/usr/include/bullet/LinearMath/btQuaternion.h is in libbullet-dev 2.83.6+dfsg-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 | /*
Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BT_SIMD__QUATERNION_H_
#define BT_SIMD__QUATERNION_H_
#include "btVector3.h"
#include "btQuadWord.h"
#ifdef BT_USE_DOUBLE_PRECISION
#define btQuaternionData btQuaternionDoubleData
#define btQuaternionDataName "btQuaternionDoubleData"
#else
#define btQuaternionData btQuaternionFloatData
#define btQuaternionDataName "btQuaternionFloatData"
#endif //BT_USE_DOUBLE_PRECISION
#ifdef BT_USE_SSE
//const __m128 ATTRIBUTE_ALIGNED16(vOnes) = {1.0f, 1.0f, 1.0f, 1.0f};
#define vOnes (_mm_set_ps(1.0f, 1.0f, 1.0f, 1.0f))
#endif
#if defined(BT_USE_SSE)
#define vQInv (_mm_set_ps(+0.0f, -0.0f, -0.0f, -0.0f))
#define vPPPM (_mm_set_ps(-0.0f, +0.0f, +0.0f, +0.0f))
#elif defined(BT_USE_NEON)
const btSimdFloat4 ATTRIBUTE_ALIGNED16(vQInv) = {-0.0f, -0.0f, -0.0f, +0.0f};
const btSimdFloat4 ATTRIBUTE_ALIGNED16(vPPPM) = {+0.0f, +0.0f, +0.0f, -0.0f};
#endif
/**@brief The btQuaternion implements quaternion to perform linear algebra rotations in combination with btMatrix3x3, btVector3 and btTransform. */
class btQuaternion : public btQuadWord {
public:
/**@brief No initialization constructor */
btQuaternion() {}
#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))|| defined(BT_USE_NEON)
// Set Vector
SIMD_FORCE_INLINE btQuaternion(const btSimdFloat4 vec)
{
mVec128 = vec;
}
// Copy constructor
SIMD_FORCE_INLINE btQuaternion(const btQuaternion& rhs)
{
mVec128 = rhs.mVec128;
}
// Assignment Operator
SIMD_FORCE_INLINE btQuaternion&
operator=(const btQuaternion& v)
{
mVec128 = v.mVec128;
return *this;
}
#endif
// template <typename btScalar>
// explicit Quaternion(const btScalar *v) : Tuple4<btScalar>(v) {}
/**@brief Constructor from scalars */
btQuaternion(const btScalar& _x, const btScalar& _y, const btScalar& _z, const btScalar& _w)
: btQuadWord(_x, _y, _z, _w)
{}
/**@brief Axis angle Constructor
* @param axis The axis which the rotation is around
* @param angle The magnitude of the rotation around the angle (Radians) */
btQuaternion(const btVector3& _axis, const btScalar& _angle)
{
setRotation(_axis, _angle);
}
/**@brief Constructor from Euler angles
* @param yaw Angle around Y unless BT_EULER_DEFAULT_ZYX defined then Z
* @param pitch Angle around X unless BT_EULER_DEFAULT_ZYX defined then Y
* @param roll Angle around Z unless BT_EULER_DEFAULT_ZYX defined then X */
btQuaternion(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
{
#ifndef BT_EULER_DEFAULT_ZYX
setEuler(yaw, pitch, roll);
#else
setEulerZYX(yaw, pitch, roll);
#endif
}
/**@brief Set the rotation using axis angle notation
* @param axis The axis around which to rotate
* @param angle The magnitude of the rotation in Radians */
void setRotation(const btVector3& axis, const btScalar& _angle)
{
btScalar d = axis.length();
btAssert(d != btScalar(0.0));
btScalar s = btSin(_angle * btScalar(0.5)) / d;
setValue(axis.x() * s, axis.y() * s, axis.z() * s,
btCos(_angle * btScalar(0.5)));
}
/**@brief Set the quaternion using Euler angles
* @param yaw Angle around Y
* @param pitch Angle around X
* @param roll Angle around Z */
void setEuler(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
{
btScalar halfYaw = btScalar(yaw) * btScalar(0.5);
btScalar halfPitch = btScalar(pitch) * btScalar(0.5);
btScalar halfRoll = btScalar(roll) * btScalar(0.5);
