This file is indexed.

/usr/include/cereal/access.hpp is in libcereal-dev 1.1.2-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
/*! \file access.hpp
    \brief Access control, default construction, and serialization disambiguation */
/*
  Copyright (c) 2014, Randolph Voorhies, Shane Grant
  All rights reserved.

  Redistribution and use in source and binary forms, with or without
  modification, are permitted provided that the following conditions are met:
      * Redistributions of source code must retain the above copyright
        notice, this list of conditions and the following disclaimer.
      * Redistributions in binary form must reproduce the above copyright
        notice, this list of conditions and the following disclaimer in the
        documentation and/or other materials provided with the distribution.
      * Neither the name of cereal nor the
        names of its contributors may be used to endorse or promote products
        derived from this software without specific prior written permission.

  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
  ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  DISCLAIMED. IN NO EVENT SHALL RANDOLPH VOORHIES OR SHANE GRANT BE LIABLE FOR ANY
  DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CEREAL_ACCESS_HPP_
#define CEREAL_ACCESS_HPP_

#include <type_traits>
#include <iostream>
#include <cstdint>

#include <cereal/macros.hpp>
#include <cereal/details/helpers.hpp>

namespace cereal
{
  // ######################################################################
  //! A class that allows cereal to load smart pointers to types that have no default constructor
  /*! If your class does not have a default constructor, cereal will not be able
      to load any smart pointers to it unless you overload LoadAndConstruct
      for your class, and provide an appropriate load_and_construct method.  You can also
      choose to define a member static function instead of specializing this class.

      The specialization of LoadAndConstruct must be placed within the cereal namespace:

      @code{.cpp}
      struct MyType
      {
        MyType( int x ); // note: no default ctor
        int myX;

        // Define a serialize or load/save pair as you normally would
        template <class Archive>
        void serialize( Archive & ar )
        {
          ar( myX );
        }
      };

      // Provide a specialization for LoadAndConstruct for your type
      namespace cereal
      {
        template <> struct LoadAndConstruct<MyType>
        {
          // load_and_construct will be passed the archive that you will be loading
          // from as well as a construct object which you can use as if it were the
          // constructor for your type.  cereal will handle all memory management for you.
          template <class Archive>
          static void load_and_construct( Archive & ar, cereal::construct<MyType> & construct )
          {
            int x;
            ar( x );
            construct( x );
          }
        };
      } // end namespace cereal
      @endcode

      Please note that just as in using external serialization functions, you cannot get
      access to non-public members of your class by befriending cereal::access.  If you
      have the ability to modify the class you wish to serialize, it is recommended that you
      use member serialize functions and a static member load_and_construct function.

      @tparam T The type to specialize for
      @ingroup Access */
  template <class T>
  struct LoadAndConstruct
  {
    //! Called by cereal if no default constructor exists to load and construct data simultaneously
    /*! Overloads of this should return a pointer to T and expect an archive as a parameter */
    static std::false_type load_and_construct(...)
    { return std::false_type(); }
  };

  // forward decl for construct
  //! @cond PRIVATE_NEVERDEFINED
  namespace memory_detail{ template <class Ar, class T> struct LoadAndConstructLoadWrapper; }
  //! @endcond

  //! Used to construct types with no default constructor
  /*! When serializing a type that has no default constructor, cereal
      will attempt to call either the class static function load_and_construct
      or the appropriate template specialization of LoadAndConstruct.  cereal
      will pass that function a reference to the archive as well as a reference
      to a construct object which should be used to perform the allocation once
      data has been appropriately loaded.

