/usr/include/botan-1.10/botan/loadstor.h is in libbotan1.10-dev 1.10.12-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 | /*
* Load/Store Operators
* (C) 1999-2007 Jack Lloyd
* 2007 Yves Jerschow
*
* Distributed under the terms of the Botan license
*/
#ifndef BOTAN_LOAD_STORE_H__
#define BOTAN_LOAD_STORE_H__
#include <botan/types.h>
#include <botan/bswap.h>
#include <botan/get_byte.h>
#include <cstring>
#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
#if defined(BOTAN_TARGET_CPU_IS_BIG_ENDIAN)
#define BOTAN_ENDIAN_N2B(x) (x)
#define BOTAN_ENDIAN_B2N(x) (x)
#define BOTAN_ENDIAN_N2L(x) reverse_bytes(x)
#define BOTAN_ENDIAN_L2N(x) reverse_bytes(x)
#elif defined(BOTAN_TARGET_CPU_IS_LITTLE_ENDIAN)
#define BOTAN_ENDIAN_N2L(x) (x)
#define BOTAN_ENDIAN_L2N(x) (x)
#define BOTAN_ENDIAN_N2B(x) reverse_bytes(x)
#define BOTAN_ENDIAN_B2N(x) reverse_bytes(x)
#endif
#endif
namespace Botan {
/**
* Make a u16bit from two bytes
* @param i0 the first byte
* @param i1 the second byte
* @return i0 || i1
*/
inline u16bit make_u16bit(byte i0, byte i1)
{
return ((static_cast<u16bit>(i0) << 8) | i1);
}
/**
* Make a u32bit from four bytes
* @param i0 the first byte
* @param i1 the second byte
* @param i2 the third byte
* @param i3 the fourth byte
* @return i0 || i1 || i2 || i3
*/
inline u32bit make_u32bit(byte i0, byte i1, byte i2, byte i3)
{
return ((static_cast<u32bit>(i0) << 24) |
(static_cast<u32bit>(i1) << 16) |
(static_cast<u32bit>(i2) << 8) |
(static_cast<u32bit>(i3)));
}
/**
* Make a u32bit from eight bytes
* @param i0 the first byte
* @param i1 the second byte
* @param i2 the third byte
* @param i3 the fourth byte
* @param i4 the fifth byte
* @param i5 the sixth byte
* @param i6 the seventh byte
* @param i7 the eighth byte
* @return i0 || i1 || i2 || i3 || i4 || i5 || i6 || i7
*/
inline u64bit make_u64bit(byte i0, byte i1, byte i2, byte i3,
byte i4, byte i5, byte i6, byte i7)
{
return ((static_cast<u64bit>(i0) << 56) |
(static_cast<u64bit>(i1) << 48) |
(static_cast<u64bit>(i2) << 40) |
(static_cast<u64bit>(i3) << 32) |
(static_cast<u64bit>(i4) << 24) |
(static_cast<u64bit>(i5) << 16) |
(static_cast<u64bit>(i6) << 8) |
(static_cast<u64bit>(i7)));
}
/**
* Load a big-endian word
* @param in a pointer to some bytes
* @param off an offset into the array
* @return off'th T of in, as a big-endian value
*/
template<typename T>
inline T load_be(const byte in[], size_t off)
{
in += off * sizeof(T);
T out = 0;
for(size_t i = 0; i != sizeof(T); ++i)
out = (out << 8) | in[i];
return out;
}
/**
* Load a little-endian word
* @param in a pointer to some bytes
* @param off an offset into the array
* @return off'th T of in, as a litte-endian value
*/
template<typename T>
inline T load_le(const byte in[], size_t off)
{
in += off * sizeof(T);
T out = 0;
for(size_t i = 0; i != sizeof(T); ++i)
out = (out << 8) | in[sizeof(T)-1-i];
return out;
}
/**
* Load a big-endian u16bit
* @param in a pointer to some bytes
* @param off an offset into the array
* @return off'th u16bit of in, as a big-endian value
*/
template<>
inline u16bit load_be<u16bit>(const byte in[], size_t off)
{
#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
return BOTAN_ENDIAN_N2B(*(reinterpret_cast<const u16bit*>(in) + off));
#else
in += off * sizeof(u16bit);
return make_u16bit(in[0], in[1]);
#endif
}
/**
* Load a little-endian u16bit
* @param in a pointer to some bytes
* @param off an offset into the array
* @return off'th u16bit of in, as a little-endian value
*/
template<>
inline u16bit load_le<u16bit>(const byte in[], size_t off)
{
#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
return BOTAN_ENDIAN_N2L(*(reinterpret_cast<const u16bit*>(in) + off));
#else
in += off * sizeof(u16bit);
return make_u16bit(in[1], in[0]);
#endif
}
/**
* Load a big-endian u32bit
* @param in a pointer to some bytes
