/usr/include/capnp/common.h is in libcapnp-dev 0.5.3-2ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 | // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
// Licensed under the MIT License:
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
// This file contains types which are intended to help detect incorrect usage at compile
// time, but should then be optimized down to basic primitives (usually, integers) by the
// compiler.
#ifndef CAPNP_COMMON_H_
#define CAPNP_COMMON_H_
#if defined(__GNUC__) && !CAPNP_HEADER_WARNINGS
#pragma GCC system_header
#endif
#include <kj/units.h>
#include <inttypes.h>
namespace capnp {
#define CAPNP_VERSION_MAJOR 0
#define CAPNP_VERSION_MINOR 5
#define CAPNP_VERSION_MICRO 3
#define CAPNP_VERSION \
(CAPNP_VERSION_MAJOR * 1000000 + CAPNP_VERSION_MINOR * 1000 + CAPNP_VERSION_MICRO)
#ifdef _MSC_VER
#define CAPNP_LITE 1
// MSVC only supports "lite" mode for now, due to missing C++11 features.
#endif
#ifndef CAPNP_LITE
#define CAPNP_LITE 0
#endif
typedef unsigned int uint;
struct Void {
// Type used for Void fields. Using C++'s "void" type creates a bunch of issues since it behaves
// differently from other types.
inline constexpr bool operator==(Void other) const { return true; }
inline constexpr bool operator!=(Void other) const { return false; }
};
static KJ_CONSTEXPR(const) Void VOID = Void();
// Constant value for `Void`, which is an empty struct.
template <typename T>
inline T& operator<<(T& os, Void) { return os << "void"; }
struct Text;
struct Data;
enum class Kind: uint8_t {
PRIMITIVE,
BLOB,
ENUM,
STRUCT,
UNION,
INTERFACE,
LIST,
OTHER
// Some other type which is often a type parameter to Cap'n Proto templates, but which needs
// special handling. This includes types like AnyPointer, Dynamic*, etc.
};
enum class ElementSize: uint8_t {
// Size of a list element.
VOID = 0,
BIT = 1,
BYTE = 2,
TWO_BYTES = 3,
FOUR_BYTES = 4,
EIGHT_BYTES = 5,
POINTER = 6,
INLINE_COMPOSITE = 7
};
namespace schemas {
template <typename T>
struct EnumInfo;
} // namespace schemas
namespace _ { // private
template <typename T, typename = typename T::_capnpPrivate::IsStruct> uint8_t kindSfinae(int);
template <typename T, typename = typename T::_capnpPrivate::IsInterface> uint16_t kindSfinae(int);
template <typename T, typename = typename schemas::EnumInfo<T>::IsEnum> uint32_t kindSfinae(int);
template <typename T> uint64_t kindSfinae(...);
template <typename T>
struct MsvcWorkaround {
// TODO(msvc): Remove this once MSVC supports expression SFINAE.
enum { value = sizeof(kindSfinae<T>(0)) };
};
template <typename T, size_t s = MsvcWorkaround<T>::value> struct Kind_;
template <> struct Kind_<Void> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<bool> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<int8_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<int16_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<int32_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<int64_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<uint8_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<uint16_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<uint32_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<uint64_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<float> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<double> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<Text> { static constexpr Kind kind = Kind::BLOB; };
template <> struct Kind_<Data> { static constexpr Kind kind = Kind::BLOB; };
template <typename T> struct Kind_<T, sizeof(uint8_t)> { static constexpr Kind kind = Kind::STRUCT; };
template <typename T> struct Kind_<T, sizeof(uint16_t)> { static constexpr Kind kind = Kind::INTERFACE; };
template <typename T> struct Kind_<T, sizeof(uint32_t)> { static constexpr Kind kind = Kind::ENUM; };
} // namespace _ (private)
#if CAPNP_LITE
#define CAPNP_KIND(T) ::capnp::_::Kind_<T>::kind
// Avoid constexpr methods in lite mode (MSVC is bad at constexpr).
