/usr/include/ASL/num/aslFDStefanMaxwell.h is in libasl-dev 0.1.6-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 | /*
* Advanced Simulation Library <http://asl.org.il>
*
* Copyright 2015 Avtech Scientific <http://avtechscientific.com>
*
*
* This file is part of Advanced Simulation Library (ASL).
*
* ASL is free software: you can redistribute it and/or modify it
* under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, version 3 of the License.
*
* ASL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with ASL. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef ASLFDSTEFANMAXWELL_H
#define ASLFDSTEFANMAXWELL_H
#include "aslSingleKernelNM.h"
namespace acl
{
class VectorOfElementsData;
class VectorOfElements;
}
namespace asl
{
class VectorTemplate;
template <typename V> class DataWithGhostNodes;
typedef DataWithGhostNodes<acl::VectorOfElementsData> DataWithGhostNodesACLData;
typedef std::shared_ptr<DataWithGhostNodesACLData> SPDataWithGhostNodesACLData;
class AbstractDataWithGhostNodes;
typedef std::shared_ptr<AbstractDataWithGhostNodes> SPAbstractDataWithGhostNodes;
/// Numerical method which computes multicomponent transport processes
/**
\ingroup TransportProcesses
\ingroup NumMethods
\f[ \partial_t c_i= - \vec \nabla \cdot \vec J - \vec \nabla \cdot (\vec v c_i) \f]
\f[ -\nabla c_i = \sum_{j, i\neq j} \frac{c_j\vec J_i-c_i\vec J_j}{c_tD_{ij}} + \frac{\vec J_i}{D_{i,D}}\f]
where \f$c_i\f$ is a molar concentration, \f$ v \f$ is the flow velocity,
\f$J_i\f$ is the molar flux, \f$D_{i,D}\f$ is the component-dust diffusion coefficient,
\f$D_{ij}\f$ is the pair diffusion coefficient.
The second equation can be rewritten in the matrix form:
\f[ -\vec \nabla c_i = \sum_k A_{ik} \vec J_k,\;\;\;
A_{ik} \equiv \delta_{ik} \left(\frac{1}{D_{i,D}} +
\Lambda_i +
\frac{c_i}{c_tD_{ik}} \right) -
\frac{c_i}{c_tD_{ik}},\;\;\;
\Lambda_i \equiv \sum_{j, j\neq i} \frac{c_j}{c_tD_{ij}}\f]
class parameters are related to the quation ones as follows
\param cData corresponds to \f$c_i\f$
\param diffusionCoefficients corresponds to \f$D_{ij}\f$
\param velocity corresponds to \f$\vec v\f$
*/
class FDStefanMaxwell: public SingleKernelNM
{
public:
typedef SPDataWithGhostNodesACLData Data;
typedef SPAbstractDataWithGhostNodes Field;
typedef acl::VectorOfElements Param;
private:
std::vector<Data> cData;
std::vector<Data> cInternalData;
Field efPhi;
std::vector<Param> efCharge;
Field velocity;
const VectorTemplate* vectorTemplate;
std::vector<std::vector<Param>> diffusionCoefficients;
std::vector<Param> dustDiffusionCoefficients;
virtual void init0();
virtual void postProcessing();
public:
FDStefanMaxwell();
FDStefanMaxwell(Data c1,
Data c2,
const acl::VectorOfElements & dC,
const VectorTemplate* vT);
void setDiffusionCoefficient(acl::VectorOfElements d,
unsigned int i = 0,unsigned int j = 1);
inline const Param & getDiffusionCoefficient(unsigned int i=0, unsigned int j=1) const;
inline const Param & getDustDiffusionCoefficient(unsigned int i=0) const;
void setDustDiffusionCoefficient(unsigned int i, const Param & dd);
void setVectorTemplate(VectorTemplate* vT);
inline const VectorTemplate* getVectorTemplate() const;
void setElectricField(Field phi);
Field getElectricField() const;
inline const Param & getCharge(unsigned int i) const;
void setCharge(unsigned int i, const Param & q);
void setVelocity(Field v);
inline Field getVelocity();
inline std::vector<Data> & getData();
void addComponent(Data c, const Param & dC);
void addComponent(Data c, const Param & dC, const Param & q);
};
typedef std::shared_ptr<FDStefanMaxwell> SPFDStefanMaxwell;
/**
\ingroup TransportProcesses
\ingroup NumMethods
\f[ \partial_t c_i= - \vec \nabla \cdot \vec J - \vec \nabla \cdot (\vec v c_i) \f]
\f[ -\nabla c_i = \sum_{j, i\neq j} \frac{c_j\vec J_i-c_i\vec J_j}{c_tD_{ij}} + \frac{\vec J_i}{D_{i,D}}\f]
where \f$c_i\f$ is a molar concentration, \f$ v \f$ is the flow velocity,
\f$J_i\f$ is the molar flux, \f$D_{i,D}\f$ is the component-dust diffusion coefficient,
\f$D_{ij}\f$ is the pair diffusion coefficient.