btScalar cosYaw = btCos(halfYaw);
btScalar sinYaw = btSin(halfYaw);
btScalar cosPitch = btCos(halfPitch);
btScalar sinPitch = btSin(halfPitch);
btScalar cosRoll = btCos(halfRoll);
btScalar sinRoll = btSin(halfRoll);
setValue(cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw,
cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw,
sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw,
cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw);
}
/**@brief Set the quaternion using euler angles
* @param yaw Angle around Z
* @param pitch Angle around Y
* @param roll Angle around X */
void setEulerZYX(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
{
btScalar halfYaw = btScalar(yaw) * btScalar(0.5);
btScalar halfPitch = btScalar(pitch) * btScalar(0.5);
btScalar halfRoll = btScalar(roll) * btScalar(0.5);
btScalar cosYaw = btCos(halfYaw);
btScalar sinYaw = btSin(halfYaw);
btScalar cosPitch = btCos(halfPitch);
btScalar sinPitch = btSin(halfPitch);
btScalar cosRoll = btCos(halfRoll);
btScalar sinRoll = btSin(halfRoll);
setValue(sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw, //x
cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw, //y
cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw, //z
cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw); //formerly yzx
}
/**@brief Add two quaternions
* @param q The quaternion to add to this one */
SIMD_FORCE_INLINE btQuaternion& operator+=(const btQuaternion& q)
{
#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
mVec128 = _mm_add_ps(mVec128, q.mVec128);
#elif defined(BT_USE_NEON)
mVec128 = vaddq_f32(mVec128, q.mVec128);
#else
m_floats[0] += q.x();
m_floats[1] += q.y();
m_floats[2] += q.z();
m_floats[3] += q.m_floats[3];
#endif
return *this;
}
/**@brief Subtract out a quaternion
* @param q The quaternion to subtract from this one */
btQuaternion& operator-=(const btQuaternion& q)
{
#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
mVec128 = _mm_sub_ps(mVec128, q.mVec128);
#elif defined(BT_USE_NEON)
mVec128 = vsubq_f32(mVec128, q.mVec128);
#else
m_floats[0] -= q.x();
m_floats[1] -= q.y();
m_floats[2] -= q.z();
m_floats[3] -= q.m_floats[3];
#endif
return *this;
}
/**@brief Scale this quaternion
* @param s The scalar to scale by */
btQuaternion& operator*=(const btScalar& s)
{
#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
__m128 vs = _mm_load_ss(&s); // (S 0 0 0)
vs = bt_pshufd_ps(vs, 0); // (S S S S)
mVec128 = _mm_mul_ps(mVec128, vs);
#elif defined(BT_USE_NEON)
mVec128 = vmulq_n_f32(mVec128, s);
#else
m_floats[0] *= s;
m_floats[1] *= s;
m_floats[2] *= s;
m_floats[3] *= s;
#endif
return *this;
}
/**@brief Multiply this quaternion by q on the right
* @param q The other quaternion
* Equivilant to this = this * q */
btQuaternion& operator*=(const btQuaternion& q)
{
#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
__m128 vQ2 = q.get128();
__m128 A1 = bt_pshufd_ps(mVec128, BT_SHUFFLE(0,1,2,0));
__m128 B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(3,3,3,0));
A1 = A1 * B1;
__m128 A2 = bt_pshufd_ps(mVec128, BT_SHUFFLE(1,2,0,1));
__m128 B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2,0,1,1));
A2 = A2 * B2;
B1 = bt_pshufd_ps(mVec128, BT_SHUFFLE(2,0,1,2));
B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1,2,0,2));
B1 = B1 * B2; // A3 *= B3
mVec128 = bt_splat_ps(mVec128, 3); // A0
mVec128 = mVec128 * vQ2; // A0 * B0
A1 = A1 + A2; // AB12
