This file is indexed.

/usr/include/CGAL/Counted_number.h is in libcgal-dev 4.7-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
// