/usr/include/CGAL/Arrangement_zone_2.h is in libcgal-dev 4.7-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 | // Copyright (c) 2006,2007,2009,2010,2011 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Ron Wein <wein@post.tau.ac.il>
// Efi Fogel <efif@post.tau.ac.il>
// (based on old version by Eyal Flato)
#ifndef CGAL_ARRANGEMENT_ZONE_2_H
#define CGAL_ARRANGEMENT_ZONE_2_H
/*! \file
* Defintion of the Arrangement_zone_2 class.
*/
#include <boost/mpl/assert.hpp>
#include <CGAL/Arr_tags.h>
#include <CGAL/Arr_accessor.h>
#include <CGAL/Arrangement_2/Arr_traits_adaptor_2.h>
#include <list>
#include <map>
#include <set>
namespace CGAL {
/*! \class
* A class for computing the zone of a given $x$-monotone curve in a given
* arrangement.
* The arrangement parameter corresponds to the underlying arrangement, and
* the zone-visitor parameter corresponds to a visitor class which is capable
* of receiving notifications on the arrangment features the query curve
* traverses. The visitor has to support the following functions:
* - init(), for initializing the visitor with a given arrangement.
* - found_subcurve(), called when a non-intersecting x-monotone curve is
* computed and located in the arrangement.
* - found_overlap(), called when an x-monotone curve overlaps an existing
* halfedge in the arrangement.
* Both the second and the third functions return pair<Halfedge_handle, bool>,
* where the halfedge handle corresponds to the halfedge created or modified
* by the visitor (if valid), and the Boolean value indicates whether we
* should halt the zone-computation process.
*/
template <class Arrangement_, class ZoneVisitor_>
class Arrangement_zone_2
{
public:
typedef Arrangement_ Arrangement_2;
typedef typename Arrangement_2::Geometry_traits_2 Geometry_traits_2;
typedef typename Arrangement_2::Topology_traits Topology_traits;
protected:
typedef Arr_traits_adaptor_2<Geometry_traits_2> Traits_adaptor_2;
typedef typename Traits_adaptor_2::Left_side_category Left_side_category;
typedef typename Traits_adaptor_2::Bottom_side_category Bottom_side_category;
typedef typename Traits_adaptor_2::Top_side_category Top_side_category;
typedef typename Traits_adaptor_2::Right_side_category Right_side_category;
BOOST_MPL_ASSERT(
(typename
Arr_sane_identified_tagging< Left_side_category, Bottom_side_category,
Top_side_category, Right_side_category >::result)
);
public:
typedef ZoneVisitor_ Visitor;
typedef typename Arrangement_2::Vertex_handle Vertex_handle;
typedef typename Arrangement_2::Halfedge_handle Halfedge_handle;
typedef typename Arrangement_2::Face_handle Face_handle;
typedef std::pair<Halfedge_handle, bool> Visitor_result;
typedef typename Geometry_traits_2::Point_2 Point_2;
typedef typename Geometry_traits_2::X_monotone_curve_2 X_monotone_curve_2;
typedef typename Geometry_traits_2::Multiplicity Multiplicity;
protected:
typedef typename Arr_are_all_sides_oblivious_tag<
Left_side_category, Bottom_side_category,
Top_side_category, Right_side_category >::result
Are_all_sides_oblivious_category;
typedef typename Arrangement_2::Vertex_const_handle Vertex_const_handle;
typedef typename Arrangement_2::Halfedge_const_handle Halfedge_const_handle;
typedef typename Arrangement_2::Face_const_handle Face_const_handle;
// Types used for caching intersection points:
typedef std::pair<Point_2,Multiplicity> Intersect_point_2;
typedef std::list<CGAL::Object> Intersect_list;
typedef std::map<const X_monotone_curve_2*,
Intersect_list> Intersect_map;
typedef typename Intersect_map::iterator Intersect_map_iterator;
typedef std::set<const X_monotone_curve_2*> Curves_set;
typedef typename Curves_set::iterator Curves_set_iterator;
// Data members:
Arrangement_2& arr; // The associated arrangement.
const Traits_adaptor_2 * m_geom_traits; // Its associated geometry traits.