mVec128 = mVec128 - B1; // AB03 = AB0 - AB3
A1 = _mm_xor_ps(A1, vPPPM); // change sign of the last element
mVec128 = mVec128+ A1; // AB03 + AB12
#elif defined(BT_USE_NEON)
float32x4_t vQ1 = mVec128;
float32x4_t vQ2 = q.get128();
float32x4_t A0, A1, B1, A2, B2, A3, B3;
float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz;
{
float32x2x2_t tmp;
tmp = vtrn_f32( vget_high_f32(vQ1), vget_low_f32(vQ1) ); // {z x}, {w y}
vQ1zx = tmp.val[0];
tmp = vtrn_f32( vget_high_f32(vQ2), vget_low_f32(vQ2) ); // {z x}, {w y}
vQ2zx = tmp.val[0];
}
vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1);
vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);
vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);
A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx); // X Y z x
B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx); // W W W X
A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1));
B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));
A3 = vcombine_f32(vQ1zx, vQ1yz); // Z X Y Z
B3 = vcombine_f32(vQ2yz, vQ2xz); // Y Z x z
A1 = vmulq_f32(A1, B1);
A2 = vmulq_f32(A2, B2);
A3 = vmulq_f32(A3, B3); // A3 *= B3
A0 = vmulq_lane_f32(vQ2, vget_high_f32(vQ1), 1); // A0 * B0
A1 = vaddq_f32(A1, A2); // AB12 = AB1 + AB2
A0 = vsubq_f32(A0, A3); // AB03 = AB0 - AB3
// change the sign of the last element
A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM);
A0 = vaddq_f32(A0, A1); // AB03 + AB12
mVec128 = A0;
#else
setValue(
m_floats[3] * q.x() + m_floats[0] * q.m_floats[3] + m_floats[1] * q.z() - m_floats[2] * q.y(),
m_floats[3] * q.y() + m_floats[1] * q.m_floats[3] + m_floats[2] * q.x() - m_floats[0] * q.z(),
m_floats[3] * q.z() + m_floats[2] * q.m_floats[3] + m_floats[0] * q.y() - m_floats[1] * q.x(),
m_floats[3] * q.m_floats[3] - m_floats[0] * q.x() - m_floats[1] * q.y() - m_floats[2] * q.z());
#endif
return *this;
}
/**@brief Return the dot product between this quaternion and another
* @param q The other quaternion */
btScalar dot(const btQuaternion& q) const
{
#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
__m128 vd;
vd = _mm_mul_ps(mVec128, q.mVec128);
__m128 t = _mm_movehl_ps(vd, vd);
vd = _mm_add_ps(vd, t);
t = _mm_shuffle_ps(vd, vd, 0x55);
vd = _mm_add_ss(vd, t);
return _mm_cvtss_f32(vd);
#elif defined(BT_USE_NEON)
float32x4_t vd = vmulq_f32(mVec128, q.mVec128);
float32x2_t x = vpadd_f32(vget_low_f32(vd), vget_high_f32(vd));
x = vpadd_f32(x, x);
return vget_lane_f32(x, 0);
#else
return m_floats[0] * q.x() +
m_floats[1] * q.y() +
m_floats[2] * q.z() +
m_floats[3] * q.m_floats[3];
#endif
}
/**@brief Return the length squared of the quaternion */
btScalar length2() const
{
return dot(*this);
}
/**@brief Return the length of the quaternion */
btScalar length() const
{
return btSqrt(length2());
}
/**@brief Normalize the quaternion
* Such that x^2 + y^2 + z^2 +w^2 = 1 */
btQuaternion& normalize()
{
#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
__m128 vd;
vd = _mm_mul_ps(mVec128, mVec128);
__m128 t = _mm_movehl_ps(vd, vd);
vd = _mm_add_ps(vd, t);
t = _mm_shuffle_ps(vd, vd, 0x55);
vd = _mm_add_ss(vd, t);
vd = _mm_sqrt_ss(vd);
vd = _mm_div_ss(vOnes, vd);
vd = bt_pshufd_ps(vd, 0); // splat
mVec128 = _mm_mul_ps(mVec128, vd);
return *this;
#else
return *this /= length();
#endif
}
/**@brief Return a scaled version of this quaternion
* @param s The scale factor */
SIMD_FORCE_INLINE btQuaternion
operator*(const btScalar& s) const
{