      @code{.cpp}
      struct MyType
      {
        // note the lack of default constructor
        MyType( int xx, int yy );

        int x, y;
        double notInConstructor;

        template <class Archive>
        void serialize( Archive & ar )
        {
          ar( x, y );
          ar( notInConstructor );
        }

        template <class Archive>
        static void load_and_construct( Archive & ar, cereal::construct<MyType> & construct )
        {
          int x, y;
          ar( x, y );

          // use construct object to initialize with loaded data
          construct( x, y );

          // access to member variables and functions via -> operator
          ar( construct->notInConstructor );

          // could also do the above section by:
          double z;
          ar( z );
          construct->notInConstructor = z;
        }
      };
      @endcode

      @tparam T The class type being serialized
      */
  template <class T>
  class construct
  {
    public:
      //! Construct and initialize the type T with the given arguments
      /*! This will forward all arguments to the underlying type T,
          calling an appropriate constructor.

          Calling this function more than once will result in an exception
          being thrown.

          @param args The arguments to the constructor for T
          @throw Exception If called more than once */
      template <class ... Args>
      void operator()( Args && ... args );
      // implementation deferred due to reliance on cereal::access

      //! Get a reference to the initialized underlying object
      /*! This must be called after the object has been initialized.

          @return A reference to the initialized object
          @throw Exception If called before initialization */
      T * operator->()
      {
        if( !itsValid )
          throw Exception("Object must be initialized prior to accessing members");

        return itsPtr;
      }

      //! Returns a raw pointer to the initialized underlying object
      /*! This is mainly intended for use with passing an instance of
          a constructed object to cereal::base_class.

          It is strongly recommended to avoid using this function in
          any other circumstance.

          @return A raw pointer to the initialized type */
      T * ptr()
      {
        return operator->();
      }

    private:
      template <class A, class B> friend struct ::cereal::memory_detail::LoadAndConstructLoadWrapper;

      construct( T * p ) : itsPtr( p ), itsValid( false ) {}
      construct( construct const & ) = delete;
      construct & operator=( construct const & ) = delete;

      T * itsPtr;
      bool itsValid;
  };

  // ######################################################################
  //! A class that can be made a friend to give cereal access to non public functions
  /*! If you desire non-public serialization functions within a class, cereal can only
      access these if you declare cereal::access a friend.

      @code{.cpp}
      class MyClass
      {
        private:
          friend class cereal::access; // gives access to the private serialize

          template <class Archive>
          void serialize( Archive & ar )
          {
            // some code
          }
      };
      @endcode
      @ingroup Access */
  class access
  {
    public:
      // ####### Standard Serialization ########################################
      template<class Archive, class T> inline
      static auto member_serialize(Archive & ar, T & t) -> decltype(t.CEREAL_SERIALIZE_FUNCTION_NAME(ar))
      { return t.CEREAL_SERIALIZE_FUNCTION_NAME(ar); }

      template<class Archive, class T> inline
      static auto member_save(Archive & ar, T const & t) -> decltype(t.CEREAL_SAVE_FUNCTION_NAME(ar))
      { return t.CEREAL_SAVE_FUNCTION_NAME(ar); }

      template<class Archive, class T> inline
      static auto member_save_non_const(Archive & ar, T & t) -> decltype(t.CEREAL_SAVE_FUNCTION_NAME(ar))
      { return t.CEREAL_SAVE_FUNCTION_NAME(ar); }

      template<class Archive, class T> inline
      static auto member_load(Archive & ar, T & t) -> decltype(t.CEREAL_LOAD_FUNCTION_NAME(ar))
      { return t.CEREAL_LOAD_FUNCTION_NAME(ar); }

      template<class Archive, class T> inline
      static auto member_save_minimal(Archive const & ar, T const & t) -> decltype(t.CEREAL_SAVE_MINIMAL_FUNCTION_NAME(ar))
      { return t.CEREAL_SAVE_MINIMAL_FUNCTION_NAME(ar); }

      template<class Archive, class T> inline
      static auto member_save_minimal_non_const(Archive const & ar, T & t) -> decltype(t.CEREAL_SAVE_MINIMAL_FUNCTION_NAME(ar))
      { return t.CEREAL_SAVE_MINIMAL_FUNCTION_NAME(ar); }

      template<class Archive, class T, class U> inline
      static auto member_load_minimal(Archive const & ar, T & t, U && u) -> decltype(t.CEREAL_LOAD_MINIMAL_FUNCTION_NAME(ar, std::forward<U>(u)))
      { return t.CEREAL_LOAD_MINIMAL_FUNCTION_NAME(ar, std::forward<U>(u)); }