#else // CAPNP_LITE
template <typename T, Kind k = _::Kind_<T>::kind>
inline constexpr Kind kind() {
// This overload of kind() matches types which have a Kind_ specialization.
return k;
}
#define CAPNP_KIND(T) ::capnp::kind<T>()
// Use this macro rather than kind<T>() in any code which must work in lite mode.
#endif // CAPNP_LITE, else
template <typename T, Kind k = CAPNP_KIND(T)>
struct List;
#if _MSC_VER
template <typename T, Kind k>
struct List {};
// For some reason, without this declaration, MSVC will error out on some uses of List
// claiming that "T" -- as used in the default initializer for the second template param, "k" --
// is not defined. I do not understand this error, but adding this empty default declaration fixes
// it.
#endif
template <typename T> struct ListElementType_;
template <typename T> struct ListElementType_<List<T>> { typedef T Type; };
template <typename T> using ListElementType = typename ListElementType_<T>::Type;
namespace _ { // private
template <typename T, Kind k> struct Kind_<List<T, k>, sizeof(uint64_t)> {
static constexpr Kind kind = Kind::LIST;
};
} // namespace _ (private)
template <typename T, Kind k = CAPNP_KIND(T)> struct ReaderFor_ { typedef typename T::Reader Type; };
template <typename T> struct ReaderFor_<T, Kind::PRIMITIVE> { typedef T Type; };
template <typename T> struct ReaderFor_<T, Kind::ENUM> { typedef T Type; };
template <typename T> struct ReaderFor_<T, Kind::INTERFACE> { typedef typename T::Client Type; };
template <typename T> using ReaderFor = typename ReaderFor_<T>::Type;
// The type returned by List<T>::Reader::operator[].
template <typename T, Kind k = CAPNP_KIND(T)> struct BuilderFor_ { typedef typename T::Builder Type; };
template <typename T> struct BuilderFor_<T, Kind::PRIMITIVE> { typedef T Type; };
template <typename T> struct BuilderFor_<T, Kind::ENUM> { typedef T Type; };
template <typename T> struct BuilderFor_<T, Kind::INTERFACE> { typedef typename T::Client Type; };
template <typename T> using BuilderFor = typename BuilderFor_<T>::Type;
// The type returned by List<T>::Builder::operator[].
template <typename T, Kind k = CAPNP_KIND(T)> struct PipelineFor_ { typedef typename T::Pipeline Type;};
template <typename T> struct PipelineFor_<T, Kind::INTERFACE> { typedef typename T::Client Type; };
template <typename T> using PipelineFor = typename PipelineFor_<T>::Type;
template <typename T, Kind k = CAPNP_KIND(T)> struct TypeIfEnum_;
template <typename T> struct TypeIfEnum_<T, Kind::ENUM> { typedef T Type; };
template <typename T>
using TypeIfEnum = typename TypeIfEnum_<kj::Decay<T>>::Type;
template <typename T>
using FromReader = typename kj::Decay<T>::Reads;
// FromReader<MyType::Reader> = MyType (for any Cap'n Proto type).
template <typename T>
using FromBuilder = typename kj::Decay<T>::Builds;
// FromBuilder<MyType::Builder> = MyType (for any Cap'n Proto type).
template <typename T>
using FromPipeline = typename kj::Decay<T>::Pipelines;
// FromBuilder<MyType::Pipeline> = MyType (for any Cap'n Proto type).
template <typename T>
using FromClient = typename kj::Decay<T>::Calls;
// FromReader<MyType::Client> = MyType (for any Cap'n Proto interface type).
template <typename T>
using FromServer = typename kj::Decay<T>::Serves;
// FromBuilder<MyType::Server> = MyType (for any Cap'n Proto interface type).
namespace _ { // private
template <typename T, Kind k = CAPNP_KIND(T)>
struct PointerHelpers;
#if _MSC_VER
template <typename T, Kind k>
struct PointerHelpers {};
// For some reason, without this declaration, MSVC will error out on some uses of PointerHelpers
// claiming that "T" -- as used in the default initializer for the second template param, "k" --
// is not defined. I do not understand this error, but adding this empty default declaration fixes
// it.