* @param off an offset into the array
* @return off'th u32bit of in, as a big-endian value
*/
template<>
inline u32bit load_be<u32bit>(const byte in[], size_t off)
{
#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
return BOTAN_ENDIAN_N2B(*(reinterpret_cast<const u32bit*>(in) + off));
#else
in += off * sizeof(u32bit);
return make_u32bit(in[0], in[1], in[2], in[3]);
#endif
}
/**
* Load a little-endian u32bit
* @param in a pointer to some bytes
* @param off an offset into the array
* @return off'th u32bit of in, as a little-endian value
*/
template<>
inline u32bit load_le<u32bit>(const byte in[], size_t off)
{
#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
return BOTAN_ENDIAN_N2L(*(reinterpret_cast<const u32bit*>(in) + off));
#else
in += off * sizeof(u32bit);
return make_u32bit(in[3], in[2], in[1], in[0]);
#endif
}
/**
* Load a big-endian u64bit
* @param in a pointer to some bytes
* @param off an offset into the array
* @return off'th u64bit of in, as a big-endian value
*/
template<>
inline u64bit load_be<u64bit>(const byte in[], size_t off)
{
#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
return BOTAN_ENDIAN_N2B(*(reinterpret_cast<const u64bit*>(in) + off));
#else
in += off * sizeof(u64bit);
return make_u64bit(in[0], in[1], in[2], in[3],
in[4], in[5], in[6], in[7]);
#endif
}
/**
* Load a little-endian u64bit
* @param in a pointer to some bytes
* @param off an offset into the array
* @return off'th u64bit of in, as a little-endian value
*/
template<>
inline u64bit load_le<u64bit>(const byte in[], size_t off)
{
#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
return BOTAN_ENDIAN_N2L(*(reinterpret_cast<const u64bit*>(in) + off));
#else
in += off * sizeof(u64bit);
return make_u64bit(in[7], in[6], in[5], in[4],
in[3], in[2], in[1], in[0]);
#endif
}
/**
* Load two little-endian words
* @param in a pointer to some bytes
* @param x0 where the first word will be written
* @param x1 where the second word will be written
*/
template<typename T>
inline void load_le(const byte in[], T& x0, T& x1)
{
x0 = load_le<T>(in, 0);
x1 = load_le<T>(in, 1);
}
/**
* Load four little-endian words
* @param in a pointer to some bytes
* @param x0 where the first word will be written
* @param x1 where the second word will be written
* @param x2 where the third word will be written
* @param x3 where the fourth word will be written
*/
template<typename T>
inline void load_le(const byte in[],
T& x0, T& x1, T& x2, T& x3)
{
x0 = load_le<T>(in, 0);
x1 = load_le<T>(in, 1);
x2 = load_le<T>(in, 2);
x3 = load_le<T>(in, 3);
}
/**
* Load eight little-endian words
* @param in a pointer to some bytes
* @param x0 where the first word will be written
* @param x1 where the second word will be written
* @param x2 where the third word will be written
* @param x3 where the fourth word will be written
* @param x4 where the fifth word will be written
* @param x5 where the sixth word will be written
* @param x6 where the seventh word will be written
* @param x7 where the eighth word will be written
*/
template<typename T>
inline void load_le(const byte in[],
T& x0, T& x1, T& x2, T& x3,
T& x4, T& x5, T& x6, T& x7)
{
x0 = load_le<T>(in, 0);
x1 = load_le<T>(in, 1);
x2 = load_le<T>(in, 2);
x3 = load_le<T>(in, 3);
x4 = load_le<T>(in, 4);
x5 = load_le<T>(in, 5);
x6 = load_le<T>(in, 6);
x7 = load_le<T>(in, 7);
}
/**
* Load a variable number of little-endian words
* @param out the output array of words
* @param in the input array of bytes
* @param count how many words are in in
*/
template<typename T>
inline void load_le(T out[],
const byte in[],
size_t count)
{
#if defined(BOTAN_TARGET_CPU_HAS_KNOWN_ENDIANNESS)
std::memcpy(out, in, sizeof(T)*count);
#if defined(BOTAN_TARGET_CPU_IS_BIG_ENDIAN)
const size_t blocks = count - (count % 4);
const size_t left = count - blocks;
