/usr/include/CGAL/Arr_overlay_2.h is in libcgal-dev 4.7-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 | // Copyright (c) 2005,2006,2007,2008,2009,2010,2011 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Baruch Zukerman <baruchzu@post.tau.ac.il>
// Efi Fogel <efif@post.tau.ac.il>
#ifndef CGAL_ARR_OVERLAY_2_H
#define CGAL_ARR_OVERLAY_2_H
/*! \file
* Definition of the global Arr_overlay_2() function.
*/
#include <boost/optional/optional.hpp>
#include <CGAL/Arrangement_on_surface_2.h>
#include <CGAL/Sweep_line_2.h>
#include <CGAL/Sweep_line_2/Arr_default_overlay_traits_base.h>
#include <vector>
#include <boost/mpl/if.hpp>
#include <boost/mpl/or.hpp>
#include <boost/type_traits.hpp>
#include <CGAL/assertions.h>
namespace CGAL {
/*!
* Compute the overlay of two input arrangements.
* \param arr1 The first arrangement.
* \param arr2 The second arrangement.
* \param arr_res Output: The resulting arrangement.
* \param ovl_tr An overlay-traits class. As arr1, arr2 and res can be
* templated with different geometry-traits class and
* different DCELs (encapsulated in the various topology-traits
* classes). The geometry-traits of the result arrangement is
* used to construct the result arrangement. This means that all
* the types (e.g., Point_2, Curve_2 and X_monotone_2) of both
* arr1 and arr2 have to be convertible to the types
* in the result geometry-traits.
* The overlay-traits class defines the various
* overlay operations of pairs of DCEL features from
* TopTraitsA and TopTraitsB to the resulting ResDcel.
*/
template <class GeomTraitsA,
class GeomTraitsB,
class GeomTraitsRes,
class TopTraitsA,
class TopTraitsB,
class TopTraitsRes,
class OverlayTraits>
void overlay(const Arrangement_on_surface_2<GeomTraitsA, TopTraitsA>& arr1,
const Arrangement_on_surface_2<GeomTraitsB, TopTraitsB>& arr2,
Arrangement_on_surface_2<GeomTraitsRes, TopTraitsRes>& arr_res,
OverlayTraits& ovl_tr)
{
typedef Arrangement_on_surface_2<GeomTraitsA, TopTraitsA> ArrA;
typedef Arrangement_on_surface_2<GeomTraitsB, TopTraitsB> ArrB;
typedef Arrangement_on_surface_2<GeomTraitsRes, TopTraitsRes> ArrRes;
// some type assertions (not all, but better then nothing).
CGAL_static_assertion
((boost::is_convertible<typename GeomTraitsA::Point_2, \
typename GeomTraitsRes::Point_2>::value));
CGAL_static_assertion
((boost::is_convertible<typename GeomTraitsB::Point_2, \
typename GeomTraitsRes::Point_2 >::value));
CGAL_static_assertion
((boost::is_convertible<typename GeomTraitsA::X_monotone_curve_2, \
typename GeomTraitsRes::X_monotone_curve_2>::value));
CGAL_static_assertion
((boost::is_convertible<typename GeomTraitsB::X_monotone_curve_2, \
typename GeomTraitsRes::X_monotone_curve_2>::value));
typedef typename TopTraitsRes::template
Sweep_line_overlay_visitor<ArrA, ArrB, OverlayTraits>
Ovl_visitor;
typedef typename Ovl_visitor::Traits_2 Ovl_traits_2;
typedef typename Ovl_traits_2::X_monotone_curve_2 Ovl_x_monotone_curve_2;
typedef typename Ovl_traits_2::Point_2 Ovl_point_2;
typedef typename Ovl_traits_2::Cell_handle_red Cell_handle_red;
typedef typename Ovl_traits_2::Optional_cell_red Optional_cell_red;
typedef typename Ovl_traits_2::Cell_handle_blue Cell_handle_blue;
typedef typename Ovl_traits_2::Optional_cell_blue Optional_cell_blue;
CGAL_USE_TYPE(Optional_cell_red);
CGAL_USE_TYPE(Optional_cell_blue);
// The result arrangement cannot be on of the input arrangements.
CGAL_precondition(((void *)(&arr_res) != (void *)(&arr1)) &&
((void *)(&arr_res) != (void *)(&arr2)));
// Prepare a vector of extended x-monotone curves that represent all edges
// in both input arrangements. Each curve is associated with a halfedge
// directed from right to left.
