/usr/include/CGAL/Cartesian/Tetrahedron_3.h is in libcgal-dev 4.7-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 | // Copyright (c) 2000
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Andreas Fabri
#ifndef CGAL_CARTESIAN_TETRAHEDRON_3_H
#define CGAL_CARTESIAN_TETRAHEDRON_3_H
#include <CGAL/array.h>
#include <CGAL/Handle_for.h>
#include <CGAL/enum.h>
#include <vector>
#include <functional>
namespace CGAL {
template <class R_>
class TetrahedronC3
{
typedef typename R_::FT FT;
typedef typename R_::Point_3 Point_3;
typedef typename R_::Plane_3 Plane_3;
typedef typename R_::Tetrahedron_3 Tetrahedron_3;
typedef cpp11::array<Point_3, 4> Rep;
typedef typename R_::template Handle<Rep>::type Base;
Base base;
public:
typedef R_ R;
TetrahedronC3() {}
TetrahedronC3(const Point_3 &p, const Point_3 &q, const Point_3 &r,
const Point_3 &s)
: base(CGAL::make_array(p, q, r, s)) {}
const Point_3 & vertex(int i) const;
const Point_3 & operator[](int i) const;
typename R::Boolean operator==(const TetrahedronC3 &t) const;
typename R::Boolean operator!=(const TetrahedronC3 &t) const;
typename R::Orientation orientation() const;
typename R::Oriented_side oriented_side(const Point_3 &p) const;
typename R::Bounded_side bounded_side(const Point_3 &p) const;
typename R::Boolean has_on_boundary(const Point_3 &p) const;
typename R::Boolean has_on_positive_side(const Point_3 &p) const;
typename R::Boolean has_on_negative_side(const Point_3 &p) const;
typename R::Boolean has_on_bounded_side(const Point_3 &p) const;
typename R::Boolean has_on_unbounded_side(const Point_3 &p) const;
typename R::Boolean is_degenerate() const;
};
template < class R >
typename R::Boolean
TetrahedronC3<R>::
operator==(const TetrahedronC3<R> &t) const
{
if (CGAL::identical(base, t.base))
return true;
if (orientation() != t.orientation())
return false;
std::vector< Point_3 > V1;
std::vector< Point_3 > V2;
typename std::vector< Point_3 >::iterator uniq_end1;
typename std::vector< Point_3 >::iterator uniq_end2;
int k;
for ( k=0; k < 4; k++) V1.push_back( vertex(k));
for ( k=0; k < 4; k++) V2.push_back( t.vertex(k));
typename R::Less_xyz_3 Less_object = R().less_xyz_3_object();
std::sort(V1.begin(), V1.end(), Less_object);
std::sort(V2.begin(), V2.end(), Less_object);
uniq_end1 = std::unique( V1.begin(), V1.end());
uniq_end2 = std::unique( V2.begin(), V2.end());
V1.erase( uniq_end1, V1.end());
V2.erase( uniq_end2, V2.end());
return V1 == V2;
}
template < class R >
inline
typename R::Boolean
TetrahedronC3<R>::
operator!=(const TetrahedronC3<R> &t) const
{
return !(*this == t);
}
template < class R >
const typename TetrahedronC3<R>::Point_3 &
TetrahedronC3<R>::
vertex(int i) const
{
if (i<0) i=(i%4)+4;
else if (i>3) i=i%4;
switch (i)
{
case 0: return get_pointee_or_identity(base)[0];
case 1: return get_pointee_or_identity(base)[1];
case 2: return get_pointee_or_identity(base)[2];
default: return get_pointee_or_identity(base)[3];
}
}
template < class R >
inline
const typename TetrahedronC3<R>::Point_3 &
TetrahedronC3<R>::
operator[](int i) const
{
return vertex(i);
}
template < class R >
typename R::Orientation
TetrahedronC3<R>::
orientation() const
{
return R().orientation_3_object()(vertex(0), vertex(1),
vertex(2), vertex(3));
}
template < class R >
typename R::Oriented_side
TetrahedronC3<R>::
oriented_side(const typename TetrahedronC3<R>::Point_3 &p) const
{
typename R::Orientation o = orientation();
if (o != ZERO)
return enum_cast<Oriented_side>(bounded_side(p)) * o;
CGAL_kernel_assertion (!is_degenerate());
return ON_ORIENTED_BOUNDARY;
}
template < class R >
typename R::Bounded_side
TetrahedronC3<R>::
bounded_side(const typename TetrahedronC3<R>::Point_3 &p) const
{
return R().bounded_side_3_object()
(static_cast<const typename R::Tetrahedron_3&>(*this), p);
}
template < class R >
inline
typename R::Boolean
TetrahedronC3<R>::has_on_boundary
(const typename TetrahedronC3<R>::Point_3 &p) const
{
return oriented_side(p) == ON_ORIENTED_BOUNDARY;
}
template < class R >
inline
typename R::Boolean
TetrahedronC3<R>::has_on_positive_side
(const typename TetrahedronC3<R>::Point_3 &p) const
{
return oriented_side(p) == ON_POSITIVE_SIDE;
}
template < class R >
inline
typename R::Boolean
TetrahedronC3<R>::has_on_negative_side
(const typename TetrahedronC3<R>::Point_3 &p) const
{
return oriented_side(p) == ON_NEGATIVE_SIDE;
}
template < class R >
inline
typename R::Boolean
TetrahedronC3<R>::has_on_bounded_side
(const typename TetrahedronC3<R>::Point_3 &p) const
{
return bounded_side(p) == ON_BOUNDED_SIDE;
}
template < class R >
inline
typename R::Boolean
TetrahedronC3<R>::has_on_unbounded_side
(const typename TetrahedronC3<R>::Point_3 &p) const
{
return bounded_side(p) == ON_UNBOUNDED_SIDE;
}
template < class R >
inline
typename R::Boolean
TetrahedronC3<R>::is_degenerate() const
{
return orientation() == COPLANAR;
}
} //namespace CGAL
#endif // CGAL_CARTESIAN_TETRAHEDRON_3_H
|