/usr/include/CGAL/Convex_hull_d.h is in libcgal-dev 4.7-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 | // Copyright (c) 1997-2000 Max-Planck-Institute Saarbruecken (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Michael Seel <seel@mpi-sb.mpg.de>
//---------------------------------------------------------------------
// file generated by notangle from Convex_hull_d.lw
// please debug or modify web file
// mails and bugs: Michael.Seel@mpi-sb.mpg.de
// based on LEDA architecture by S. Naeher, C. Uhrig
// coding: K. Mehlhorn, M. Seel
// debugging and templatization: M. Seel
//---------------------------------------------------------------------
#ifndef CGAL_CONVEX_HULL_D_H
#define CGAL_CONVEX_HULL_D_H
#define CGAL_DEPRECATED_HEADER "<CGAL/Convex_hull_d.h>"
#define CGAL_REPLACEMENT_HEADER "the Triangulation package (see http://doc.cgal.org/latest/Triangulation)"
#include <CGAL/internal/deprecation_warning.h>
/*{\Manpage {Convex_hull_d}{R}{Convex Hulls}{C}}*/
/*{\Mdefinition An instance |\Mvar| of type |\Mname| is the convex
hull of a multi-set |S| of points in $d$-dimensional space. We call
|S| the underlying point set and $d$ or |dim| the dimension of the
underlying space. We use |dcur| to denote the affine dimension of |S|.
The data type supports incremental construction of hulls.
The closure of the hull is maintained as a simplicial complex, i.e.,
as a collection of simplices. The intersection of any two is a face of
both\cgalFootnote{The empty set if a facet of every simplex.}. In the
sequel we reserve the word simplex for the simplices of dimension
|dcur|. For each simplex there is a handle of type |Simplex_handlex|
and for each vertex there is a handle of type |Vertex_handle|. Each
simplex has $1 + |dcur|$ vertices indexed from $0$ to |dcur|; for a
simplex $s$ and an index $i$, |C.vertex(s,i)| returns the $i$-th
vertex of $s$. For any simplex $s$ and any index $i$ of $s$ there may
or may not be a simplex $t$ opposite to the $i$-th vertex of $s$. The
function |C.opposite_simplex(s,i)| returns $t$ if it exists and
returns |Simplex_handle()| (the undefined handle) otherwise. If $t$
exists then $s$ and $t$ share |dcur| vertices, namely all but the
vertex with index $i$ of $s$ and the vertex with index
|C.index_of_vertex_in_opposite_simplex(s,i)| of $t$. Assume that $t$
exists and let |j = C.index_of_vertex_in_opposite_simplex(s,i)|. Then
$s =$ |C.opposite_simplex(t,j)| and $i =$
|C.index_of_vertex_in_opposite_simplex(t,j)|.
The boundary of the hull is also a simplicial complex. All simplices
in this complex have dimension $|dcur| - 1$. For each boundary simplex
there is a handle of type |Facet_handle|. Each facet has |dcur| vertices
indexed from $0$ to $|dcur| - 1$. If |dcur > 1| then for each facet $f$
and each index $i$, $0 \le i < |dcur|$, there is a facet $g$ opposite
to the $i$-th vertex of $f$. The function |C.opposite_facet(f,i)|
returns $g$. Two neighboring facets $f$ and $g$ share |dcur - 1|
vertices, namely all but the vertex with index $i$ of $f$ and the
vertex with index |C.index_of_vertex_in_opposite_facet(f,i)| of $g$.
Let |j = C.index_of_vertex_in_opposite_facet(f,i)|. Then
|f = C.opposite_facet(g,j)| and
|i = C.index_of_vertex_in_opposite_facet(g,j)|.}*/
#include <CGAL/basic.h>
#include <CGAL/Origin.h>
#include <CGAL/Unique_hash_map.h>
#include <CGAL/Regular_complex_d.h>
#include <CGAL/Handle_for.h>
#include <list>
#include <vector>
#include <CGAL/Kernel_d/debug.h>
namespace CGAL {
template <typename HP, typename H> class Facet_iterator_rep_;
template <typename HP, typename H> class Facet_iterator_;
template <typename Hull_pointer, typename Handle>
class Facet_iterator_rep_
{
CGAL::Unique_hash_map<Handle,bool>* pvisited_;
std::list<Handle>* pcandidates_;
Hull_pointer hull_;
Handle current_;
friend class Facet_iterator_<Hull_pointer,Handle>;
void add_candidates()
{ CGAL_assertion(pvisited_ && pcandidates_ && hull_);
for(int i = 1; i <= hull_->current_dimension(); ++i) {
Handle f = hull_->opposite_simplex(current_,i);
if ( !(*pvisited_)[f] ) {
pcandidates_->push_front(f);
(*pvisited_)[f] = true;
}
}
}
public:
Facet_iterator_rep_() :
pvisited_(0), pcandidates_(0), hull_(0), current_() {}
Facet_iterator_rep_(Hull_pointer p, Handle h) :
pvisited_(0), pcandidates_(0), hull_(p), current_(h) {}
~Facet_iterator_rep_()
{ if (pvisited_) delete pvisited_;
if (pcandidates_) delete pcandidates_; }
};
template <typename Hull_pointer, typename Handle>
class Facet_iterator_ : private
Handle_for<Facet_iterator_rep_<Hull_pointer,Handle> >
{ typedef Facet_iterator_<Hull_pointer,Handle> Self;
typedef Facet_iterator_rep_<Hull_pointer,Handle> Rep;
typedef Handle_for< Facet_iterator_rep_<Hull_pointer,Handle> > Base;
using Base::ptr;
public:
typedef typename Handle::value_type value_type;
typedef typename Handle::pointer pointer;
typedef typename Handle::reference reference;
typedef typename Handle::difference_type difference_type;
typedef std::forward_iterator_tag iterator_category;
Facet_iterator_() : Base( Rep() ) {}
Facet_iterator_(Hull_pointer p, Handle h) : Base( Rep(p,h) )
{ ptr()->pvisited_ = new Unique_hash_map<Handle,bool>(false);
ptr()->pcandidates_ = new std::list<Handle>;
(*(ptr()->pvisited_))[ptr()->current_]=true;
ptr()->add_candidates();
}
reference operator*() const
{ return ptr()->current_.operator*(); }
pointer operator->() const
{ return ptr()->current_.operator->(); }
Self& operator++()
{ if ( ptr()->current_ == Handle() ) return *this;
if ( ptr()->pcandidates_->empty() ) ptr()->current_ = Handle();
else {
ptr()->current_ = ptr()->pcandidates_->back();
ptr()->pcandidates_->pop_back();
ptr()->add_candidates();
}
return *this;
}
Self operator++(int)
{ Self tmp = *this; ++*this; return tmp; }
bool operator==(const Self& x) const
{ return ptr()->current_ == x.ptr()->current_; }
bool operator!=(const Self& x) const
{ return !operator==(x); }