Arr_accessor<Arrangement_2> arr_access; // An accessor for the arrangement.
Visitor *visitor; // The zone visitor.
Intersect_map inter_map; // Stores all computed intersections.
const Vertex_handle invalid_v; // An invalid vertex handle.
const Halfedge_handle invalid_he; // An invalid halfedge handle.
X_monotone_curve_2 cv; // The current portion of the
// inserted curve.
CGAL::Object obj; // The location of the left endpoint.
bool has_left_pt; // Is the left end of the curve
// bounded.
bool left_on_boundary; // Is the left point on the boundary.
Point_2 left_pt; // Its current left endpoint.
bool has_right_pt; // Is the right end of the curve
// bounded.
bool right_on_boundary;// Is the right point on the boundary.
Point_2 right_pt; // Its right endpoint (if bounded).
Vertex_handle left_v; // The arrangement vertex associated
// with the current left_pt (if any).
Halfedge_handle left_he; // If left_v is valid, left_he is the
// predecessor for cv around this
// vertex. Otherwise, if it is valid,
// it is the halfedge that contains
// the left endpoint it its interior.
Vertex_handle right_v; // The arrangement vertex associated
// with the current right_pt (if any).
Halfedge_handle right_he; // If right_v is valid, left_he is the
// predecessor for cv around this
// vertex. Otherwise, if it is valid,
// it is the halfedge that contains
// the right endpoint it its interior.
Point_2 intersect_p; // The next intersection point.
unsigned int ip_mult; // Its multiplicity
// (0 in case of an overlap).
bool found_intersect; // Have we found an intersection
// (or an overlap).
X_monotone_curve_2 overlap_cv; // The currently discovered overlap.
bool found_overlap; // Have we found an overlap.
bool found_iso_vert; // Check if an isolated vertex induces
// the next intersection.
Vertex_handle intersect_v; // The vertex that intersects cv.
Halfedge_handle intersect_he; // The halfedge that intersects cv
// (or overlaps it).
X_monotone_curve_2 sub_cv1; // Auxiliary variable (for curve split).
X_monotone_curve_2 sub_cv2; // Auxiliary variable (for curve split).
public:
/*!
* Constructor.
* \param _arr The arrangement for which we compute the zone.
* \param _visitor A pointer to a zone-visitor object.
*/
Arrangement_zone_2 (Arrangement_2& _arr, Visitor *_visitor) :
arr (_arr),
arr_access (_arr),
visitor (_visitor),
invalid_v (),
invalid_he ()
{
m_geom_traits = static_cast<const Traits_adaptor_2*> (arr.geometry_traits());
CGAL_assertion (visitor != NULL);
// Initialize the visitor.
visitor->init (&arr);
}
/*!
* Initialize the zone-computation process with a given curve.
* \param _cv The query curve.
* \param pl A point-location object associated with the arrangement.
*/
template <class PointLocation>
void init (const X_monotone_curve_2& _cv, const PointLocation& pl)
{
// Set the curve and check whether its left end has boundary conditions.
cv = _cv;
const Arr_parameter_space bx1 =
m_geom_traits->parameter_space_in_x_2_object()(cv, ARR_MIN_END);
const Arr_parameter_space by1 =
m_geom_traits->parameter_space_in_y_2_object()(cv, ARR_MIN_END);
if (bx1 == ARR_INTERIOR && by1 == ARR_INTERIOR) {
// The curve has a finite left endpoint with no boundary conditions:
// locate it in the arrangement.
has_left_pt = true;
left_on_boundary = (bx1 != ARR_INTERIOR || by1 != ARR_INTERIOR);
left_pt = m_geom_traits->construct_min_vertex_2_object() (cv);
obj = pl.locate (left_pt);
}
else {
// The left end of the curve has boundary conditions: use the topology
// traits use the arrangement accessor to locate it.
// Note that if the curve-end is unbounded, left_pt does not exist.