#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
__m128 vs = _mm_load_ss(&s); // (S 0 0 0)
vs = bt_pshufd_ps(vs, 0x00); // (S S S S)
return btQuaternion(_mm_mul_ps(mVec128, vs));
#elif defined(BT_USE_NEON)
return btQuaternion(vmulq_n_f32(mVec128, s));
#else
return btQuaternion(x() * s, y() * s, z() * s, m_floats[3] * s);
#endif
}
/**@brief Return an inversely scaled versionof this quaternion
* @param s The inverse scale factor */
btQuaternion operator/(const btScalar& s) const
{
btAssert(s != btScalar(0.0));
return *this * (btScalar(1.0) / s);
}
/**@brief Inversely scale this quaternion
* @param s The scale factor */
btQuaternion& operator/=(const btScalar& s)
{
btAssert(s != btScalar(0.0));
return *this *= btScalar(1.0) / s;
}
/**@brief Return a normalized version of this quaternion */
btQuaternion normalized() const
{
return *this / length();
}
/**@brief Return the ***half*** angle between this quaternion and the other
* @param q The other quaternion */
btScalar angle(const btQuaternion& q) const
{
btScalar s = btSqrt(length2() * q.length2());
btAssert(s != btScalar(0.0));
return btAcos(dot(q) / s);
}
/**@brief Return the angle between this quaternion and the other along the shortest path
* @param q The other quaternion */
btScalar angleShortestPath(const btQuaternion& q) const
{
btScalar s = btSqrt(length2() * q.length2());
btAssert(s != btScalar(0.0));
if (dot(q) < 0) // Take care of long angle case see http://en.wikipedia.org/wiki/Slerp
return btAcos(dot(-q) / s) * btScalar(2.0);
else
return btAcos(dot(q) / s) * btScalar(2.0);
}
/**@brief Return the angle of rotation represented by this quaternion */
btScalar getAngle() const
{
btScalar s = btScalar(2.) * btAcos(m_floats[3]);
return s;
}
/**@brief Return the angle of rotation represented by this quaternion along the shortest path*/
btScalar getAngleShortestPath() const
{
btScalar s;
if (dot(*this) < 0)
s = btScalar(2.) * btAcos(m_floats[3]);
else
s = btScalar(2.) * btAcos(-m_floats[3]);
return s;
}
/**@brief Return the axis of the rotation represented by this quaternion */
btVector3 getAxis() const
{
btScalar s_squared = 1.f-m_floats[3]*m_floats[3];
if (s_squared < btScalar(10.) * SIMD_EPSILON) //Check for divide by zero
return btVector3(1.0, 0.0, 0.0); // Arbitrary
btScalar s = 1.f/btSqrt(s_squared);
return btVector3(m_floats[0] * s, m_floats[1] * s, m_floats[2] * s);
}
/**@brief Return the inverse of this quaternion */
btQuaternion inverse() const
{
#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
return btQuaternion(_mm_xor_ps(mVec128, vQInv));
#elif defined(BT_USE_NEON)
return btQuaternion((btSimdFloat4)veorq_s32((int32x4_t)mVec128, (int32x4_t)vQInv));
#else
return btQuaternion(-m_floats[0], -m_floats[1], -m_floats[2], m_floats[3]);
#endif
}
/**@brief Return the sum of this quaternion and the other
* @param q2 The other quaternion */
SIMD_FORCE_INLINE btQuaternion
operator+(const btQuaternion& q2) const
{
#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
return btQuaternion(_mm_add_ps(mVec128, q2.mVec128));
#elif defined(BT_USE_NEON)
return btQuaternion(vaddq_f32(mVec128, q2.mVec128));
#else
const btQuaternion& q1 = *this;
return btQuaternion(q1.x() + q2.x(), q1.y() + q2.y(), q1.z() + q2.z(), q1.m_floats[3] + q2.m_floats[3]);
#endif
}
/**@brief Return the difference between this quaternion and the other
* @param q2 The other quaternion */
SIMD_FORCE_INLINE btQuaternion