operator Handle() { return ptr()->current_; }
};
template <typename HP, typename VH, typename FH>
class Hull_vertex_iterator_rep_;
template <typename HP, typename VH, typename FH>
class Hull_vertex_iterator_;
template <typename Hull_pointer, typename VHandle, typename FHandle>
class Hull_vertex_iterator_rep_
{
CGAL::Unique_hash_map<VHandle,bool>* pvisited_;
Hull_pointer hull_;
VHandle v_; FHandle f_; int i_;
friend class Hull_vertex_iterator_<Hull_pointer,VHandle,FHandle>;
void advance()
{ CGAL_assertion(pvisited_ && hull_);
if ( f_ == FHandle() ) return;
bool search_next = true; ++i_;
while ( search_next ) {
while(i_ < hull_->current_dimension()) {
v_ = hull_->vertex_of_facet(f_,i_);
if ( !(*pvisited_)[v_] ) { search_next=false; break; }
++i_;
}
if ( search_next ) { i_=0; ++f_; }
if ( f_ == FHandle() )
{ search_next=false; v_ = VHandle(); }
}
(*pvisited_)[v_] = true;
}
public:
Hull_vertex_iterator_rep_() :
pvisited_(0), hull_(0), i_(0) {}
Hull_vertex_iterator_rep_(Hull_pointer p, FHandle f) :
pvisited_(0), hull_(p), f_(f), i_(-1) {}
~Hull_vertex_iterator_rep_()
{ if (pvisited_) delete pvisited_; }
};
template <typename Hull_pointer, typename VHandle, typename FHandle>
class Hull_vertex_iterator_ : private
Handle_for< Hull_vertex_iterator_rep_<Hull_pointer,VHandle,FHandle> >
{ typedef Hull_vertex_iterator_<Hull_pointer,VHandle,FHandle> Self;
typedef Hull_vertex_iterator_rep_<Hull_pointer,VHandle,FHandle> Rep;
typedef Handle_for< Rep > Base;
using Base::ptr;
public:
typedef typename VHandle::value_type value_type;
typedef typename VHandle::pointer pointer;
typedef typename VHandle::reference reference;
typedef typename VHandle::difference_type difference_type;
typedef std::forward_iterator_tag iterator_category;
Hull_vertex_iterator_() : Base( Rep() ) {}
Hull_vertex_iterator_(Hull_pointer p, FHandle f) : Base( Rep(p,f) )
{ ptr()->pvisited_ = new Unique_hash_map<VHandle,bool>(false);
ptr()->advance();
}
reference operator*() const
{ return ptr()->v_.operator*(); }
pointer operator->() const
{ return ptr()->v_.operator->(); }
Self& operator++()
{ if ( ptr()->v_ == VHandle() ) return *this;
ptr()->advance();
return *this;
}
Self operator++(int)
{ Self tmp = *this; ++*this; return tmp; }
bool operator==(const Self& x) const
{ return ptr()->v_ == x.ptr()->v_; }
bool operator!=(const Self& x) const
{ return !operator==(x); }
operator VHandle() { return ptr()->v_; }
};
template <class Vertex, class Point>
struct Point_from_Vertex {
typedef Vertex argument_type;
typedef Point result_type;
result_type& operator()(argument_type& x) const
{ return x.point(); }
const result_type& operator()(const argument_type& x) const
{ return x.point(); }
};
template <typename H1, typename H2>
struct list_collector {
std::list<H1>& L_;
list_collector(std::list<H1>& L) : L_(L) {}
void operator()(H2 f) const
{ L_.push_back(static_cast<H1>(f)); }
};
template <class R_>
class Convex_hull_d : public Regular_complex_d<R_>
{
typedef Regular_complex_d<R_> Base;
typedef Convex_hull_d<R_> Self;
public:
using Base::new_simplex;
using Base::new_vertex;
using Base::associate_vertex_with_simplex;
using Base::associate_point_with_vertex;
using Base::set_neighbor;
using Base::kernel;
using Base::dcur;
/*{\Xgeneralization Regular_complex_d<R>}*/
/*{\Mtypes 6.5}*/
typedef R_ R;
/*{\Mtypemember the representation class.}*/
typedef typename R::Point_d Point_d;
/*{\Mtypemember the point type.}*/
typedef typename R::Hyperplane_d Hyperplane_d;
/*{\Mtypemember the hyperplane type.}*/
typedef typename R::Vector_d Vector_d;
typedef typename R::Ray_d Ray_d;
typedef typename R::RT RT;
typedef std::list<Point_d> Point_list;
// make traits types locally available
typedef typename Base::Simplex_handle Simplex_handle;
/*{\Mtypemember handle for simplices.}*/
typedef typename Base::Simplex_handle Facet_handle;
/*{\Mtypemember handle for facets.}*/
typedef typename Base::Vertex_handle Vertex_handle;
/*{\Mtypemember handle for vertices.}*/
typedef typename Base::Simplex_iterator Simplex_iterator;
/*{\Mtypemember iterator for simplices.}*/
typedef typename Base::Vertex_iterator Vertex_iterator;
/*{\Mtypemember iterator for vertices.}*/
typedef Facet_iterator_<Self*,Facet_handle> Facet_iterator;
/*{\Mtypemember iterator for facets.}*/
typedef Hull_vertex_iterator_<Self*,Vertex_handle,Facet_iterator>
Hull_vertex_iterator;
/*{\Mtypemember iterator for vertices that are part of the convex hull.}*/
/*{\Mtext Note that each iterator fits the handle concept, i.e. iterators
can be used as handles. Note also that all iterator and handle types
come also in a const flavor, e.g., |Vertex_const_iterator| is the
constant version of |Vertex_iterator|. Thus use the const version
whenever the the convex hull object is referenced as constant.}*/
#define CGAL_USING(t) typedef typename Base::t t
CGAL_USING(Simplex_const_iterator);CGAL_USING(Vertex_const_iterator);
CGAL_USING(Simplex_const_handle);CGAL_USING(Vertex_const_handle);
#undef CGAL_USING
typedef Simplex_const_handle Facet_const_handle;
typedef Facet_iterator_<const Self*,Facet_const_handle> Facet_const_iterator;
typedef Hull_vertex_iterator_<const Self*,Vertex_const_handle,
Facet_const_iterator> Hull_vertex_const_iterator;
typedef typename Point_list::const_iterator Point_const_iterator;
/*{\Mtypemember const iterator for all inserted points.}*/
typedef typename Vertex_handle::value_type Vertex;
typedef CGAL::Iterator_project<
Hull_vertex_const_iterator, Point_from_Vertex<Vertex,Point_d>,
const Point_d&, const Point_d*> Hull_point_const_iterator;
/*{\Mtypemember const iterator for all points of the hull.}*/
protected:
Point_list all_pnts_;
Vector_d quasi_center_; // sum of the vertices of origin simplex
Simplex_handle origin_simplex_; // pointer to the origin simplex
Facet_handle start_facet_; // pointer to some facet on the surface
Vertex_handle anti_origin_;