      // ####### Versioned Serialization #######################################
      template<class Archive, class T> inline
      static auto member_serialize(Archive & ar, T & t, const std::uint32_t version ) -> decltype(t.CEREAL_SERIALIZE_FUNCTION_NAME(ar, version))
      { return t.CEREAL_SERIALIZE_FUNCTION_NAME(ar, version); }

      template<class Archive, class T> inline
      static auto member_save(Archive & ar, T const & t, const std::uint32_t version ) -> decltype(t.CEREAL_SAVE_FUNCTION_NAME(ar, version))
      { return t.CEREAL_SAVE_FUNCTION_NAME(ar, version); }

      template<class Archive, class T> inline
      static auto member_save_non_const(Archive & ar, T & t, const std::uint32_t version ) -> decltype(t.CEREAL_SAVE_FUNCTION_NAME(ar, version))
      { return t.CEREAL_SAVE_FUNCTION_NAME(ar, version); }

      template<class Archive, class T> inline
      static auto member_load(Archive & ar, T & t, const std::uint32_t version ) -> decltype(t.CEREAL_LOAD_FUNCTION_NAME(ar, version))
      { return t.CEREAL_LOAD_FUNCTION_NAME(ar, version); }

      template<class Archive, class T> inline
      static auto member_save_minimal(Archive const & ar, T const & t, const std::uint32_t version) -> decltype(t.CEREAL_SAVE_MINIMAL_FUNCTION_NAME(ar, version))
      { return t.CEREAL_SAVE_MINIMAL_FUNCTION_NAME(ar, version); }

      template<class Archive, class T> inline
      static auto member_save_minimal_non_const(Archive const & ar, T & t, const std::uint32_t version) -> decltype(t.CEREAL_SAVE_MINIMAL_FUNCTION_NAME(ar, version))
      { return t.CEREAL_SAVE_MINIMAL_FUNCTION_NAME(ar, version); }

      template<class Archive, class T, class U> inline
      static auto member_load_minimal(Archive const & ar, T & t, U && u, const std::uint32_t version) -> decltype(t.CEREAL_LOAD_MINIMAL_FUNCTION_NAME(ar, std::forward<U>(u), version))
      { return t.CEREAL_LOAD_MINIMAL_FUNCTION_NAME(ar, std::forward<U>(u), version); }

      // ####### Other Functionality ##########################################
      // for detecting inheritance from enable_shared_from_this
      template <class T> inline
      static auto shared_from_this(T & t) -> decltype(t.shared_from_this());

      // for placement new
      template <class T, class ... Args> inline
      static void construct( T *& ptr, Args && ... args )
      {
        new (ptr) T( std::forward<Args>( args )... );
      }

      // for non-placement new with a default constructor
      template <class T> inline
      static T * construct()
      {
        return new T();
      }

      template <class T> inline
      static std::false_type load_and_construct(...)
      { return std::false_type(); }

      template<class T, class Archive> inline
      static auto load_and_construct(Archive & ar, ::cereal::construct<T> & construct) -> decltype(T::load_and_construct(ar, construct))
      {
        T::load_and_construct( ar, construct );
      }
  }; // end class access

  // ######################################################################
  //! A specifier used in conjunction with cereal::specialize to disambiguate
  //! serialization in special cases
  /*! @relates specialize
      @ingroup Access */
  enum class specialization
  {
    member_serialize,            //!< Force the use of a member serialize function
    member_load_save,            //!< Force the use of a member load/save pair
    member_load_save_minimal,    //!< Force the use of a member minimal load/save pair
    non_member_serialize,        //!< Force the use of a non-member serialize function
    non_member_load_save,        //!< Force the use of a non-member load/save pair
    non_member_load_save_minimal //!< Force the use of a non-member minimal load/save pair
  };

  //! A class used to disambiguate cases where cereal cannot detect a unique way of serializing a class
  /*! cereal attempts to figure out which method of serialization (member vs. non-member serialize
      or load/save pair) at compile time.  If for some reason cereal cannot find a non-ambiguous way
      of serializing a type, it will produce a static assertion complaining about this.