parameters are related to the quation ones as follows
\param c1 \f$c_1\f$
\param c2 \f$c_2\f$
\param diffusionCoeff corresponds to \f$D_{12}\f$
\param v velocity field
\param vt used VectorTemplate
*/
SPFDStefanMaxwell generateFDStefanMaxwell(SPDataWithGhostNodesACLData c1,
SPDataWithGhostNodesACLData c2,
double diffustionCoeff,
SPAbstractDataWithGhostNodes v,
const VectorTemplate* vt);
/**
\ingroup TransportProcesses
\ingroup NumMethods
\f[ \partial_t c_i= - \vec \nabla \cdot \vec J\f]
\f[ -\nabla c_i = \sum_{j, i\neq j} \frac{c_j\vec J_i-c_i\vec J_j}{c_tD_{ij}} + \frac{\vec J_i}{D_{i,D}}\f]
where \f$c_i\f$ is a molar concentration, \f$ v \f$ is the flow velocity,
\f$J_i\f$ is the molar flux, \f$D_{i,D}\f$ is the component-dust diffusion coefficient,
\f$D_{ij}\f$ is the pair diffusion coefficient.
\param c1 \f$c_1\f$
\param c2 \f$c_2\f$
\param diffusionCoeff corresponds to \f$D_{12}\f$
\param vt used VectorTemplate
*/
SPFDStefanMaxwell generateFDStefanMaxwell(SPDataWithGhostNodesACLData c1,
SPDataWithGhostNodesACLData c2,
double diffustionCoeff,
const VectorTemplate* vt);
class FDStefanMaxwellElectricField: public SingleKernelNM
{
public:
typedef SPDataWithGhostNodesACLData Data;
typedef SPAbstractDataWithGhostNodes Field;
private:
SPFDStefanMaxwell smSolver;
Data phi;
Data phiInternalData;
Field phiS;
const double stepFactor=1e-3;
virtual void init0();
virtual void postProcessing();
public:
FDStefanMaxwellElectricField(SPFDStefanMaxwell sm, Data phi);
void setPhiS(Field pS);
};
typedef std::shared_ptr<FDStefanMaxwellElectricField> SPFDStefanMaxwellElectricField;
// ------------------------- Implementation ------------------------
inline FDStefanMaxwell::Field FDStefanMaxwell::getVelocity()
{
return velocity;
}
inline std::vector<FDStefanMaxwell::Data> & FDStefanMaxwell::getData()
{
return cData;
}
inline const VectorTemplate* FDStefanMaxwell::getVectorTemplate() const
{
return vectorTemplate;
}
inline const acl::VectorOfElements &
FDStefanMaxwell::getDiffusionCoefficient(unsigned int i, unsigned int j) const
{
return diffusionCoefficients[i][j];
}
inline const acl::VectorOfElements &
FDStefanMaxwell::getDustDiffusionCoefficient(unsigned int i) const
{
return dustDiffusionCoefficients[i];
}
inline const acl::VectorOfElements &
FDStefanMaxwell::getCharge(unsigned int i) const
{
return efCharge[i];
}
} // asl
#endif // ASLFDADVECTIONDIFFUSION_H
|