public: // until there are template friend functions possible
Point_d center() const // compute center from quasi center
{ typename R::Vector_to_point_d to_point =
kernel().vector_to_point_d_object();
return to_point(quasi_center_/RT(dcur + 1)); }
const Vector_d& quasi_center() const
{ return quasi_center_; }
Simplex_const_handle origin_simplex() const
{ return origin_simplex_; }
Hyperplane_d base_facet_plane(Simplex_handle s) const
{ return s -> hyperplane_of_base_facet(); }
Hyperplane_d base_facet_plane(Simplex_const_handle s) const
{ return s -> hyperplane_of_base_facet(); }
bool& visited_mark(Simplex_handle s) const
{ return s->visited(); }
protected:
std::size_t num_of_bounded_simplices;
std::size_t num_of_unbounded_simplices;
std::size_t num_of_visibility_tests;
std::size_t num_of_vertices;
void compute_equation_of_base_facet(Simplex_handle s);
/*{\Xop computes the equation of the base facet of $s$ and sets the
|base_facet| member of $s$. The equation is normalized such
that the origin simplex lies in the negative halfspace.}*/
bool is_base_facet_visible(Simplex_handle s, const Point_d& x) const
{ typename R::Has_on_positive_side_d has_on_positive_side =
kernel().has_on_positive_side_d_object();
return has_on_positive_side(s->hyperplane_of_base_facet(),x); }
/*{\Xop returns true if $x$ sees the base facet of $s$, i.e., lies in
its positive halfspace.}*/
bool contains_in_base_facet(Simplex_handle s, const Point_d& x) const;
/*{\Xop returns true if $x$ lies in the closure of the base facet of
$s$.}*/
void visibility_search(Simplex_handle S, const Point_d& x,
std::list<Simplex_handle>& visible_simplices,
std::size_t& num_of_visited_simplices,
int& location, Facet_handle& f) const;
/*{\Xop adds all unmarked unbounded simplices with $x$-visible base
facet to |visible_simplices| and marks them. In |location| the
procedure returns the position of |x| with respect to the
current hull: $-1$ for inside, $0$ for on the the boundary,
and $+1$ for outside; the initial value of |location| for the
outermost call must be $-1$. If $x$ is contained in the
boundary of |\Mvar| then a facet incident to $x$ is returned
in $f$.}*/
void clear_visited_marks(Simplex_handle s) const;
/*{\Xop removes the mark bits from all marked simplices reachable from $s$.}*/
void dimension_jump(Simplex_handle S, Vertex_handle x);
/*{\Xop Adds a new vertex $x$ to the triangulation. The point associated
with $x$ lies outside the affine hull of the current point set. }*/
void visible_facets_search(Simplex_handle S, const Point_d& x,
std::list< Facet_handle >& VisibleFacets,
std::size_t& num_of_visited_facets) const;
public:
/*{\Mcreation 3}*/
Convex_hull_d(int d, const R& Kernel = R());
/*{\Mcreate creates an instance |\Mvar| of type |\Mtype|. The
dimension of the underlying space is $d$ and |S| is initialized to the
empty point set. The traits class |R| specifies the models of
all types and the implementations of all geometric primitives used by
the convex hull class. The default model is one of the $d$-dimensional
representation classes (e.g., |Homogeneous_d|).}*/
protected:
/*{\Mtext The data type |\Mtype| offers neither copy constructor nor
assignment operator.}*/
Convex_hull_d(const Self&);
Convex_hull_d& operator=(const Self&);
public:
/*{\Moperations 3}*/
/*{\Mtext All operations below that take a point |x| as argument have
the common precondition that |x| is a point of ambient space.}*/
int dimension() const { return Base::dimension(); }
/*{\Mop returns the dimension of ambient space}*/
int current_dimension() const { return Base::current_dimension(); }
/*{\Mop returns the affine dimension |dcur| of $S$.}*/
Point_d associated_point(Vertex_handle v) const
{ return Base::associated_point(v); }
/*{\Mop returns the point associated with vertex $v$.}*/
Point_d associated_point(Vertex_const_handle v) const
{ return Base::associated_point(v); }
Vertex_handle vertex_of_simplex(Simplex_handle s, int i) const
{ return Base::vertex(s,i); }
/*{\Mop returns the vertex corresponding to the $i$-th vertex of $s$.\\
\precond $0 \leq i \leq |dcur|$. }*/
Vertex_const_handle vertex_of_simplex(Simplex_const_handle s, int i) const
{ return Base::vertex(s,i); }
Point_d point_of_simplex(Simplex_handle s,int i) const
{ return associated_point(vertex_of_simplex(s,i)); }
/*{\Mop same as |C.associated_point(C.vertex_of_simplex(s,i))|. }*/
Point_d point_of_simplex(Simplex_const_handle s,int i) const
{ return associated_point(vertex_of_simplex(s,i)); }
Simplex_handle opposite_simplex(Simplex_handle s,int i) const
{ return Base::opposite_simplex(s,i); }
/*{\Mop returns the simplex opposite to the $i$-th vertex of $s$
(|Simplex_handle()| if there is no such simplex).
\precond $0 \leq i \leq |dcur|$. }*/
Simplex_const_handle opposite_simplex(Simplex_const_handle s,int i) const
{ return Base::opposite_simplex(s,i); }
int index_of_vertex_in_opposite_simplex(Simplex_handle s,int i) const
{ return Base::index_of_opposite_vertex(s,i); }
/*{\Mop returns the index of the vertex opposite to the $i$-th vertex
of $s$. \precond $0 \leq i \leq |dcur|$ and there is a
simplex opposite to the $i$-th vertex of $s$. }*/
int index_of_vertex_in_opposite_simplex(Simplex_const_handle s,int i) const
{ return Base::index_of_opposite_vertex(s,i); }
Simplex_handle simplex(Vertex_handle v) const
{ return Base::simplex(v); }
/*{\Mop returns a simplex of which $v$ is a node. Note that this
simplex is not unique. }*/
Simplex_const_handle simplex(Vertex_const_handle v) const
{ return Base::simplex(v); }
int index(Vertex_handle v) const { return Base::index(v); }
/*{\Mop returns the index of $v$ in |simplex(v)|.}*/
int index(Vertex_const_handle v) const { return Base::index(v); }
Vertex_handle vertex_of_facet(Facet_handle f, int i) const
{ return vertex_of_simplex(f,i+1); }
/*{\Mop returns the vertex corresponding to the $i$-th vertex of $f$.