      This can happen because you have both a serialize and load/save pair, or even because a base
      class has a serialize (public or private with friend access) and a derived class does not
      overwrite this due to choosing some other serialization type.

      Specializing this class will tell cereal to explicitly use the serialization type you specify
      and it will not complain about ambiguity in its compile time selection.  However, if cereal detects
      an ambiguity in specializations, it will continue to issue a static assertion.

      @code{.cpp}
      class MyParent
      {
        friend class cereal::access;
        template <class Archive>
        void serialize( Archive & ar ) {}
      };

      // Although serialize is private in MyParent, to cereal::access it will look public,
      // even through MyDerived
      class MyDerived : public MyParent
      {
        public:
          template <class Archive>
          void load( Archive & ar ) {}

          template <class Archive>
          void save( Archive & ar ) {}
      };

      // The load/save pair in MyDerived is ambiguous because serialize in MyParent can
      // be accessed from cereal::access.  This looks the same as making serialize public
      // in MyParent, making it seem as though MyDerived has both a serialize and a load/save pair.
      // cereal will complain about this at compile time unless we disambiguate:

      namespace cereal
      {
        // This struct specialization will tell cereal which is the right way to serialize the ambiguity
        template <class Archive> struct specialize<Archive, MyDerived, cereal::specialization::member_load_save> {};

        // If we only had a disambiguation for a specific archive type, it would look something like this
        template <> struct specialize<cereal::BinaryOutputArchive, MyDerived, cereal::specialization::member_load_save> {};
      }
      @endcode

      You can also choose to use the macros CEREAL_SPECIALIZE_FOR_ALL_ARCHIVES or
      CEREAL_SPECIALIZE_FOR_ARCHIVE if you want to type a little bit less.

      @tparam T The type to specialize the serialization for
      @tparam S The specialization type to use for T
      @ingroup Access */
  template <class Archive, class T, specialization S>
  struct specialize : public std::false_type {};

  //! Convenient macro for performing specialization for all archive types
  /*! This performs specialization for the specific type for all types of archives.
      This macro should be placed at the global namespace.

      @code{cpp}
      struct MyType {};
      CEREAL_SPECIALIZE_FOR_ALL_ARCHIVES( MyType, cereal::specialization::member_load_save );
      @endcode

      @relates specialize
      @ingroup Access */
  #define CEREAL_SPECIALIZE_FOR_ALL_ARCHIVES( Type, Specialization )                                \
  namespace cereal { template <class Archive> struct specialize<Archive, Type, Specialization> {}; }

  //! Convenient macro for performing specialization for a single archive type
  /*! This performs specialization for the specific type for a single type of archive.
      This macro should be placed at the global namespace.

      @code{cpp}
      struct MyType {};
      CEREAL_SPECIALIZE_FOR_ARCHIVE( cereal::XMLInputArchive, MyType, cereal::specialization::member_load_save );
      @endcode

      @relates specialize
      @ingroup Access */
  #define CEREAL_SPECIALIZE_FOR_ARCHIVE( Archive, Type, Specialization )               \
  namespace cereal { template <> struct specialize<Archive, Type, Specialization> {}; }

  // ######################################################################
  // Deferred Implementation, see construct for more information
  template <class T> template <class ... Args> inline
  void construct<T>::operator()( Args && ... args )
  {
    if( itsValid )
      throw Exception("Attempting to construct an already initialized object");

    ::cereal::access::construct( itsPtr, std::forward<Args>( args )... );
    itsValid = true;
  }
} // namespace cereal

#endif // CEREAL_ACCESS_HPP_