// Note that if the curve-end is unbounded, left_pt does not exist.
has_left_pt = m_geom_traits->is_closed_2_object()(cv, ARR_MIN_END);
left_on_boundary = true;
if (has_left_pt)
left_pt = m_geom_traits->construct_min_vertex_2_object() (cv);
obj = arr_access.locate_curve_end (cv, ARR_MIN_END, bx1, by1);
}
// Check the boundary conditions of th right curve end.
if (m_geom_traits->is_closed_2_object()(cv, ARR_MAX_END)) {
const Arr_parameter_space bx2 =
m_geom_traits->parameter_space_in_x_2_object()(cv, ARR_MAX_END);
const Arr_parameter_space by2 =
m_geom_traits->parameter_space_in_y_2_object()(cv, ARR_MAX_END);
// The right endpoint is valid.
has_right_pt = true;
right_pt = m_geom_traits->construct_max_vertex_2_object() (cv);
right_on_boundary = (bx2 != ARR_INTERIOR) || (by2 != ARR_INTERIOR);
}
else {
// The right end of the curve lies at infinity.
has_right_pt = false;
right_on_boundary = true;
}
return;
}
/*!
* Initialize the zone-computation process with a given curve and an object
* that wraps the location of the curve's left end.
* \param _cv The query curve.
* \param _obj An object that represents the location of the left end
* of the curve.
*/
void init_with_hint (const X_monotone_curve_2& _cv, const Object& _obj);
/*!
* Compute the zone of the given curve and issue the apporpriate
* notifications for the visitor.
*/
void compute_zone ();
private:
/*!
* Find a face containing the query curve cv around the given vertex.
* In case an overlap occurs, sets intersect_he to be the overlapping edge.
* \param v The query vertex.
* \param he Output: The predecessor of cv around the vertex.
* \return (true) if cv overlaps with the curve associated with he;
* (false) if there is no overlap.
*/
bool _find_prev_around_vertex (Vertex_handle v, Halfedge_handle& he);
/*!
* Direct the halfedge for the location of the given subcurve around a split
* point that occurs in the interior of a given edge, when the subcurve lies
* to the right of the split point.
* In case of overlaps, it sets also found_overlap and intersect_he.
* \param cv_ins The curve to be inserted, whose left endpoint coincides
* with the edge to be split.
* \param cv_left_pt The left endpoint of cv_ins.
* \param query_he The edge that intersects cv_ins.
* \pre The left endpoint of cv_ins lies in the interior of the curve
* associated with query_he.
* \return The halfedge whose incident face contains cv_ins
* (either query_he or its twin).
*/
Halfedge_handle
_direct_intersecting_edge_to_right(const X_monotone_curve_2& cv_ins,
const Point_2& cv_left_pt,
Halfedge_handle query_he);
/*!
* Direct the halfedge for the location of the given subcurve around a split
* point that occurs in the interior of a given edge, when the subcurve lies
* to the left of the split point.
* \param cv_ins The curve to be inserted, whose right endpoint coincides
* with the edge to be split.
* \param query_he The edge that intersects cv_ins.
* \pre The right endpoint of cv_ins lies in the interior of the curve
* associated with query_he.
* \return The halfedge whose incident face contains cv_ins
* (either query_he or its twin).
*/
Halfedge_handle
_direct_intersecting_edge_to_left(const X_monotone_curve_2& cv_ins,
Halfedge_handle query_he);
/*!
* Get the next intersection of cv with the given halfedge.
* \param he A handle to the halfedge.
* \param skip_first_point Should we skip the first intersection point.
* \param intersect_on_right_boundary Output: If an intersetion point is
* computed, marks whether this
* point coincides with the right
* curve-end, which lies on the
* surface boundary.
* \return An object representing the next intersection: Intersect_point_2
* in case of a simple intersection point, X_monotone_curve_2 in
* case of an overlap, and an empty object if there is no
* intersection.
*/
CGAL::Object _compute_next_intersection (Halfedge_handle he,
bool skip_first_point,
bool& intersect_on_right_boundary);
/*!
