This file is indexed.

/usr/include/CGAL/Cartesian/Plane_3.h is in libcgal-dev 4.7-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
// Copyright (c) 2000  
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel).  All rights reserved. 
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// 
//
// Author(s)     : Andreas Fabri

#ifndef CGAL_CARTESIAN_PLANE_3_H
#define CGAL_CARTESIAN_PLANE_3_H

#include <CGAL/array.h>
#include <CGAL/Handle_for.h>
#include <CGAL/Cartesian/solve_3.h>
#include <CGAL/Cartesian/plane_constructions_3.h>

namespace CGAL {

template <class R_>
class PlaneC3
{
  typedef typename R_::FT                   FT;
  typedef typename R_::Point_2              Point_2;
  typedef typename R_::Point_3              Point_3;
  typedef typename R_::Vector_3             Vector_3;
  typedef typename R_::Direction_3          Direction_3;
  typedef typename R_::Line_3               Line_3;
  typedef typename R_::Ray_3                Ray_3;
  typedef typename R_::Segment_3            Segment_3;
  typedef typename R_::Plane_3              Plane_3;
  typedef typename R_::Circle_3             Circle_3;
  typedef typename R_::Construct_point_3    Construct_point_3;
  typedef typename R_::Construct_point_2    Construct_point_2;

  typedef cpp11::array<FT, 4>               Rep;
  typedef typename R_::template Handle<Rep>::type  Base;

  Base base;

public:

  typedef R_                                     R;

  PlaneC3() {}

  PlaneC3(const Point_3 &p, const Point_3 &q, const Point_3 &r)
  { *this = plane_from_points<R>(p, q, r); }

  PlaneC3(const Point_3 &p, const Direction_3 &d)
  { *this = plane_from_point_direction<R>(p, d); }

  PlaneC3(const Point_3 &p, const Vector_3 &v)
  { *this = plane_from_point_direction<R>(p, v.direction()); }

  PlaneC3(const FT &a, const FT &b, const FT &c, const FT &d)
    : base(CGAL::make_array(a, b, c, d)) {}

  PlaneC3(const Line_3 &l, const Point_3 &p)
  { *this = plane_from_points<R>(l.point(),
	                      l.point()+l.direction().to_vector(),
			      p); }

  PlaneC3(const Segment_3 &s, const Point_3 &p)
  { *this = plane_from_points<R>(s.start(), s.end(), p); }

  PlaneC3(const Ray_3 &r, const Point_3 &p)
  { *this = plane_from_points<R>(r.start(), r.second_point(), p); }

  typename R::Boolean   operator==(const PlaneC3 &p) const;
  typename R::Boolean   operator!=(const PlaneC3 &p) const;

  const FT & a() const
  {
      return get_pointee_or_identity(base)[0];
  }
  const FT & b() const
  {
      return get_pointee_or_identity(base)[1];
  }
  const FT & c() const
  {
      return get_pointee_or_identity(base)[2];
  }
  const FT & d() const
  {
      return get_pointee_or_identity(base)[3];
  }

  Line_3       perpendicular_line(const Point_3 &p) const;
  Plane_3      opposite() const;

  Point_3      point() const;
  Point_3      projection(const Point_3 &p) const;
  Vector_3     orthogonal_vector() const;
  Direction_3  orthogonal_direction() const;
  Vector_3     base1() const;
  Vector_3     base2() const;

  Point_3      to_plane_basis(const Point_3 &p) const;

  Point_2      to_2d(const Point_3 &p) const;
  Point_3      to_3d(const Point_2 &p) const;

  typename R::Oriented_side     oriented_side(const Point_3 &p) const;
  typename R::Boolean           has_on_positive_side(const Point_3 &l) const;
  typename R::Boolean           has_on_negative_side(const Point_3 &l) const;
  typename R::Boolean           has_on(const Point_3 &p) const
  {
    return oriented_side(p) == ON_ORIENTED_BOUNDARY;
  }
  typename R::Boolean           has_on(const Line_3 &l) const
  {
    return has_on(l.point())
       &&  has_on(l.point() + l.direction().to_vector());
  }
  typename R::Boolean           has_on(const Circle_3 &circle) const
  {
    if(circle.squared_radius() != FT(0)) {
      const Plane_3& p = circle.supporting_plane();
      if(is_zero(a())) {
        if(!is_zero(p.a())) return false;
        if(is_zero(b())) {
          if(!is_zero(p.b())) return false;
          return c() * p.d() == d() * p.c();
        }
        return (p.c() * b() == c() * p.b()) &&
               (p.d() * b() == d() * p.b());
      }
      return (p.b() * a() == b() * p.a()) &&
             (p.c() * a() == c() * p.a()) &&
             (p.d() * a() == d() * p.a());
    } else return has_on(circle.center());
  }