#endif
} // namespace _ (private)
struct MessageSize {
// Size of a message. Every struct type has a method `.totalSize()` that returns this.
uint64_t wordCount;
uint capCount;
};
// =======================================================================================
// Raw memory types and measures
using kj::byte;
class word { uint64_t content KJ_UNUSED_MEMBER; KJ_DISALLOW_COPY(word); public: word() = default; };
// word is an opaque type with size of 64 bits. This type is useful only to make pointer
// arithmetic clearer. Since the contents are private, the only way to access them is to first
// reinterpret_cast to some other pointer type.
//
// Copying is disallowed because you should always use memcpy(). Otherwise, you may run afoul of
// aliasing rules.
//
// A pointer of type word* should always be word-aligned even if won't actually be dereferenced as
// that type.
static_assert(sizeof(byte) == 1, "uint8_t is not one byte?");
static_assert(sizeof(word) == 8, "uint64_t is not 8 bytes?");
#if CAPNP_DEBUG_TYPES
// Set CAPNP_DEBUG_TYPES to 1 to use kj::Quantity for "count" types. Otherwise, plain integers are
// used. All the code should still operate exactly the same, we just lose compile-time checking.
// Note that this will also change symbol names, so it's important that the library and any clients
// be compiled with the same setting here.
//
// We disable this by default to reduce symbol name size and avoid any possibility of the compiler
// failing to fully-optimize the types, but anyone modifying Cap'n Proto itself should enable this
// during development and testing.
namespace _ { class BitLabel; class ElementLabel; struct WirePointer; }
typedef kj::Quantity<uint, _::BitLabel> BitCount;
typedef kj::Quantity<uint8_t, _::BitLabel> BitCount8;
typedef kj::Quantity<uint16_t, _::BitLabel> BitCount16;
typedef kj::Quantity<uint32_t, _::BitLabel> BitCount32;
typedef kj::Quantity<uint64_t, _::BitLabel> BitCount64;
typedef kj::Quantity<uint, byte> ByteCount;
typedef kj::Quantity<uint8_t, byte> ByteCount8;
typedef kj::Quantity<uint16_t, byte> ByteCount16;
typedef kj::Quantity<uint32_t, byte> ByteCount32;
typedef kj::Quantity<uint64_t, byte> ByteCount64;
typedef kj::Quantity<uint, word> WordCount;
typedef kj::Quantity<uint8_t, word> WordCount8;
typedef kj::Quantity<uint16_t, word> WordCount16;
typedef kj::Quantity<uint32_t, word> WordCount32;
typedef kj::Quantity<uint64_t, word> WordCount64;
typedef kj::Quantity<uint, _::ElementLabel> ElementCount;
typedef kj::Quantity<uint8_t, _::ElementLabel> ElementCount8;
typedef kj::Quantity<uint16_t, _::ElementLabel> ElementCount16;
typedef kj::Quantity<uint32_t, _::ElementLabel> ElementCount32;
typedef kj::Quantity<uint64_t, _::ElementLabel> ElementCount64;
typedef kj::Quantity<uint, _::WirePointer> WirePointerCount;
typedef kj::Quantity<uint8_t, _::WirePointer> WirePointerCount8;
typedef kj::Quantity<uint16_t, _::WirePointer> WirePointerCount16;
typedef kj::Quantity<uint32_t, _::WirePointer> WirePointerCount32;
typedef kj::Quantity<uint64_t, _::WirePointer> WirePointerCount64;
template <typename T, typename U>
inline constexpr U* operator+(U* ptr, kj::Quantity<T, U> offset) {
return ptr + offset / kj::unit<kj::Quantity<T, U>>();
}
template <typename T, typename U>