\precond $0 \leq i < |dcur|$. }*/
Vertex_const_handle vertex_of_facet(Facet_const_handle f, int i) const
{ return vertex_of_simplex(f,i+1); }
Point_d point_of_facet(Facet_handle f, int i) const
{ return point_of_simplex(f,i+1); }
/*{\Mop same as |C.associated_point(C.vertex_of_facet(f,i))|.}*/
Point_d point_of_facet(Facet_const_handle f, int i) const
{ return point_of_simplex(f,i+1); }
Facet_handle opposite_facet(Facet_handle f, int i) const
{ return opposite_simplex(f,i+1); }
/*{\Mop returns the facet opposite to the $i$-th vertex of $f$
(|Facet_handle()| if there is no such facet). \precond $0 \leq i <
|dcur|$ and |dcur > 1|. }*/
Facet_const_handle opposite_facet(Facet_const_handle f, int i) const
{ return opposite_simplex(f,i+1); }
int index_of_vertex_in_opposite_facet(Facet_handle f, int i) const
{ return index_of_vertex_in_opposite_simplex(f,i+1) - 1; }
/*{\Mop returns the index of the vertex opposite to the $i$-th vertex of
$f$. \precond $0 \leq i < |dcur|$ and |dcur > 1|.}*/
int index_of_vertex_in_opposite_facet(Facet_const_handle f, int i) const
{ return index_of_vertex_in_opposite_simplex(f,i+1) - 1; }
Hyperplane_d hyperplane_supporting(Facet_handle f) const
{ return f -> hyperplane_of_base_facet(); }
/*{\Mop returns a hyperplane supporting facet |f|. The hyperplane is
oriented such that the interior of |\Mvar| is on the negative
side of it. \precond |f| is a facet of |\Mvar| and |dcur > 1|.}*/
Hyperplane_d hyperplane_supporting(Facet_const_handle f) const
{ return f -> hyperplane_of_base_facet(); }
Vertex_handle insert(const Point_d& x);
/*{\Mop adds point |x| to the underlying set of points. If $x$ is
equal to (the point associated with) a vertex of the current hull this
vertex is returned and its associated point is changed to $x$. If $x$
lies outside the current hull, a new vertex |v| with associated point
$x$ is added to the hull and returned. In all other cases, i.e., if
$x$ lies in the interior of the hull or on the boundary but not on a
vertex, the current hull is not changed and |Vertex_handle()| is
returned. If |CGAL_CHECK_EXPENSIVE| is defined then the validity
check |is_valid(true)| is executed as a post condition.}*/
template <typename Forward_iterator>
void insert(Forward_iterator first, Forward_iterator last)
{ while (first != last) insert(*first++); }
/*{\Mop adds |S = set [first,last)| to the underlying set of
points. If any point |S[i]| is equal to (the point associated with) a
vertex of the current hull its associated point is changed to |S[i]|.}*/
bool is_dimension_jump(const Point_d& x) const
/*{\Mop returns true if $x$ is not contained in the affine hull of |S|.}*/
{
if (current_dimension() == dimension()) return false;
typename R::Contained_in_affine_hull_d contained_in_affine_hull =
kernel().contained_in_affine_hull_d_object();
return ( !contained_in_affine_hull(origin_simplex_->points_begin(),
origin_simplex_->points_begin()+current_dimension()+1,x) );
}
std::list<Facet_handle> facets_visible_from(const Point_d& x);
/*{\Mop returns the list of all facets that are visible from |x|.\\
\precond |x| is contained in the affine hull of |S|.}*/
Bounded_side bounded_side(const Point_d& x);
/*{\Mop returns |ON_BOUNDED_SIDE| (|ON_BOUNDARY|,|ON_UNBOUNDED_SIDE|)
if |x| is contained in the interior (lies on the boundary, is contained
in the exterior) of |\Mvar|. \precond |x| is contained in the affine
hull of |S|.}*/
bool is_unbounded_simplex(Simplex_handle S) const
{ return vertex_of_simplex(S,0) == anti_origin_; }
bool is_unbounded_simplex(Simplex_const_handle S) const
{ return vertex_of_simplex(S,0) == anti_origin_; }
bool is_bounded_simplex(Simplex_handle S) const
{ return vertex_of_simplex(S,0) != anti_origin_; }
bool is_bounded_simplex(Simplex_const_handle S) const
{ return vertex_of_simplex(S,0) != anti_origin_; }
void clear(int d)
/*{\Mop reinitializes |\Mvar| to an empty hull in $d$-dimensional space.}*/
{
typename R::Construct_vector_d create =
kernel().construct_vector_d_object();
quasi_center_ = create(d,NULL_VECTOR);
anti_origin_ = Vertex_handle();
origin_simplex_ = Simplex_handle();
all_pnts_.clear();
Base::clear(d);
num_of_vertices = 0;
num_of_unbounded_simplices = num_of_bounded_simplices = 0;
num_of_visibility_tests = 0;
}
std::size_t number_of_vertices() const
/*{\Mop returns the number of vertices of |\Mvar|.}*/
{ return num_of_vertices; }
std::size_t number_of_facets() const
/*{\Mop returns the number of facets of |\Mvar|.}*/
{ return num_of_unbounded_simplices; }
std::size_t number_of_simplices() const
/*{\Mop returns the number of bounded simplices of |\Mvar|.}*/
{ return num_of_bounded_simplices; }
void print_statistics()
/*{\Mop gives information about the size of the current hull and the
number of visibility tests performed.}*/
{
std::cout << "Convex_hull_d ("
<< current_dimension() << "/" << dimension()
<< ") - statistic" << std::endl;
std::cout<<" # points = " << all_pnts_.size() << std::endl;
std::cout<<" # vertices = " << num_of_vertices << std::endl;
std::cout<<" # unbounded simplices = " << num_of_unbounded_simplices
<< std::endl;
std::cout<<" # bounded simplices = " << num_of_bounded_simplices
<< std::endl;
std::cout<<" # visibility tests = " << num_of_visibility_tests
<< std::endl;
}
class chull_has_double_coverage {};
class chull_has_local_non_convexity {};
class chull_has_center_on_wrong_side_of_hull_facet {};
bool is_valid(bool throw_exceptions = false) const;
/*{\Mop checks the validity of the data structure.
If |throw_exceptions == thrue| then the program throws
the following exceptions to inform about the problem.\\
[[chull_has_center_on_wrong_side_of_hull_facet]] the hyperplane
supporting a facet has the wrong orientation.\\
[[chull_has_local_non_convexity]] a ridge is locally non convex.\\
[[chull_has_double_coverage]] the hull has a winding number larger
than 1.
}*/
template <typename Forward_iterator>
void initialize(Forward_iterator first, Forward_iterator last)
/*{\Xop initializes the complex with the set |S = set [first,last)|.
The initialization uses the quickhull approach.}*/
{ CGAL_assertion(current_dimension()==-1);
Vertex_handle z;
Forward_iterator it(first);
std::list< Point_d > OtherPoints;
typename std::list< Point_d >::iterator pit, pred;
while ( it != last ) {
Point_d x = *it++;
if ( current_dimension() == -1 ) {
Simplex_handle outer_simplex; // a pointer to the outer simplex
dcur = 0; // we jump from dimension - 1 to dimension 0
origin_simplex_ = new_simplex(); num_of_bounded_simplices ++;
outer_simplex = new_simplex(); num_of_unbounded_simplices ++;
start_facet_ = origin_simplex_;
z = new_vertex(x); num_of_vertices ++;
associate_vertex_with_simplex(origin_simplex_,0,z);
// z is the only point and the peak
associate_vertex_with_simplex(outer_simplex,0,anti_origin_);
set_neighbor(origin_simplex_,0,outer_simplex,0);
typename R::Point_to_vector_d to_vector =
kernel().point_to_vector_d_object();
quasi_center_ = to_vector(x);
}
else if ( is_dimension_jump(x) ) {
dcur++;
z = new_vertex(x); num_of_vertices++;
typename R::Point_to_vector_d to_vector =
kernel().point_to_vector_d_object();
quasi_center_ = quasi_center_ + to_vector(x);
dimension_jump(origin_simplex_, z);
clear_visited_marks(origin_simplex_);
Simplex_iterator S;
forall_rc_simplices(S,*this) compute_equation_of_base_facet(S);
num_of_unbounded_simplices += num_of_bounded_simplices;
if (dcur > 1) {
start_facet_ = opposite_simplex(origin_simplex_,dcur);
CGAL_assertion(vertex_of_simplex(start_facet_,0)==Vertex_handle());
}
} else {
OtherPoints.push_back(x);
}
}
all_pnts_.insert(all_pnts_.end(),first,last);
// what is the point of this line? ...