operator-(const btQuaternion& q2) const
{
#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
return btQuaternion(_mm_sub_ps(mVec128, q2.mVec128));
#elif defined(BT_USE_NEON)
return btQuaternion(vsubq_f32(mVec128, q2.mVec128));
#else
const btQuaternion& q1 = *this;
return btQuaternion(q1.x() - q2.x(), q1.y() - q2.y(), q1.z() - q2.z(), q1.m_floats[3] - q2.m_floats[3]);
#endif
}
/**@brief Return the negative of this quaternion
* This simply negates each element */
SIMD_FORCE_INLINE btQuaternion operator-() const
{
#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
return btQuaternion(_mm_xor_ps(mVec128, btvMzeroMask));
#elif defined(BT_USE_NEON)
return btQuaternion((btSimdFloat4)veorq_s32((int32x4_t)mVec128, (int32x4_t)btvMzeroMask) );
#else
const btQuaternion& q2 = *this;
return btQuaternion( - q2.x(), - q2.y(), - q2.z(), - q2.m_floats[3]);
#endif
}
/**@todo document this and it's use */
SIMD_FORCE_INLINE btQuaternion farthest( const btQuaternion& qd) const
{
btQuaternion diff,sum;
diff = *this - qd;
sum = *this + qd;
if( diff.dot(diff) > sum.dot(sum) )
return qd;
return (-qd);
}
/**@todo document this and it's use */
SIMD_FORCE_INLINE btQuaternion nearest( const btQuaternion& qd) const
{
btQuaternion diff,sum;
diff = *this - qd;
sum = *this + qd;
if( diff.dot(diff) < sum.dot(sum) )
return qd;
return (-qd);
}
/**@brief Return the quaternion which is the result of Spherical Linear Interpolation between this and the other quaternion
* @param q The other quaternion to interpolate with
* @param t The ratio between this and q to interpolate. If t = 0 the result is this, if t=1 the result is q.
* Slerp interpolates assuming constant velocity. */
btQuaternion slerp(const btQuaternion& q, const btScalar& t) const
{
btScalar magnitude = btSqrt(length2() * q.length2());
btAssert(magnitude > btScalar(0));
btScalar product = dot(q) / magnitude;
if (btFabs(product) < btScalar(1))
{
// Take care of long angle case see http://en.wikipedia.org/wiki/Slerp
const btScalar sign = (product < 0) ? btScalar(-1) : btScalar(1);
const btScalar theta = btAcos(sign * product);
const btScalar s1 = btSin(sign * t * theta);
const btScalar d = btScalar(1.0) / btSin(theta);
const btScalar s0 = btSin((btScalar(1.0) - t) * theta);
return btQuaternion(
(m_floats[0] * s0 + q.x() * s1) * d,
(m_floats[1] * s0 + q.y() * s1) * d,
(m_floats[2] * s0 + q.z() * s1) * d,
(m_floats[3] * s0 + q.m_floats[3] * s1) * d);
}
else
{
return *this;
}
}
static const btQuaternion& getIdentity()
{
static const btQuaternion identityQuat(btScalar(0.),btScalar(0.),btScalar(0.),btScalar(1.));
return identityQuat;
}
SIMD_FORCE_INLINE const btScalar& getW() const { return m_floats[3]; }
SIMD_FORCE_INLINE void serialize(struct btQuaternionData& dataOut) const;
SIMD_FORCE_INLINE void deSerialize(const struct btQuaternionData& dataIn);
SIMD_FORCE_INLINE void serializeFloat(struct btQuaternionFloatData& dataOut) const;
SIMD_FORCE_INLINE void deSerializeFloat(const struct btQuaternionFloatData& dataIn);
SIMD_FORCE_INLINE void serializeDouble(struct btQuaternionDoubleData& dataOut) const;
SIMD_FORCE_INLINE void deSerializeDouble(const struct btQuaternionDoubleData& dataIn);
};
/**@brief Return the product of two quaternions */
SIMD_FORCE_INLINE btQuaternion
operator*(const btQuaternion& q1, const btQuaternion& q2)
{
#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