typename ArrA::Halfedge_const_handle invalid_he1;
typename ArrB::Halfedge_const_handle invalid_he2;
std::vector<Ovl_x_monotone_curve_2>
xcvs_vec(arr1.number_of_edges() + arr2.number_of_edges());
unsigned int i = 0;
typename ArrA::Edge_const_iterator eit1;
for (eit1 = arr1.edges_begin(); eit1 != arr1.edges_end(); ++eit1, ++i) {
typename ArrA::Halfedge_const_handle he1 = eit1;
if (he1->direction() != ARR_RIGHT_TO_LEFT) he1 = he1->twin();
xcvs_vec[i] = Ovl_x_monotone_curve_2(eit1->curve(), he1, invalid_he2);
}
typename ArrB::Edge_const_iterator eit2;
for (eit2 = arr2.edges_begin(); eit2 != arr2.edges_end(); ++eit2, ++i) {
typename ArrB::Halfedge_const_handle he2 = eit2;
if (he2->direction() != ARR_RIGHT_TO_LEFT) he2 = he2->twin();
xcvs_vec[i] = Ovl_x_monotone_curve_2(eit2->curve(), invalid_he1, he2);
}
// Obtain a extended traits-class object and define the sweep-line visitor.
const typename ArrRes::Traits_adaptor_2* traits_adaptor =
arr_res.traits_adaptor();
/* We would like to avoid copy construction of the geometry traits class.
* Copy construction is undesired, because it may results with data
* duplication or even data loss.
*
* If the type Ovl_traits_2 is the same as the type
* GeomTraits, use a reference to GeomTraits to avoid constructing a new one.
* Otherwise, instantiate a local variable of the former and provide
* the later as a single parameter to the constructor.
*
* Use the form 'A a(*b);' and not ''A a = b;' to handle the case where A has
* only an implicit constructor, (which takes *b as a parameter).
*/
typedef Arr_traits_basic_adaptor_2< GeomTraitsRes > Geom_traits_adaptor_2;
typename boost::mpl::if_<boost::is_same< Geom_traits_adaptor_2, Ovl_traits_2>,
const Ovl_traits_2&, Ovl_traits_2>::type
ex_traits(*traits_adaptor);
Ovl_visitor visitor(&arr1, &arr2, &arr_res, &ovl_tr);
Sweep_line_2<Ovl_traits_2, Ovl_visitor,
typename Ovl_visitor::Subcurve, typename Ovl_visitor::Event>
sweep_line(&ex_traits, &visitor);
// In case both arrangement do not contain isolated vertices, go on and
// overlay them.
const std::size_t total_iso_verts =
arr1.number_of_isolated_vertices() + arr2.number_of_isolated_vertices();
if (total_iso_verts == 0) {
// Clear the result arrangement and perform the sweep to construct it.
arr_res.clear();
sweep_line.sweep(xcvs_vec.begin(), xcvs_vec.end());
xcvs_vec.clear();
return;
}
// Prepare a vector of extended points that represent all isolated vertices
// in both input arrangements.
std::vector<Ovl_point_2> pts_vec(total_iso_verts);
i = 0;
typename ArrA::Vertex_const_iterator vit1;
for (vit1 = arr1.vertices_begin(); vit1 != arr1.vertices_end(); ++vit1) {
if (vit1->is_isolated()) {
typename ArrA::Vertex_const_handle v1 = vit1;
pts_vec[i++] =
Ovl_point_2(vit1->point(), boost::make_optional(Cell_handle_red(v1)),
boost::optional<Cell_handle_blue>());
}
}
typename ArrB::Vertex_const_iterator vit2;
for (vit2 = arr2.vertices_begin(); vit2 != arr2.vertices_end(); ++vit2) {
if (vit2->is_isolated()) {
typename ArrB::Vertex_const_handle v2 = vit2;
pts_vec[i++] =
Ovl_point_2(vit2->point(), boost::optional<Cell_handle_red>(),
boost::make_optional(Cell_handle_blue(v2)));
}
}
// Clear the result arrangement and perform the sweep to construct it.
arr_res.clear();
sweep_line.sweep(xcvs_vec.begin(), xcvs_vec.end(),
pts_vec.begin(), pts_vec.end());
xcvs_vec.clear();
pts_vec.clear();
}
/*!
* Compute the (simple) overlay of two input arrangements.
* \param arr1 The first arrangement.
* \param arr2 The second arrangement.
* \param arr_res Output: The resulting arrangement.
*/
template <class GeomTraitsA,
class GeomTraitsB,
class GeomTraitsRes,
class TopTraitsA,
class TopTraitsB,
class TopTraitsRes>
void overlay(const Arrangement_on_surface_2<GeomTraitsA, TopTraitsA>& arr1,
const Arrangement_on_surface_2<GeomTraitsB, TopTraitsB>& arr2,
Arrangement_on_surface_2<GeomTraitsRes, TopTraitsRes>& arr_res)
{
typedef Arrangement_on_surface_2<GeomTraitsA, TopTraitsA> ArrA;
typedef Arrangement_on_surface_2<GeomTraitsA, TopTraitsB> ArrB;
typedef Arrangement_on_surface_2<GeomTraitsRes, TopTraitsRes> ArrRes;
_Arr_default_overlay_traits_base<ArrA, ArrB, ArrRes> ovl_traits;
overlay(arr1, arr2, arr_res, ovl_traits);
}
} //namespace CGAL
#endif
|