//int dcur = current_dimension();
Unique_hash_map<Facet_handle, std::list<Point_d> > PointsOf;
std::list<Facet_handle> FacetCandidates;
typename R::Oriented_side_d side_of =
kernel().oriented_side_d_object();
for (int i=0; i<=dcur; ++i) {
Simplex_handle f = opposite_simplex(origin_simplex_,i);
Hyperplane_d h = f->hyperplane_of_base_facet();
std::list<Point_d>& L = PointsOf[f];
pit = OtherPoints.begin();
while ( pit != OtherPoints.end() ) {
if ( side_of(h,*pit) == ON_POSITIVE_SIDE ) {
L.push_back(*pit); pred=pit; ++pit; OtherPoints.erase(pred);
} else ++pit; // not above h
}
if ( !L.empty() ) FacetCandidates.push_back(f);
}
OtherPoints.clear();
while ( !FacetCandidates.empty() ) {
Facet_handle f = *FacetCandidates.begin();
FacetCandidates.pop_front();
Hyperplane_d h = f->hyperplane_of_base_facet();
std::list<Point_d>& L = PointsOf[f];
if (L.empty()) { CGAL_assertion( is_bounded_simplex(f) ); continue; }
Point_d p = *L.begin();
typename R::Value_at_d value_at = kernel().value_at_d_object();
RT maxdist = value_at(h,p), dist;
for (pit = ++L.begin(); pit != L.end(); ++pit) {
dist = value_at(h,*pit);
if ( dist > maxdist ) { maxdist = dist; p = *pit; }
}
num_of_visibility_tests += L.size();
std::size_t num_of_visited_facets = 0;
std::list<Facet_handle> VisibleFacets;
VisibleFacets.push_back(f);
visible_facets_search(f, p, VisibleFacets, num_of_visited_facets);
num_of_visibility_tests += num_of_visited_facets;
num_of_bounded_simplices += VisibleFacets.size();
clear_visited_marks(f);
++num_of_vertices;
Vertex_handle z = new_vertex(p);
std::list<Simplex_handle> NewSimplices;
typename std::list<Facet_handle>::iterator it;
CGAL_assertion(OtherPoints.empty());
for (it = VisibleFacets.begin(); it != VisibleFacets.end(); ++it) {
OtherPoints.splice(OtherPoints.end(),PointsOf[*it]);
Facet_handle S = *it;
associate_vertex_with_simplex(S,0,z);
for (int k = 1; k <= dcur; ++k) {
if (!is_base_facet_visible(opposite_simplex(S,k),p)) {
Simplex_handle T = new_simplex();
NewSimplices.push_back(T);
/* set the vertices of T as described above */
for (int i = 1; i < dcur; i++) {
if ( i != k )
associate_vertex_with_simplex(T,i,vertex_of_simplex(S,i));
}
if (k != dcur)
associate_vertex_with_simplex(T,k,vertex_of_simplex(S,dcur));
associate_vertex_with_simplex(T,dcur,z);
associate_vertex_with_simplex(T,0,anti_origin_);
/* in the above, it is tempting to drop the tests ( i != k ) and
( k != dcur ) since the subsequent lines after will correct the
erroneous assignment. This reasoning is fallacious as the
procedure assoc_vertex_with_simplex also the internal data of
the third argument. */
/* compute the equation of its base facet */
compute_equation_of_base_facet(T);
/* record adjacency information for the two known neighbors */
set_neighbor(T,dcur,opposite_simplex(S,k),
index_of_vertex_in_opposite_simplex(S,k));
set_neighbor(T,0,S,k);
}
}
}
num_of_unbounded_simplices -= VisibleFacets.size();
if ( vertex_of_simplex(start_facet_,0) != Vertex_handle() )
start_facet_ = *(--NewSimplices.end());
CGAL_assertion( vertex_of_simplex(start_facet_,0)==Vertex_handle() );
for (it = NewSimplices.begin(); it != NewSimplices.end(); ++it) {
Simplex_handle Af = *it;
for (int k = 1; k < dcur ; k++) {
// neighbors 0 and dcur are already known
if (opposite_simplex(Af,k) == Simplex_handle()) {
// we have not performed the walk in the opposite direction yet
Simplex_handle T = opposite_simplex(Af,0);
int y1 = 0;
while ( vertex_of_simplex(T,y1) != vertex_of_simplex(Af,k) )
y1++;
// exercise: show that we can also start with y1 = 1
int y2 = index_of_vertex_in_opposite_simplex(Af,0);
while ( vertex_of_simplex(T,0) == z ) {
// while T has peak x do find new y_1 */
int new_y1 = 0;
while (vertex_of_simplex(opposite_simplex(T,y1),new_y1) !=
vertex_of_simplex(T,y2))
new_y1++;
// exercise: show that we can also start with new_y1 = 1
y2 = index_of_vertex_in_opposite_simplex(T,y1);
T = opposite_simplex(T,y1);
y1 = new_y1;
}
set_neighbor(Af,k,T,y1); // update adjacency information
}
}
}
for (it = NewSimplices.begin(); it != NewSimplices.end(); ++it) {
Facet_handle f = *it;
CGAL_assertion( is_unbounded_simplex(f) );
Hyperplane_d h = f->hyperplane_of_base_facet();
std::list<Point_d>& L = PointsOf[f];
pit = OtherPoints.begin();
while ( pit != OtherPoints.end() ) {
if ( side_of(h,*pit) == ON_POSITIVE_SIDE ) {
L.push_back(*pit); pred=pit; ++pit; OtherPoints.erase(pred);
} else ++pit; // not above h
}
if ( !L.empty() ) FacetCandidates.push_back(f);
}
OtherPoints.clear();
}
#ifdef CGAL_CHECK_EXPENSIVE
CGAL_assertion(is_valid(true));
#endif
}
/*{\Mtext \headerline{Lists and Iterators}
\setopdims{3.5cm}{3.5cm}}*/
Vertex_iterator vertices_begin() { return Base::vertices_begin(); }
/*{\Mop returns an iterator to start iteration over all vertices
of |\Mvar|.}*/
Vertex_iterator vertices_end() { return Base::vertices_end(); }
/*{\Mop the past the end iterator for vertices.}*/
Simplex_iterator simplices_begin() { return Base::simplices_begin(); }
/*{\Mop returns an iterator to start iteration over all simplices
of |\Mvar|.}*/
Simplex_iterator simplices_end() { return Base::simplices_end(); }
/*{\Mop the past the end iterator for simplices.}*/
Facet_iterator facets_begin() { return Facet_iterator(this,start_facet_); }
/*{\Mop returns an iterator to start iteration over all facets of |\Mvar|.}*/
Facet_iterator facets_end() { return Facet_iterator(); }
/*{\Mop the past the end iterator for facets.}*/
Hull_vertex_iterator hull_vertices_begin()
{ return Hull_vertex_iterator(this,facets_begin()); }
/*{\Mop returns an iterator to start iteration over all hull vertex
of |\Mvar|. Remember that the hull is a simplicial complex.}*/
Hull_vertex_iterator hull_vertices_end()
{ return Hull_vertex_iterator(); }
/*{\Mop the past the end iterator for hull vertices.}*/
Point_const_iterator points_begin() const { return all_pnts_.begin(); }
/*{\Mop returns the start iterator for all points that have been
inserted to construct |\Mvar|.}*/
Point_const_iterator points_end() const { return all_pnts_.end(); }
/*{\Mop returns the past the end iterator for all points.}*/
Hull_point_const_iterator hull_points_begin() const
{ return Hull_point_const_iterator(hull_vertices_begin()); }
/*{\Mop returns an iterator to start iteration over all inserted
points that are part of the convex hull |\Mvar|. Remember that the
hull is a simplicial complex.}*/
Hull_point_const_iterator hull_points_end() const
{ return Hull_point_const_iterator(hull_vertices_end()); }
/*{\Mop returns the past the end iterator for points of the hull.}*/
Vertex_const_iterator vertices_begin() const
{ return Base::vertices_begin(); }
Vertex_const_iterator vertices_end() const
{ return Base::vertices_end(); }
Simplex_const_iterator simplices_begin() const
{ return Base::simplices_begin(); }
Simplex_const_iterator simplices_end() const
{ return Base::simplices_end(); }
Facet_const_iterator facets_begin() const
{ return Facet_const_iterator(this,start_facet_); }
Facet_const_iterator facets_end() const
{ return Facet_const_iterator(); }
Hull_vertex_const_iterator hull_vertices_begin() const
{ return Hull_vertex_const_iterator(this,facets_begin()); }
Hull_vertex_const_iterator hull_vertices_end() const
{ return Hull_vertex_const_iterator(); }
/* We distinguish cases according to the current dimension. If the
dimension is less than one then the hull has no facets, if the
dimension is one then the hull has two facets which we extract by a
scan through the set of all simplices, and if the hull has
dimension at least two the boundary is a connected set and we
construct the list of facets by depth first search starting at
|start_facet_|.*/
/*{\Mtext\setopdims{5.5cm}{3.5cm}}*/
template <typename Visitor>
void visit_all_facets(const Visitor& V) const
/*{\Mop each facet of |\Mvar| is visited by the visitor object |V|.