__m128 vQ1 = q1.get128();
__m128 vQ2 = q2.get128();
__m128 A0, A1, B1, A2, B2;
A1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(0,1,2,0)); // X Y z x // vtrn
B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(3,3,3,0)); // W W W X // vdup vext
A1 = A1 * B1;
A2 = bt_pshufd_ps(vQ1, BT_SHUFFLE(1,2,0,1)); // Y Z X Y // vext
B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2,0,1,1)); // z x Y Y // vtrn vdup
A2 = A2 * B2;
B1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(2,0,1,2)); // z x Y Z // vtrn vext
B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1,2,0,2)); // Y Z x z // vext vtrn
B1 = B1 * B2; // A3 *= B3
A0 = bt_splat_ps(vQ1, 3); // A0
A0 = A0 * vQ2; // A0 * B0
A1 = A1 + A2; // AB12
A0 = A0 - B1; // AB03 = AB0 - AB3
A1 = _mm_xor_ps(A1, vPPPM); // change sign of the last element
A0 = A0 + A1; // AB03 + AB12
return btQuaternion(A0);
#elif defined(BT_USE_NEON)
float32x4_t vQ1 = q1.get128();
float32x4_t vQ2 = q2.get128();
float32x4_t A0, A1, B1, A2, B2, A3, B3;
float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz;
{
float32x2x2_t tmp;
tmp = vtrn_f32( vget_high_f32(vQ1), vget_low_f32(vQ1) ); // {z x}, {w y}
vQ1zx = tmp.val[0];
tmp = vtrn_f32( vget_high_f32(vQ2), vget_low_f32(vQ2) ); // {z x}, {w y}
vQ2zx = tmp.val[0];
}
vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1);
vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);
vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);
A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx); // X Y z x
B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx); // W W W X
A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1));
B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));
A3 = vcombine_f32(vQ1zx, vQ1yz); // Z X Y Z
B3 = vcombine_f32(vQ2yz, vQ2xz); // Y Z x z
A1 = vmulq_f32(A1, B1);
A2 = vmulq_f32(A2, B2);
A3 = vmulq_f32(A3, B3); // A3 *= B3
A0 = vmulq_lane_f32(vQ2, vget_high_f32(vQ1), 1); // A0 * B0
A1 = vaddq_f32(A1, A2); // AB12 = AB1 + AB2
A0 = vsubq_f32(A0, A3); // AB03 = AB0 - AB3
// change the sign of the last element
A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM);
A0 = vaddq_f32(A0, A1); // AB03 + AB12
return btQuaternion(A0);
#else
return btQuaternion(
q1.w() * q2.x() + q1.x() * q2.w() + q1.y() * q2.z() - q1.z() * q2.y(),
q1.w() * q2.y() + q1.y() * q2.w() + q1.z() * q2.x() - q1.x() * q2.z(),
q1.w() * q2.z() + q1.z() * q2.w() + q1.x() * q2.y() - q1.y() * q2.x(),
q1.w() * q2.w() - q1.x() * q2.x() - q1.y() * q2.y() - q1.z() * q2.z());
#endif
}
SIMD_FORCE_INLINE btQuaternion
operator*(const btQuaternion& q, const btVector3& w)
{
#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
__m128 vQ1 = q.get128();
__m128 vQ2 = w.get128();
__m128 A1, B1, A2, B2, A3, B3;
A1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(3,3,3,0));
B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(0,1,2,0));
A1 = A1 * B1;
A2 = bt_pshufd_ps(vQ1, BT_SHUFFLE(1,2,0,1));
B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2,0,1,1));
A2 = A2 * B2;
A3 = bt_pshufd_ps(vQ1, BT_SHUFFLE(2,0,1,2));
B3 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1,2,0,2));
A3 = A3 * B3; // A3 *= B3
A1 = A1 + A2; // AB12
A1 = _mm_xor_ps(A1, vPPPM); // change sign of the last element
A1 = A1 - A3; // AB123 = AB12 - AB3
return btQuaternion(A1);
#elif defined(BT_USE_NEON)
float32x4_t vQ1 = q.get128();
float32x4_t vQ2 = w.get128();
float32x4_t A1, B1, A2, B2, A3, B3;
float32x2_t vQ1wx, vQ2zx, vQ1yz, vQ2yz, vQ1zx, vQ2xz;
