/usr/include/astrometry/starutil.inc is in libastrometry-dev 0.67+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 | /*
# This file is part of the Astrometry.net suite.
# Licensed under a 3-clause BSD style license - see LICENSE
*/
#include <math.h>
InlineDefine void star_midpoint(double* mid, const double* A, const double* B) {
double len;
double invlen;
// we don't divide by 2 because we immediately renormalize it...
mid[0] = A[0] + B[0];
mid[1] = A[1] + B[1];
mid[2] = A[2] + B[2];
//len = sqrt(square(mid[0]) + square(mid[1]) + square(mid[2]));
len = sqrt(mid[0] * mid[0] + mid[1] * mid[1] + mid[2] * mid[2]);
invlen = 1.0 / len;
mid[0] *= invlen;
mid[1] *= invlen;
mid[2] *= invlen;
}
InlineDefine Const double mjdtojd(double mjd) {
return mjd + MJD_JD_OFFSET;
}
InlineDefine Const double jdtomjd(double jd) {
return jd - MJD_JD_OFFSET;
}
InlineDefine Const int dimquad2dimcode(int dimquad) {
return 2 * (dimquad - 2);
}
InlineDefine Const double rad2deg(double x) {
return x * DEG_PER_RAD;
}
InlineDefine Const double deg2rad(double x) {
return x * RAD_PER_DEG;
}
InlineDefine Const double deg2arcmin(double x) {
return x * ARCMIN_PER_DEG;
}
InlineDefine Const double arcmin2deg(double x) {
return x * DEG_PER_ARCMIN;
}
InlineDefine Const double arcmin2arcsec(double x) {
return x * ARCSEC_PER_ARCMIN;
}
InlineDefine Const double arcsec2arcmin(double x) {
return x * ARCMIN_PER_ARCSEC;
}
InlineDefine Const double rad2arcmin(double x) {
return x * ARCMIN_PER_RAD;
}
InlineDefine Const double rad2arcsec(double x) {
return x * ARCSEC_PER_RAD;
}
InlineDefine Const double deg2arcsec(double x) {
return x * ARCSEC_PER_DEG;
}
InlineDefine Const double arcmin2rad(double x) {
return x * RAD_PER_ARCMIN;
}
InlineDefine Const double arcsec2rad(double x) {
return x * RAD_PER_ARCSEC;
}
InlineDefine Const double arcsec2deg(double x) {
return x * DEG_PER_ARCSEC;
}
InlineDefine Const double rad2distsq(double x) {
// inverse of distsq2arc; cosine law.
return 2.0 * (1.0 - cos(x));
}
InlineDefine Flatten Const double rad2dist(double x) {
return sqrt(rad2distsq(x));
}
InlineDefine Flatten Const double arcsec2distsq(double x) {
return rad2distsq(arcsec2rad(x));
}
InlineDefine Flatten Const double arcmin2dist(double x) {
return rad2dist(arcmin2rad(x));
}
InlineDefine Flatten Const double arcmin2distsq(double arcmin) {
return rad2distsq(arcmin2rad(arcmin));
}
InlineDefine Const double z2dec(double z) {
return asin(z);
}
InlineDefine Const double xy2ra(double x, double y) {
double a = atan2(y, x);
if (a < 0)
a += 2.0 * M_PI;
return a;
}
InlineDefine Flatten void xyz2radec(double x, double y, double z, double *ra, double *dec) {
if (ra)
*ra = xy2ra(x, y);
if (dec)
*dec = z2dec(z);
}
InlineDefine Flatten void xyzarr2radec(const double* xyz, double *ra, double *dec) {
xyz2radec(xyz[0], xyz[1], xyz[2], ra, dec);
}
InlineDefine Flatten void xyzarr2radecdeg(const double* xyz, double *ra, double *dec) {
xyzarr2radec(xyz, ra, dec);
if (ra)
*ra = rad2deg(*ra);
if (dec)
*dec = rad2deg(*dec);
}
InlineDefine Flatten void xyzarr2radecdegarr(double* xyz, double *radec) {
xyzarr2radecdeg(xyz, radec, radec+1);
}
InlineDefine void radec2xyzarr(double ra, double dec, double* xyz) {
double cosdec = cos(dec);
xyz[0] = cosdec * cos(ra);
xyz[1] = cosdec * sin(ra);
xyz[2] = sin(dec);
}
InlineDefine void radec2xyz(double ra, double dec,
double* x, double* y, double* z) {
double cosdec = cos(dec);
*x = cosdec * cos(ra);
*y = cosdec * sin(ra);
*z = sin(dec);
}
InlineDefine void radecdeg2xyz(double ra, double dec,
double* x, double* y, double* z) {
radec2xyz(deg2rad(ra), deg2rad(dec), x, y, z);
}
InlineDefine void radecdeg2xyzarr(double ra, double dec, double* xyz) {
radec2xyzarr(deg2rad(ra),deg2rad(dec), xyz);
}
InlineDefine void radecdegarr2xyzarr(double* radec, double* xyz) {
radecdeg2xyzarr(radec[0], radec[1], xyz);
}
// xyz stored as xyzxyzxyz.