  typename R::Boolean           is_degenerate() const;
};

template < class R >
CGAL_KERNEL_INLINE
typename R::Boolean
PlaneC3<R>::operator==(const PlaneC3<R> &p) const
{
  if (CGAL::identical(base, p.base))
      return true;
  return equal_plane(*this, p);
}

template < class R >
inline
typename R::Boolean
PlaneC3<R>::operator!=(const PlaneC3<R> &p) const
{
  return !(*this == p);
}

template < class R >
inline
typename PlaneC3<R>::Point_3
PlaneC3<R>::point() const
{
  return point_on_plane(*this);
}

template < class R >
inline
typename PlaneC3<R>::Point_3
PlaneC3<R>::
projection(const typename PlaneC3<R>::Point_3 &p) const
{
  return projection_plane(p, *this);
}

template < class R >
inline
typename PlaneC3<R>::Vector_3
PlaneC3<R>::orthogonal_vector() const
{
  return R().construct_orthogonal_vector_3_object()(*this);
}

template < class R >
inline
typename PlaneC3<R>::Direction_3
PlaneC3<R>::orthogonal_direction() const
{
  return Direction_3(a(), b(), c());
}

template < class R >
typename PlaneC3<R>::Vector_3
PlaneC3<R>::base1() const
{
  return R().construct_base_vector_3_object()(*this, 1);
}

template < class R >
typename PlaneC3<R>::Vector_3
PlaneC3<R>::base2() const
{
  return R().construct_base_vector_3_object()(*this, 2);
}

template < class R >
typename PlaneC3<R>::Point_3
PlaneC3<R>::
to_plane_basis(const typename PlaneC3<R>::Point_3 &p) const
{
  FT alpha, beta, gamma;
  Construct_point_3 construct_point_3;
  Cartesian_internal::solve(base1(), base2(), orthogonal_vector(), p - point(),
	alpha, beta, gamma);

  return construct_point_3(alpha, beta, gamma);
}

template < class R >
typename PlaneC3<R>::Point_2
PlaneC3<R>::
to_2d(const typename PlaneC3<R>::Point_3 &p) const
{
  FT alpha, beta, gamma;
  Construct_point_2 construct_point_2;

  Cartesian_internal::solve(base1(), base2(), orthogonal_vector(), p - point(),
	alpha, beta, gamma);

  return construct_point_2(alpha, beta);
}

template < class R >
inline
typename PlaneC3<R>::Point_3
PlaneC3<R>::
to_3d(const typename PlaneC3<R>::Point_2 &p) const
{
  return R().construct_lifted_point_3_object()(*this, p);
}

template < class R >
inline
typename PlaneC3<R>::Line_3
PlaneC3<R>::
perpendicular_line(const typename PlaneC3<R>::Point_3 &p) const
{
  return Line_3(p, orthogonal_direction());
}

template < class R >
inline
typename PlaneC3<R>::Plane_3
PlaneC3<R>::opposite() const
{
  return PlaneC3<R>(-a(), -b(), -c(), -d());
}

template < class R >
inline
typename R::Oriented_side
PlaneC3<R>::
oriented_side(const typename PlaneC3<R>::Point_3 &p) const
{
  return side_of_oriented_plane(*this, p);
}

template < class R >
inline
typename R::Boolean
PlaneC3<R>::
has_on_positive_side(const  typename PlaneC3<R>::Point_3 &p) const
{
  return oriented_side(p) == ON_POSITIVE_SIDE;
}

template < class R >
inline
typename R::Boolean
PlaneC3<R>::
has_on_negative_side(const  typename PlaneC3<R>::Point_3 &p) const
{
  return oriented_side(p) == ON_NEGATIVE_SIDE;
}

template < class R >
inline
typename R::Boolean
PlaneC3<R>::
is_degenerate() const
{ // FIXME : predicate
  return CGAL_NTS is_zero(a()) && CGAL_NTS is_zero(b()) &&
         CGAL_NTS is_zero(c());
}

} //namespace CGAL

#endif // CGAL_CARTESIAN_PLANE_3_H