for(size_t i = 0; i != blocks; i += 4)
bswap_4(out + i);
for(size_t i = 0; i != left; ++i)
out[blocks+i] = reverse_bytes(out[blocks+i]);
#endif
#else
for(size_t i = 0; i != count; ++i)
out[i] = load_le<T>(in, i);
#endif
}
/**
* Load two big-endian words
* @param in a pointer to some bytes
* @param x0 where the first word will be written
* @param x1 where the second word will be written
*/
template<typename T>
inline void load_be(const byte in[], T& x0, T& x1)
{
x0 = load_be<T>(in, 0);
x1 = load_be<T>(in, 1);
}
/**
* Load four big-endian words
* @param in a pointer to some bytes
* @param x0 where the first word will be written
* @param x1 where the second word will be written
* @param x2 where the third word will be written
* @param x3 where the fourth word will be written
*/
template<typename T>
inline void load_be(const byte in[],
T& x0, T& x1, T& x2, T& x3)
{
x0 = load_be<T>(in, 0);
x1 = load_be<T>(in, 1);
x2 = load_be<T>(in, 2);
x3 = load_be<T>(in, 3);
}
/**
* Load eight big-endian words
* @param in a pointer to some bytes
* @param x0 where the first word will be written
* @param x1 where the second word will be written
* @param x2 where the third word will be written
* @param x3 where the fourth word will be written
* @param x4 where the fifth word will be written
* @param x5 where the sixth word will be written
* @param x6 where the seventh word will be written
* @param x7 where the eighth word will be written
*/
template<typename T>
inline void load_be(const byte in[],
T& x0, T& x1, T& x2, T& x3,
T& x4, T& x5, T& x6, T& x7)
{
x0 = load_be<T>(in, 0);
x1 = load_be<T>(in, 1);
x2 = load_be<T>(in, 2);
x3 = load_be<T>(in, 3);
x4 = load_be<T>(in, 4);
x5 = load_be<T>(in, 5);
x6 = load_be<T>(in, 6);
x7 = load_be<T>(in, 7);
}
/**
* Load a variable number of big-endian words
* @param out the output array of words
* @param in the input array of bytes
* @param count how many words are in in
*/
template<typename T>
inline void load_be(T out[],
const byte in[],
size_t count)
{
#if defined(BOTAN_TARGET_CPU_HAS_KNOWN_ENDIANNESS)
std::memcpy(out, in, sizeof(T)*count);
#if defined(BOTAN_TARGET_CPU_IS_LITTLE_ENDIAN)
const size_t blocks = count - (count % 4);
const size_t left = count - blocks;
for(size_t i = 0; i != blocks; i += 4)
bswap_4(out + i);
for(size_t i = 0; i != left; ++i)
out[blocks+i] = reverse_bytes(out[blocks+i]);
#endif
#else
for(size_t i = 0; i != count; ++i)
out[i] = load_be<T>(in, i);
#endif
}
/**
* Store a big-endian u16bit
* @param in the input u16bit
* @param out the byte array to write to
*/
inline void store_be(u16bit in, byte out[2])
{
#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
*reinterpret_cast<u16bit*>(out) = BOTAN_ENDIAN_B2N(in);
#else
out[0] = get_byte(0, in);
out[1] = get_byte(1, in);
#endif
}
/**
* Store a little-endian u16bit
* @param in the input u16bit
* @param out the byte array to write to
*/
inline void store_le(u16bit in, byte out[2])
{
#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
*reinterpret_cast<u16bit*>(out) = BOTAN_ENDIAN_L2N(in);
#else
out[0] = get_byte(1, in);
out[1] = get_byte(0, in);
#endif
}
/**
* Store a big-endian u32bit
* @param in the input u32bit
* @param out the byte array to write to
*/
inline void store_be(u32bit in, byte out[4])
{
#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
*reinterpret_cast<u32bit*>(out) = BOTAN_ENDIAN_B2N(in);
#else
out[0] = get_byte(0, in);
out[1] = get_byte(1, in);
out[2] = get_byte(2, in);
out[3] = get_byte(3, in);
#endif
}
/**
* Store a little-endian u32bit
* @param in the input u32bit
* @param out the byte array to write to
*/
inline void store_le(u32bit in, byte out[4])
{
#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
*reinterpret_cast<u32bit*>(out) = BOTAN_ENDIAN_L2N(in);
#else
out[0] = get_byte(3, in);
out[1] = get_byte(2, in);