inline constexpr const U* operator+(const U* ptr, kj::Quantity<T, U> offset) {
return ptr + offset / kj::unit<kj::Quantity<T, U>>();
}
template <typename T, typename U>
inline constexpr U* operator+=(U*& ptr, kj::Quantity<T, U> offset) {
return ptr = ptr + offset / kj::unit<kj::Quantity<T, U>>();
}
template <typename T, typename U>
inline constexpr const U* operator+=(const U*& ptr, kj::Quantity<T, U> offset) {
return ptr = ptr + offset / kj::unit<kj::Quantity<T, U>>();
}
template <typename T, typename U>
inline constexpr U* operator-(U* ptr, kj::Quantity<T, U> offset) {
return ptr - offset / kj::unit<kj::Quantity<T, U>>();
}
template <typename T, typename U>
inline constexpr const U* operator-(const U* ptr, kj::Quantity<T, U> offset) {
return ptr - offset / kj::unit<kj::Quantity<T, U>>();
}
template <typename T, typename U>
inline constexpr U* operator-=(U*& ptr, kj::Quantity<T, U> offset) {
return ptr = ptr - offset / kj::unit<kj::Quantity<T, U>>();
}
template <typename T, typename U>
inline constexpr const U* operator-=(const U*& ptr, kj::Quantity<T, U> offset) {
return ptr = ptr - offset / kj::unit<kj::Quantity<T, U>>();
}
#else
typedef uint BitCount;
typedef uint8_t BitCount8;
typedef uint16_t BitCount16;
typedef uint32_t BitCount32;
typedef uint64_t BitCount64;
typedef uint ByteCount;
typedef uint8_t ByteCount8;
typedef uint16_t ByteCount16;
typedef uint32_t ByteCount32;
typedef uint64_t ByteCount64;
typedef uint WordCount;
typedef uint8_t WordCount8;
typedef uint16_t WordCount16;
typedef uint32_t WordCount32;
typedef uint64_t WordCount64;
typedef uint ElementCount;
typedef uint8_t ElementCount8;
typedef uint16_t ElementCount16;
typedef uint32_t ElementCount32;
typedef uint64_t ElementCount64;
typedef uint WirePointerCount;
typedef uint8_t WirePointerCount8;
typedef uint16_t WirePointerCount16;
typedef uint32_t WirePointerCount32;
typedef uint64_t WirePointerCount64;
#endif
constexpr BitCount BITS = kj::unit<BitCount>();
constexpr ByteCount BYTES = kj::unit<ByteCount>();
constexpr WordCount WORDS = kj::unit<WordCount>();
constexpr ElementCount ELEMENTS = kj::unit<ElementCount>();
constexpr WirePointerCount POINTERS = kj::unit<WirePointerCount>();
// GCC 4.7 actually gives unused warnings on these constants in opt mode...
constexpr auto BITS_PER_BYTE KJ_UNUSED = 8 * BITS / BYTES;
constexpr auto BITS_PER_WORD KJ_UNUSED = 64 * BITS / WORDS;
constexpr auto BYTES_PER_WORD KJ_UNUSED = 8 * BYTES / WORDS;
constexpr auto BITS_PER_POINTER KJ_UNUSED = 64 * BITS / POINTERS;
constexpr auto BYTES_PER_POINTER KJ_UNUSED = 8 * BYTES / POINTERS;
constexpr auto WORDS_PER_POINTER KJ_UNUSED = 1 * WORDS / POINTERS;
constexpr WordCount POINTER_SIZE_IN_WORDS = 1 * POINTERS * WORDS_PER_POINTER;
template <typename T>
inline KJ_CONSTEXPR() decltype(BYTES / ELEMENTS) bytesPerElement() {
return sizeof(T) * BYTES / ELEMENTS;
}
template <typename T>
inline KJ_CONSTEXPR() decltype(BITS / ELEMENTS) bitsPerElement() {
return sizeof(T) * 8 * BITS / ELEMENTS;
}
inline constexpr ByteCount intervalLength(const byte* a, const byte* b) {
return uint(b - a) * BYTES;
}
inline constexpr WordCount intervalLength(const word* a, const word* b) {
return uint(b - a) * WORDS;
}
} // namespace capnp
#endif // CAPNP_COMMON_H_
|