* Remove the next intersection of cv with the given halfedge from the map.
* \param he A handle to the halfedge.
* \pre The list of intersections with the curve of he has already been
* computed, and it is not empty.
*/
void _remove_next_intersection (Halfedge_handle he);
/*!
* Check if the given point lies completely to the left of the given egde.
* \param p The point.
* \param he The halfedge.
* \pre he is not a fictitious edge.
* \return Whether p lies entirely to the left of the edge.
*/
bool _is_to_left(const Point_2& p, Halfedge_handle he) const
{
return (_is_to_left_impl(p, he, Are_all_sides_oblivious_category()));
}
bool _is_to_left_impl(const Point_2& p, Halfedge_handle he,
Arr_all_sides_oblivious_tag) const
{
return ((he->direction() == ARR_LEFT_TO_RIGHT &&
m_geom_traits->compare_xy_2_object()
(p, he->source()->point()) == SMALLER) ||
(he->direction() == ARR_RIGHT_TO_LEFT &&
m_geom_traits->compare_xy_2_object()
(p, he->target()->point()) == SMALLER));
}
bool _is_to_left_impl(const Point_2& p, Halfedge_handle he,
Arr_not_all_sides_oblivious_tag) const;
/*!
* Check if the given point lies completely to the right of the given egde.
* \param p The point.
* \param he The halfedge.
* \pre he is not a fictitious edge.
* \return Whether p lies entirely to the right of the edge.
*/
bool _is_to_right(const Point_2& p, Halfedge_handle he) const
{
return (_is_to_right_impl(p, he, Are_all_sides_oblivious_category()));
}
bool _is_to_right_impl(const Point_2& p, Halfedge_handle he,
Arr_all_sides_oblivious_tag) const
{
return ((he->direction() == ARR_LEFT_TO_RIGHT &&
m_geom_traits->compare_xy_2_object()
(p, he->target()->point()) == LARGER) ||
(he->direction() == ARR_RIGHT_TO_LEFT &&
m_geom_traits->compare_xy_2_object()
(p, he->source()->point()) == LARGER));
}
bool _is_to_right_impl(const Point_2& p, Halfedge_handle he,
Arr_not_all_sides_oblivious_tag) const;
/*!
* Compute the (lexicographically) leftmost intersection of the query
* curve with the boundary of a given face in the arrangement.
* The function computes sets intersect_p, intersect_he (or alternatively
* overlap_cv and intersect_he) and set the flags found_intersect and
* found_overlap accordingly.
* \param face A handle to the face.
* \param on_boundary Specifies whether the left endpoint of the curve lies
* on the face boundary.
*/
void _leftmost_intersection_with_face_boundary (Face_handle face,
bool on_boundary);
/*!
* Compute the zone of an x-monotone curve in a given arrangement face.
* The left endpoint of the curve either lies in the face interior or on
* the boundary of the face.
* This function updates cv and its left endpoint and also sets left_v
* and left_he for the remaining portion of the curve.
* In case of overlaps, it sets also overlap_cv and intersect_he.
* \param face The given face.
* \param on_boundary Specifies whether the left endpoint of the curve lies
* on the face boundary.
* \pre If on_boundary is (true) then left_he must be valid; if it is (false)
* then both left_v anf left_he must be invalid.
* \return (true) if we are done with the zone-computation process;
* (false) if we still have a remaining portion of cv to continue
* with.
*/
bool _zone_in_face (Face_handle face,
bool on_boundary);
/*!
* Compute the zone of an overlapping subcurve overlap_cv of cv and the
* curve currently associated with intersect_he.
* This function updates cv and its left endpoint and also sets left_v
* and left_he for the remaining portion of the curve.
* \return (true) if we are done with the zone-computation process;
* (false) if we still have a remaining portion of cv to continue
* with.
*/
bool _zone_in_overlap ();
};
} //namespace CGAL
// The function definitions can be found under:
#include <CGAL/Arrangement_2/Arrangement_zone_2_impl.h>
#endif
|