vQ1wx = vext_f32(vget_high_f32(vQ1), vget_low_f32(vQ1), 1);
{
float32x2x2_t tmp;
tmp = vtrn_f32( vget_high_f32(vQ2), vget_low_f32(vQ2) ); // {z x}, {w y}
vQ2zx = tmp.val[0];
tmp = vtrn_f32( vget_high_f32(vQ1), vget_low_f32(vQ1) ); // {z x}, {w y}
vQ1zx = tmp.val[0];
}
vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);
vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);
A1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ1), 1), vQ1wx); // W W W X
B1 = vcombine_f32(vget_low_f32(vQ2), vQ2zx); // X Y z x
A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1));
B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));
A3 = vcombine_f32(vQ1zx, vQ1yz); // Z X Y Z
B3 = vcombine_f32(vQ2yz, vQ2xz); // Y Z x z
A1 = vmulq_f32(A1, B1);
A2 = vmulq_f32(A2, B2);
A3 = vmulq_f32(A3, B3); // A3 *= B3
A1 = vaddq_f32(A1, A2); // AB12 = AB1 + AB2
// change the sign of the last element
A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM);
A1 = vsubq_f32(A1, A3); // AB123 = AB12 - AB3
return btQuaternion(A1);
#else
return btQuaternion(
q.w() * w.x() + q.y() * w.z() - q.z() * w.y(),
q.w() * w.y() + q.z() * w.x() - q.x() * w.z(),
q.w() * w.z() + q.x() * w.y() - q.y() * w.x(),
-q.x() * w.x() - q.y() * w.y() - q.z() * w.z());
#endif
}
SIMD_FORCE_INLINE btQuaternion
operator*(const btVector3& w, const btQuaternion& q)
{
#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
__m128 vQ1 = w.get128();
__m128 vQ2 = q.get128();
__m128 A1, B1, A2, B2, A3, B3;
A1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(0,1,2,0)); // X Y z x
B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(3,3,3,0)); // W W W X
A1 = A1 * B1;
A2 = bt_pshufd_ps(vQ1, BT_SHUFFLE(1,2,0,1));
B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2,0,1,1));
A2 = A2 *B2;
A3 = bt_pshufd_ps(vQ1, BT_SHUFFLE(2,0,1,2));
B3 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1,2,0,2));
A3 = A3 * B3; // A3 *= B3
A1 = A1 + A2; // AB12
A1 = _mm_xor_ps(A1, vPPPM); // change sign of the last element
A1 = A1 - A3; // AB123 = AB12 - AB3
return btQuaternion(A1);
#elif defined(BT_USE_NEON)
float32x4_t vQ1 = w.get128();
float32x4_t vQ2 = q.get128();
float32x4_t A1, B1, A2, B2, A3, B3;
float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz;
{
float32x2x2_t tmp;
tmp = vtrn_f32( vget_high_f32(vQ1), vget_low_f32(vQ1) ); // {z x}, {w y}
vQ1zx = tmp.val[0];
tmp = vtrn_f32( vget_high_f32(vQ2), vget_low_f32(vQ2) ); // {z x}, {w y}
vQ2zx = tmp.val[0];
}
vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1);
vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);
vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);
A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx); // X Y z x
B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx); // W W W X
A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1));
B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));
A3 = vcombine_f32(vQ1zx, vQ1yz); // Z X Y Z
B3 = vcombine_f32(vQ2yz, vQ2xz); // Y Z x z
A1 = vmulq_f32(A1, B1);
A2 = vmulq_f32(A2, B2);
A3 = vmulq_f32(A3, B3); // A3 *= B3
A1 = vaddq_f32(A1, A2); // AB12 = AB1 + AB2
// change the sign of the last element
A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM);
A1 = vsubq_f32(A1, A3); // AB123 = AB12 - AB3
return btQuaternion(A1);
#else
return btQuaternion(
+w.x() * q.w() + w.y() * q.z() - w.z() * q.y(),
+w.y() * q.w() + w.z() * q.x() - w.x() * q.z(),
+w.z() * q.w() + w.x() * q.y() - w.y() * q.x(),