|V| has to have a function call operator:\\
|void operator()(Facet_handle) const|}*/
{
if (current_dimension() > 1) {
Unique_hash_map<Facet_handle,bool> visited(false);
std::list<Facet_handle> candidates;
candidates.push_back(start_facet_);
visited[start_facet_] = true;
Facet_handle current;
while ( !candidates.empty() ) {
current = *(candidates.begin()); candidates.pop_front();
CGAL_assertion(vertex_of_simplex(current,0)==Vertex_handle());
V(current);
for(int i = 1; i <= dcur; ++i) {
Facet_handle f = opposite_simplex(current,i);
if ( !visited[f] ) {
candidates.push_back(f);
visited[f] = true;
}
}
}
}
else if ( current_dimension() == 1 ) { V(start_facet_); }
}
const std::list<Point_d>& all_points() const
/*{\Mop returns a list of all points in |\Mvar|.}*/
{ return all_pnts_; }
std::list<Vertex_handle> all_vertices()
/*{\Mop returns a list of all vertices of |\Mvar|
(also interior ones).}*/
{ return Base::all_vertices(); }
std::list<Vertex_const_handle> all_vertices() const
{ return Base::all_vertices(); }
std::list<Simplex_handle> all_simplices()
/*{\Mop returns a list of all simplices in |\Mvar|.}*/
{ return Base::all_simplices(); }
std::list<Simplex_const_handle> all_simplices() const
{ return Base::all_simplices(); }
std::list<Facet_handle> all_facets()
/*{\Mop returns a list of all facets of |\Mvar|.}*/
{ std::list<Facet_handle> L;
list_collector<Facet_handle,Facet_handle> visitor(L);
visit_all_facets(visitor);
return L;
}
std::list<Facet_const_handle> all_facets() const
{ std::list<Facet_const_handle> L;
list_collector<Facet_const_handle,Facet_handle> visitor(L);
visit_all_facets(visitor);
return L;
}
#define forall_ch_vertices(x,CH)\
for(x = (CH).vertices_begin(); x != (CH).vertices_end(); ++x)
#define forall_ch_simplices(x,CH)\
for(x = (CH).simplices_begin(); x != (CH).simplices_end(); ++x)
#define forall_ch_facets(x,CH)\
for(x = (CH).facets_begin(); x != (CH).facets_end(); ++x)
/*{\Mtext
\headerline{Iteration Statements}
{\bf forall\_ch\_vertices}($v,C$)
$\{$ ``the vertices of $C$ are successively assigned to $v$'' $\}$
{\bf forall\_ch\_simplices}($s,C$)
$\{$ ``the simplices of $C$ are successively assigned to $s$'' $\}$
{\bf forall\_ch\_facets}($f,C$)
$\{$ ``the facets of $C$ are successively assigned to $f$'' $\}$
}*/
/*{\Mimplementation The implementation of type |\Mtype| is based on
\cgalCite{cms:fourresults} and \cgalCite{BMS:degeneracy}. The details of the
implementation can be found in the implementation document available
at the download site of this package.
The time and space requirements are input dependent. Let $C_1$, $C_2$,
$C_3$, \ldots be the sequence of hulls constructed and for a point $x$
let $k_i$ be the number of facets of $C_i$ that are visible from $x$
and that are not already facets of $C_{i-1}$. Then the time for
inserting $x$ is $O(|dim| \sum_i k_i)$ and the number of new simplices
constructed during the insertion of $x$ is the number of facets of the
hull which were not already facets of the hull before the insertion.
The data type |\Mtype| is derived from |Regular_complex_d|. The space
requirement of regular complexes is essentially $12(|dim| +2)$ bytes
times the number of simplices plus the space for the points. |\Mtype|
needs an additional $8 + (4 + x)|dim|$ bytes per simplex where $x$ is
the space requirement of the underlying number type and an additional
$12$ bytes per point. The total is therefore $(16 + x)|dim| + 32$
bytes times the number of simplices plus $28 + x \cdot |dim|$ bytes
times the number of points.}*/
/*{\Mtext\headerline{Traits requirements}
|\Mname| requires the following types from the kernel traits |R|:
\begin{Mverb}
Point_d Vector_d Ray_d Hyperplane_d
\end{Mverb}
and uses the following function objects from the kernel traits:
\begin{Mverb}
Construct_vector_d
Construct_hyperplane_d
Vector_to_point_d / Point_to_vector_d
Orientation_d
Orthogonal_vector_d
Oriented_side_d / Has_on_positive_side_d
Affinely_independent_d
Contained_in_simplex_d
Contained_in_affine_hull_d
Intersect_d
\end{Mverb}
}*/
}; // Convex_hull_d<R>
template <class R>
Convex_hull_d<R>::Convex_hull_d(int d, const R& Kernel) : Base(d,Kernel)
{
origin_simplex_ = Simplex_handle();
start_facet_ = Facet_handle();
anti_origin_ = Vertex_handle();
num_of_vertices = 0;
num_of_unbounded_simplices = num_of_bounded_simplices = 0;
num_of_visibility_tests = 0;
typename R::Construct_vector_d create =
kernel().construct_vector_d_object();
quasi_center_ = create(d,NULL_VECTOR);
}
template <class R>
bool Convex_hull_d<R>::
contains_in_base_facet(Simplex_handle s, const Point_d& x) const
{
typename R::Contained_in_simplex_d contained_in_simplex =
kernel().contained_in_simplex_d_object();
return contained_in_simplex(s->points_begin()+1,
s->points_begin()+current_dimension()+1,x);
}
template <class R>
void Convex_hull_d<R>::
compute_equation_of_base_facet(Simplex_handle S)
{
typename R::Construct_hyperplane_d hyperplane_through_points =
kernel().construct_hyperplane_d_object();
S->set_hyperplane_of_base_facet( hyperplane_through_points(
S->points_begin()+1, S->points_begin()+1+current_dimension(),
center(), ON_NEGATIVE_SIDE)); // skip the first point !