InlineDefine void radec2xyzarrmany(double *ra, double *dec, double* xyz, int n) {
int i;
for (i=0; i<n; i++) {
radec2xyzarr(ra[i], dec[i], xyz+3*i);
}
}
InlineDefine void radecdeg2xyzarrmany(double *ra, double *dec, double* xyz, int n) {
int i;
for (i=0; i<n; i++) {
radec2xyzarr(deg2rad(ra[i]), deg2rad(dec[i]), xyz+3*i);
}
}
WarnUnusedResult InlineDefine
anbool star_coords(const double *s, const double *r,
anbool tangent, double *x, double *y) {
// As used by the sip.c code, this does the TAN projection
// (if "tangent" is TRUE; SIN projection otherwise)
// r: CRVAL
// s: RA,Dec to be projected
// ASSUME r,s are unit vectors
// sdotr: s dot r = |r||s| cos(theta) = cos(theta)
double sdotr = s[0] * r[0] + s[1] * r[1] + s[2] * r[2];
if (sdotr <= 0.0) {
// on the opposite side of the sky
return FALSE;
}
if (unlikely(r[2] == 1.0)) {
// North pole
double inv_s2 = 1.0 / s[2];
if (tangent) {
*x = s[0] * inv_s2;
*y = s[1] * inv_s2;
} else {
*x = s[0];
*y = s[1];
}
} else if (unlikely(r[2] == -1.0)) {
// South pole
double inv_s2 = 1.0 / s[2];
if (tangent) {
*x = s[0] * inv_s2;
*y = -s[1] * inv_s2;
} else {
*x = s[0];
*y = -s[1];
}
} else {
double etax, etay, xix, xiy, xiz, eta_norm;
double inv_en, inv_sdotr;
// eta is a vector perpendicular to r pointing in the direction
// of increasing RA. eta_z = 0 by definition.
etax = -r[1];
etay = r[0];
eta_norm = hypot(etax, etay);
inv_en = 1.0 / eta_norm;
etax *= inv_en;
etay *= inv_en;
// xi = r cross eta, a vector pointing northwards,
// in direction of increasing DEC
xix = -r[2] * etay;
xiy = r[2] * etax;
xiz = r[0] * etay - r[1] * etax;
// project s-r onto eta and xi. No need to subtract r from s, though,
// since eta and xi are orthogonal to r by construction.
*x = (s[0] * etax + s[1] * etay );
*y = (s[0] * xix + s[1] * xiy + s[2] * xiz);
// The "inv_sdotr" applies the TAN scaling
if (tangent) {
inv_sdotr = 1.0 / sdotr;
*x *= inv_sdotr;
*y *= inv_sdotr;
}
}
return TRUE;
}
InlineDefine Flatten Const double distsq2rad(double dist2) {
// cosine law: c^2 = a^2 + b^2 - 2 a b cos C
// c^2 is dist2. We want C.
// a = b = 1
// c^2 = 1 + 1 - 2 cos C
// dist2 = 2( 1 - cos C )
// 1 - (dist2 / 2) = cos C
// C = acos(1 - dist2 / 2)
return acos(1.0 - dist2 / 2.0);
}
InlineDefine Flatten Const double arcsec2dist(double arcInArcSec) {
return sqrt(arcsec2distsq(arcInArcSec));
}
// Degrees to distance on the unit sphere.
InlineDefine Flatten Const double deg2dist(double arcInDegrees) {
return arcsec2dist(deg2arcsec(arcInDegrees));
}
InlineDefine Flatten Const double deg2distsq(double d) {
return rad2distsq(deg2rad(d));
}
InlineDefine Flatten Const double distsq2arcsec(double dist2) {
return rad2arcsec(distsq2rad(dist2));
}
InlineDefine Flatten Const double dist2arcsec(double dist) {
return distsq2arcsec(dist*dist);
}
InlineDefine Flatten Const double dist2deg(double dist) {
return arcsec2deg(dist2arcsec(dist));
}
// DEPRECATED
InlineDefine Flatten Const double distsq2arc(double dist2) {
return distsq2rad(dist2);
}
InlineDefine Flatten Const double distsq2deg(double dist2) {
return rad2deg(distsq2rad(dist2));
}
InlineDefine Flatten Const double dist2rad(double dist) {
return distsq2arc(dist*dist);
}
|