-w.x() * q.x() - w.y() * q.y() - w.z() * q.z());
#endif
}
/**@brief Calculate the dot product between two quaternions */
SIMD_FORCE_INLINE btScalar
dot(const btQuaternion& q1, const btQuaternion& q2)
{
return q1.dot(q2);
}
/**@brief Return the length of a quaternion */
SIMD_FORCE_INLINE btScalar
length(const btQuaternion& q)
{
return q.length();
}
/**@brief Return the angle between two quaternions*/
SIMD_FORCE_INLINE btScalar
btAngle(const btQuaternion& q1, const btQuaternion& q2)
{
return q1.angle(q2);
}
/**@brief Return the inverse of a quaternion*/
SIMD_FORCE_INLINE btQuaternion
inverse(const btQuaternion& q)
{
return q.inverse();
}
/**@brief Return the result of spherical linear interpolation betwen two quaternions
* @param q1 The first quaternion
* @param q2 The second quaternion
* @param t The ration between q1 and q2. t = 0 return q1, t=1 returns q2
* Slerp assumes constant velocity between positions. */
SIMD_FORCE_INLINE btQuaternion
slerp(const btQuaternion& q1, const btQuaternion& q2, const btScalar& t)
{
return q1.slerp(q2, t);
}
SIMD_FORCE_INLINE btVector3
quatRotate(const btQuaternion& rotation, const btVector3& v)
{
btQuaternion q = rotation * v;
q *= rotation.inverse();
#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
return btVector3(_mm_and_ps(q.get128(), btvFFF0fMask));
#elif defined(BT_USE_NEON)
return btVector3((float32x4_t)vandq_s32((int32x4_t)q.get128(), btvFFF0Mask));
#else
return btVector3(q.getX(),q.getY(),q.getZ());
#endif
}
SIMD_FORCE_INLINE btQuaternion
shortestArcQuat(const btVector3& v0, const btVector3& v1) // Game Programming Gems 2.10. make sure v0,v1 are normalized
{
btVector3 c = v0.cross(v1);
btScalar d = v0.dot(v1);
if (d < -1.0 + SIMD_EPSILON)
{
btVector3 n,unused;
btPlaneSpace1(v0,n,unused);
return btQuaternion(n.x(),n.y(),n.z(),0.0f); // just pick any vector that is orthogonal to v0
}
btScalar s = btSqrt((1.0f + d) * 2.0f);
btScalar rs = 1.0f / s;
return btQuaternion(c.getX()*rs,c.getY()*rs,c.getZ()*rs,s * 0.5f);
}
SIMD_FORCE_INLINE btQuaternion
shortestArcQuatNormalize2(btVector3& v0,btVector3& v1)
{
v0.normalize();
v1.normalize();
return shortestArcQuat(v0,v1);
}
struct btQuaternionFloatData
{
float m_floats[4];
};
struct btQuaternionDoubleData
{
double m_floats[4];
};
SIMD_FORCE_INLINE void btQuaternion::serializeFloat(struct btQuaternionFloatData& dataOut) const
{
///could also do a memcpy, check if it is worth it
for (int i=0;i<4;i++)
dataOut.m_floats[i] = float(m_floats[i]);
}
SIMD_FORCE_INLINE void btQuaternion::deSerializeFloat(const struct btQuaternionFloatData& dataIn)
{
for (int i=0;i<4;i++)
m_floats[i] = btScalar(dataIn.m_floats[i]);
}
SIMD_FORCE_INLINE void btQuaternion::serializeDouble(struct btQuaternionDoubleData& dataOut) const
{
///could also do a memcpy, check if it is worth it
for (int i=0;i<4;i++)
dataOut.m_floats[i] = double(m_floats[i]);
}
SIMD_FORCE_INLINE void btQuaternion::deSerializeDouble(const struct btQuaternionDoubleData& dataIn)
{
for (int i=0;i<4;i++)
m_floats[i] = btScalar(dataIn.m_floats[i]);
}
SIMD_FORCE_INLINE void btQuaternion::serialize(struct btQuaternionData& dataOut) const
{
///could also do a memcpy, check if it is worth it
for (int i=0;i<4;i++)
dataOut.m_floats[i] = m_floats[i];
}
SIMD_FORCE_INLINE void btQuaternion::deSerialize(const struct btQuaternionData& dataIn)
{
for (int i=0;i<4;i++)
m_floats[i] = dataIn.m_floats[i];
}
#endif //BT_SIMD__QUATERNION_H_
|