#ifdef CGAL_CHECK_EXPENSIVE
{ /* Let us check */
typename R::Oriented_side_d side = kernel().oriented_side_d_object();
for (int i = 1; i <= current_dimension(); i++)
CGAL_assertion_msg(side(S->hyperplane_of_base_facet(),
point_of_simplex(S,i)) == ON_ORIENTED_BOUNDARY,
" hyperplane does not support base ");
CGAL_assertion_msg(side(S->hyperplane_of_base_facet(),center()) ==
ON_NEGATIVE_SIDE,
" hyperplane has quasi center on wrong side ");
}
#endif
}
template <class R>
typename Convex_hull_d<R>::Vertex_handle
Convex_hull_d<R>::insert(const Point_d& x)
{
Vertex_handle z = Vertex_handle();
all_pnts_.push_back(x);
if (current_dimension() == -1) {
Simplex_handle outer_simplex; // a pointer to the outer simplex
dcur = 0; // we jump from dimension - 1 to dimension 0
origin_simplex_ = new_simplex(); num_of_bounded_simplices ++;
outer_simplex = new_simplex(); num_of_unbounded_simplices ++;
start_facet_ = origin_simplex_;
z = new_vertex(x); num_of_vertices ++;
associate_vertex_with_simplex(origin_simplex_,0,z);
// z is the only point and the peak
associate_vertex_with_simplex(outer_simplex,0,anti_origin_);
set_neighbor(origin_simplex_,0,outer_simplex,0);
typename R::Point_to_vector_d to_vector =
kernel().point_to_vector_d_object();
quasi_center_ = to_vector(x);
} else if ( is_dimension_jump(x) ) {
dcur++;
z = new_vertex(x); num_of_vertices++;
typename R::Point_to_vector_d to_vector =
kernel().point_to_vector_d_object();
quasi_center_ = quasi_center_ + to_vector(x);
dimension_jump(origin_simplex_, z);
clear_visited_marks(origin_simplex_);
Simplex_iterator S;
forall_rc_simplices(S,*this) compute_equation_of_base_facet(S);
num_of_unbounded_simplices += num_of_bounded_simplices;
if (dcur > 1) {
start_facet_ = opposite_simplex(origin_simplex_,dcur);
CGAL_assertion(vertex_of_simplex(start_facet_,0)==Vertex_handle());
}
} else {
if ( current_dimension() == 0 ) {
z = vertex_of_simplex(origin_simplex_,0);
associate_point_with_vertex(z,x);
return z;
}
std::list<Simplex_handle> visible_simplices;
int location = -1;
Facet_handle f;
std::size_t num_of_visited_simplices = 0;
visibility_search(origin_simplex_, x, visible_simplices,
num_of_visited_simplices, location, f);
num_of_visibility_tests += num_of_visited_simplices;
#ifdef COUNTS
cout << "\nthe number of visited simplices in this iteration is ";
cout << num_of_visited_simplices << endl;
#endif
clear_visited_marks(origin_simplex_);
#ifdef COUNTS
cout << "\nthe number of bounded simplices constructed ";
cout << " in this iteration is " << visible_simplices.size() << endl;
#endif
num_of_bounded_simplices += visible_simplices.size();
switch (location) {
case -1:
return Vertex_handle();
case 0:
{ for (int i = 0; i < current_dimension(); i++) {
if ( x == point_of_facet(f,i) ) {
z = vertex_of_facet(f,i);
associate_point_with_vertex(z,x);
return z;
}
}
return Vertex_handle();
}
case 1:
{ num_of_vertices++;
z = new_vertex(x);
std::list<Simplex_handle> NewSimplices; // list of new simplices
typename std::list<Simplex_handle>::iterator it;
for (it = visible_simplices.begin();
it != visible_simplices.end(); ++it) {
Simplex_handle S = *it;
associate_vertex_with_simplex(S,0,z);
for (int k = 1; k <= dcur; k++) {
if (!is_base_facet_visible(opposite_simplex(S,k),x)) {
Simplex_handle T = new_simplex();
NewSimplices.push_back(T);
/* set the vertices of T as described above */
for (int i = 1; i < dcur; i++) {
if ( i != k )
associate_vertex_with_simplex(T,i,vertex_of_simplex(S,i));
}
if (k != dcur)
associate_vertex_with_simplex(T,k,vertex_of_simplex(S,dcur));
associate_vertex_with_simplex(T,dcur,z);
associate_vertex_with_simplex(T,0,anti_origin_);
/* in the above, it is tempting to drop the tests ( i != k )
and ( k != dcur ) since the subsequent lines after will
correct the erroneous assignment. This reasoning is
fallacious as the procedure assoc_vertex_with_simplex also
the internal data of the third argument. */
/* compute the equation of its base facet */
compute_equation_of_base_facet(T);
/* record adjacency information for the two known neighbors */
set_neighbor(T,dcur,opposite_simplex(S,k),
index_of_vertex_in_opposite_simplex(S,k));
set_neighbor(T,0,S,k);
}
}
}
num_of_unbounded_simplices -= visible_simplices.size();
if ( vertex_of_simplex(start_facet_,0) != Vertex_handle() )
start_facet_ = *(--NewSimplices.end());
CGAL_assertion( vertex_of_simplex(start_facet_,0)==Vertex_handle() );
for (it = NewSimplices.begin(); it != NewSimplices.end(); ++it) {
Simplex_handle Af = *it;
for (int k = 1; k < dcur ; k++) {
// neighbors 0 and dcur are already known
if (opposite_simplex(Af,k) == Simplex_handle()) {
// we have not performed the walk in the opposite direction yet
Simplex_handle T = opposite_simplex(Af,0);
int y1 = 0;
while ( vertex_of_simplex(T,y1) != vertex_of_simplex(Af,k) )
y1++;
// exercise: show that we can also start with y1 = 1
int y2 = index_of_vertex_in_opposite_simplex(Af,0);
while ( vertex_of_simplex(T,0) == z ) {
// while T has peak x do find new y_1 */
int new_y1 = 0;
while (vertex_of_simplex(opposite_simplex(T,y1),new_y1) !=
vertex_of_simplex(T,y2))
new_y1++;
// exercise: show that we can also start with new_y1 = 1
y2 = index_of_vertex_in_opposite_simplex(T,y1);
T = opposite_simplex(T,y1);
y1 = new_y1;
}
set_neighbor(Af,k,T,y1); // update adjacency information
}
}
}
}
}
}
#ifdef CGAL_CHECK_EXPENSIVE
CGAL_assertion(is_valid(true));
#endif
return z;
}
template <class R>
void Convex_hull_d<R>::
visibility_search(Simplex_handle S, const Point_d& x,
std::list< Simplex_handle >& visible_simplices,
std::size_t& num_of_visited_simplices, int& location,
Simplex_handle& f) const
{
num_of_visited_simplices ++;
S->visited() = true; // we have visited S and never come back ...