out[2] = get_byte(1, in);
out[3] = get_byte(0, in);
#endif
}
/**
* Store a big-endian u64bit
* @param in the input u64bit
* @param out the byte array to write to
*/
inline void store_be(u64bit in, byte out[8])
{
#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
*reinterpret_cast<u64bit*>(out) = BOTAN_ENDIAN_B2N(in);
#else
out[0] = get_byte(0, in);
out[1] = get_byte(1, in);
out[2] = get_byte(2, in);
out[3] = get_byte(3, in);
out[4] = get_byte(4, in);
out[5] = get_byte(5, in);
out[6] = get_byte(6, in);
out[7] = get_byte(7, in);
#endif
}
/**
* Store a little-endian u64bit
* @param in the input u64bit
* @param out the byte array to write to
*/
inline void store_le(u64bit in, byte out[8])
{
#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
*reinterpret_cast<u64bit*>(out) = BOTAN_ENDIAN_L2N(in);
#else
out[0] = get_byte(7, in);
out[1] = get_byte(6, in);
out[2] = get_byte(5, in);
out[3] = get_byte(4, in);
out[4] = get_byte(3, in);
out[5] = get_byte(2, in);
out[6] = get_byte(1, in);
out[7] = get_byte(0, in);
#endif
}
/**
* Store two little-endian words
* @param out the output byte array
* @param x0 the first word
* @param x1 the second word
*/
template<typename T>
inline void store_le(byte out[], T x0, T x1)
{
store_le(x0, out + (0 * sizeof(T)));
store_le(x1, out + (1 * sizeof(T)));
}
/**
* Store two big-endian words
* @param out the output byte array
* @param x0 the first word
* @param x1 the second word
*/
template<typename T>
inline void store_be(byte out[], T x0, T x1)
{
store_be(x0, out + (0 * sizeof(T)));
store_be(x1, out + (1 * sizeof(T)));
}
/**
* Store four little-endian words
* @param out the output byte array
* @param x0 the first word
* @param x1 the second word
* @param x2 the third word
* @param x3 the fourth word
*/
template<typename T>
inline void store_le(byte out[], T x0, T x1, T x2, T x3)
{
store_le(x0, out + (0 * sizeof(T)));
store_le(x1, out + (1 * sizeof(T)));
store_le(x2, out + (2 * sizeof(T)));
store_le(x3, out + (3 * sizeof(T)));
}
/**
* Store four big-endian words
* @param out the output byte array
* @param x0 the first word
* @param x1 the second word
* @param x2 the third word
* @param x3 the fourth word
*/
template<typename T>
inline void store_be(byte out[], T x0, T x1, T x2, T x3)
{
store_be(x0, out + (0 * sizeof(T)));
store_be(x1, out + (1 * sizeof(T)));
store_be(x2, out + (2 * sizeof(T)));
store_be(x3, out + (3 * sizeof(T)));
}
/**
* Store eight little-endian words
* @param out the output byte array
* @param x0 the first word
* @param x1 the second word
* @param x2 the third word
* @param x3 the fourth word
* @param x4 the fifth word
* @param x5 the sixth word
* @param x6 the seventh word
* @param x7 the eighth word
*/
template<typename T>
inline void store_le(byte out[], T x0, T x1, T x2, T x3,
T x4, T x5, T x6, T x7)
{
store_le(x0, out + (0 * sizeof(T)));
store_le(x1, out + (1 * sizeof(T)));
store_le(x2, out + (2 * sizeof(T)));
store_le(x3, out + (3 * sizeof(T)));
store_le(x4, out + (4 * sizeof(T)));
store_le(x5, out + (5 * sizeof(T)));
store_le(x6, out + (6 * sizeof(T)));
store_le(x7, out + (7 * sizeof(T)));
}
/**
* Store eight big-endian words
* @param out the output byte array
* @param x0 the first word
* @param x1 the second word
* @param x2 the third word
* @param x3 the fourth word
* @param x4 the fifth word
* @param x5 the sixth word
* @param x6 the seventh word
* @param x7 the eighth word
*/
template<typename T>
inline void store_be(byte out[], T x0, T x1, T x2, T x3,
T x4, T x5, T x6, T x7)
{
store_be(x0, out + (0 * sizeof(T)));
store_be(x1, out + (1 * sizeof(T)));
store_be(x2, out + (2 * sizeof(T)));
store_be(x3, out + (3 * sizeof(T)));
store_be(x4, out + (4 * sizeof(T)));
store_be(x5, out + (5 * sizeof(T)));
store_be(x6, out + (6 * sizeof(T)));
store_be(x7, out + (7 * sizeof(T)));
}
}
#endif
|