithGhostNodesACLData Data;
			typedef SPAbstractDataWithGhostNodes Field;
			typedef acl::VectorOfElements Param;
			
		private:	
			std::vector<Data> cData;
			std::vector<Data> cInternalData;			

			Field efPhi;
			std::vector<Param> efCharge;

			Field velocity;

			const VectorTemplate* vectorTemplate;

			std::vector<std::vector<Param>> diffusionCoefficients;
			std::vector<Param> dustDiffusionCoefficients;

			virtual void init0();
			virtual void postProcessing();
		public:			
			FDStefanMaxwell();
			FDStefanMaxwell(Data c1,
			                Data c2,
			                const acl::VectorOfElements & dC, 
			                const VectorTemplate* vT);
			void setDiffusionCoefficient(acl::VectorOfElements d, 
			                             unsigned int i = 0,unsigned int j = 1);
			inline const Param & getDiffusionCoefficient(unsigned int i=0, unsigned int j=1) const;
			inline const Param & getDustDiffusionCoefficient(unsigned int i=0) const;
			void setDustDiffusionCoefficient(unsigned int i, const Param & dd);
			void setVectorTemplate(VectorTemplate* vT);
			inline const VectorTemplate* getVectorTemplate() const;
			void setElectricField(Field phi);
			Field getElectricField() const;
			inline const Param & getCharge(unsigned int i) const;
			void setCharge(unsigned int i, const Param & q);
			void setVelocity(Field v);			
			inline Field getVelocity();
			inline std::vector<Data> & getData();
			void addComponent(Data c, const Param & dC);
			void addComponent(Data c, const Param & dC, const Param & q);			
	};

	typedef std::shared_ptr<FDStefanMaxwell> SPFDStefanMaxwell;

	/**
		 \ingroup TransportProcesses
		 \ingroup NumMethods
		 \f[ \partial_t c_i= - \vec \nabla \cdot \vec J - \vec \nabla \cdot (\vec v c_i) \f]
		 \f[ -\nabla c_i = \sum_{j, i\neq j} \frac{c_j\vec J_i-c_i\vec J_j}{c_tD_{ij}} + \frac{\vec J_i}{D_{i,D}}\f]						
		 where \f$c_i\f$ is a molar concentration, \f$ v \f$ is the flow velocity, 
		 \f$J_i\f$ is the molar flux, \f$D_{i,D}\f$ is the component-dust diffusion coefficient, 
         \f$D_{ij}\f$ is the pair diffusion coefficient. 
		 
		parameters are related to the quation ones as follows 	 
		 \param c1 \f$c_1\f$
		 \param c2 \f$c_2\f$
		 \param diffusionCoeff corresponds to \f$D_{12}\f$
		 \param v velocity field
		 \param vt used VectorTemplate

	 */
	SPFDStefanMaxwell generateFDStefanMaxwell(SPDataWithGhostNodesACLData c1, 
	                                          SPDataWithGhostNodesACLData c2,
	                                          double diffustionCoeff,
	                                          SPAbstractDataWithGhostNodes v, 
	                                          const VectorTemplate* vt);
	
	/**
		 \ingroup TransportProcesses
		 \ingroup NumMethods
		 
		 \f[ \partial_t c_i= - \vec \nabla \cdot \vec J\f]
		 \f[ -\nabla c_i = \sum_{j, i\neq j} \frac{c_j\vec J_i-c_i\vec J_j}{c_tD_{ij}} + \frac{\vec J_i}{D_{i,D}}\f]						
		 where \f$c_i\f$ is a molar concentration, \f$ v \f$ is the flow velocity, 
		 \f$J_i\f$ is the molar flux, \f$D_{i,D}\f$ is the component-dust diffusion coefficient, 
         \f$D_{ij}\f$ is the pair diffusion coefficient. 
		 
		 \param c1 \f$c_1\f$
		 \param c2 \f$c_2\f$
		 \param diffusionCoeff corresponds to \f$D_{12}\f$
		 \param vt used VectorTemplate
	
	*/
	SPFDStefanMaxwell generateFDStefanMaxwell(SPDataWithGhostNodesACLData c1, 
	                                          SPDataWithGhostNodesACLData c2,
	                                          double diffustionCoeff,
	                                          const VectorTemplate* vt);

	class FDStefanMaxwellElectricField: public SingleKernelNM
	{
		public:
			typedef SPDataWithGhostNodesACLData Data;
			typedef SPAbstractDataWithGhostNodes Field;
			
		private:
			SPFDStefanMaxwell smSolver;
			Data phi;
			Data phiInternalData;
			Field phiS;
			const double stepFactor=1e-3;

			virtual void init0();
			virtual void postProcessing();
		public:			
			FDStefanMaxwellElectricField(SPFDStefanMaxwell sm, Data phi);
			void setPhiS(Field pS);
	};

	typedef std::shared_ptr<FDStefanMaxwellElectricField> SPFDStefanMaxwellElectricField;
	
// ------------------------- Implementation ------------------------

	inline FDStefanMaxwell::Field FDStefanMaxwell::getVelocity()
	{
		return velocity;
	}
	
	inline std::vector<FDStefanMaxwell::Data> & FDStefanMaxwell::getData()
	{
		return cData;
	}
	
	inline const VectorTemplate* FDStefanMaxwell::getVectorTemplate() const
	{
		return vectorTemplate;
	}

	inline const acl::VectorOfElements & 
		FDStefanMaxwell::getDiffusionCoefficient(unsigned int i, unsigned int j) const
	{
		return diffusionCoefficients[i][j];
	}

	inline const acl::VectorOfElements & 
		FDStefanMaxwell::getDustDiffusionCoefficient(unsigned int i) const
	{
		return dustDiffusionCoefficients[i];
	}

	inline const acl::VectorOfElements & 
		FDStefanMaxwell::getCharge(unsigned int i) const
	{
		return efCharge[i];
	}

	
} // asl
#endif // ASLFDADVECTIONDIFFUSION_H