for(int i = 0; i <= current_dimension(); ++i) {
Simplex_handle T = opposite_simplex(S,i); // for all neighbors T of S
if ( !T->visited() ) {
typename R::Oriented_side_d side_of =
kernel().oriented_side_d_object();
int side = side_of(T->hyperplane_of_base_facet(),x);
if ( is_unbounded_simplex(T) ) {
if ( side == ON_POSITIVE_SIDE ) {
// T is an unbounded simplex with x-visible base facet
visible_simplices.push_back(T);
location = 1;
}
if ( side == ON_ORIENTED_BOUNDARY &&
location == -1 && contains_in_base_facet(T,x) ) {
location = 0; f = T;
return;
}
}
if ( side == ON_POSITIVE_SIDE ||
(side == ON_ORIENTED_BOUNDARY && location == -1) ) {
visibility_search(T,x,visible_simplices,
num_of_visited_simplices,location,f);
// do the recursive search
}
} // end visited
else {
}
} // end for
}
template <class R>
void Convex_hull_d<R>::clear_visited_marks(Simplex_handle S) const
{
S->visited() = false; // clear the visit - bit
for(int i = 0; i <= current_dimension(); i++) // for all neighbors of S
if (opposite_simplex(S,i)->visited())
// if the i - th neighbor has been visited
clear_visited_marks(opposite_simplex(S,i));
// clear its bit recursively
}
template <class R>
std::list< typename Convex_hull_d<R>::Simplex_handle >
Convex_hull_d<R>::facets_visible_from(const Point_d& x)
{
std::list<Simplex_handle> visible_simplices;
int location = -1; // intialization is important
std::size_t num_of_visited_simplices = 0; // irrelevant
Facet_handle f; // irrelevant
visibility_search(origin_simplex_, x, visible_simplices,
num_of_visited_simplices, location, f);
clear_visited_marks(origin_simplex_);
return visible_simplices;
}
template <class R>
Bounded_side Convex_hull_d<R>::bounded_side(const Point_d& x)
{
if ( is_dimension_jump(x) ) return ON_UNBOUNDED_SIDE;
std::list<Simplex_handle> visible_simplices;
int location = -1; // intialization is important
std::size_t num_of_visited_simplices = 0; // irrelevant
Facet_handle f;
visibility_search(origin_simplex_, x, visible_simplices,
num_of_visited_simplices, location, f);
clear_visited_marks(origin_simplex_);
switch (location) {
case -1: return ON_BOUNDED_SIDE;
case 0: return ON_BOUNDARY;
case 1: return ON_UNBOUNDED_SIDE;
}
CGAL_error(); return ON_BOUNDARY; // never come here
}
template <class R>
void Convex_hull_d<R>::
dimension_jump(Simplex_handle S, Vertex_handle x)
{
Simplex_handle S_new;
S->visited() = true;
associate_vertex_with_simplex(S,dcur,x);
if ( !is_unbounded_simplex(S) ) { // S is bounded
S_new = new_simplex();
set_neighbor(S,dcur,S_new,0);
associate_vertex_with_simplex(S_new,0,anti_origin_);
for (int k = 1; k <= dcur; k++) {
associate_vertex_with_simplex(S_new,k,vertex_of_simplex(S,k-1));
}
}
/* visit unvisited neighbors 0 to dcur - 1 */
for (int k = 0; k <= dcur - 1; k++) {
if ( !opposite_simplex(S,k) -> visited() ) {
dimension_jump(opposite_simplex(S,k), x);
}
}
/* the recursive calls ensure that all neighbors exist */
if ( is_unbounded_simplex(S) ) {
set_neighbor(S,dcur,opposite_simplex(opposite_simplex(S,0),dcur),
index_of_vertex_in_opposite_simplex(S,0) + 1);
} else {
for (int k = 0; k < dcur; k++) {
if ( is_unbounded_simplex(opposite_simplex(S,k)) ) {
// if F' is unbounded
set_neighbor(S_new,k + 1,opposite_simplex(S,k),dcur);
// the neighbor of S_new opposite to v is S' and
// x is in position dcur
} else { // F' is bounded
set_neighbor(S_new,k + 1,opposite_simplex(opposite_simplex(S,k),dcur),
index_of_vertex_in_opposite_simplex(S,k) + 1);
// neighbor of S_new opposite to v is S_new'
// the vertex opposite to v remains the same but ...
// remember the shifting of the vertices one step to the right
}
}
}
}
template <class R>
bool Convex_hull_d<R>::is_valid(bool throw_exceptions) const
{
this->check_topology();
if (current_dimension() < 1) return true;
/* Recall that center() gives us the center-point of the origin
simplex. We check whether it is locally inside with respect to
all hull facets. */
typename R::Oriented_side_d side =
kernel().oriented_side_d_object();
Point_d centerpoint = center();
Simplex_const_iterator S;
forall_rc_simplices(S,*this) {
if ( is_unbounded_simplex(S) &&
side(S->hyperplane_of_base_facet(),centerpoint) !=
ON_NEGATIVE_SIDE) {
if (throw_exceptions)
throw chull_has_center_on_wrong_side_of_hull_facet();
return false;
}
}
/* next we check convexity at every ridge. Let |S| be any hull
simplex and let |v| be any vertex of its base facet. The vertex
opposite to |v| must not be on the positive side of the base
facet.*/
forall_rc_simplices(S,*this) {
if ( is_unbounded_simplex(S) ) {
for (int i = 1; i <= dcur; i++) {
int k = index_of_vertex_in_opposite_simplex(S,i);
if (side(S->hyperplane_of_base_facet(),
point_of_simplex(opposite_simplex(S,i),k)) ==
ON_POSITIVE_SIDE) {
if (throw_exceptions)
throw chull_has_local_non_convexity();
return false;
}
}
}
}
/* next we select one hull facet */
Simplex_const_handle selected_hull_simplex;
forall_rc_simplices(S,*this) {
if ( is_unbounded_simplex(S) ) { selected_hull_simplex = S; break; }
}
/* we compute the center of gravity of the base facet of the
hull simplex */
typename R::Point_to_vector_d to_vector =
kernel().point_to_vector_d_object();
typename R::Vector_to_point_d to_point =
kernel().vector_to_point_d_object();
typename R::Construct_vector_d create =
kernel().construct_vector_d_object();
Vector_d center_of_hull_facet = create(dimension(),NULL_VECTOR);
for (int i = 1; i <= current_dimension(); i++) {
center_of_hull_facet = center_of_hull_facet +
to_vector(point_of_simplex(selected_hull_simplex,i));
}
Point_d center_of_hull_facet_point =
to_point(center_of_hull_facet/RT(dcur));
/* we set up the ray from the center to the center of the hull facet */
Ray_d l(centerpoint, center_of_hull_facet_point);
/* and check whether it intersects the interior of any hull facet */
typename R::Contained_in_simplex_d contained_in_simplex =
kernel().contained_in_simplex_d_object();
typename R::Intersect_d intersect =
kernel().intersect_d_object();
forall_rc_simplices(S,*this) {
if ( is_unbounded_simplex(S) && S != selected_hull_simplex ) {
Point_d p; Object op;
Hyperplane_d h = S->hyperplane_of_base_facet();
if ( (op = intersect(l,h), assign(p,op)) ) {
if ( contained_in_simplex(S->points_begin()+1,
S->points_begin()+1+current_dimension(),p) ) {
if ( throw_exceptions )
throw chull_has_double_coverage();
return false;
}
}
}
}
return true;
}
template <class R>
void Convex_hull_d<R>::
visible_facets_search(Simplex_handle S, const Point_d& x,
std::list< Facet_handle >& VisibleFacets,
std::size_t& num_of_visited_facets) const
{
++num_of_visited_facets;
S->visited() = true; // we have visited S and never come back ...
for(int i = 1; i <= current_dimension(); ++i) {
Simplex_handle T = opposite_simplex(S,i); // for all neighbors T of S
if ( !T->visited() ) {
typename R::Oriented_side_d side_of =
kernel().oriented_side_d_object();
int side = side_of(T->hyperplane_of_base_facet(),x);
CGAL_assertion( is_unbounded_simplex(T) );
if ( side == ON_POSITIVE_SIDE ) {
VisibleFacets.push_back(T);
visible_facets_search(T,x,VisibleFacets,num_of_visited_facets);
// do the recursive search
}
} // end visited
} // end for
}
} //namespace CGAL
#endif // CGAL_CONVEX_HULL_D_H
|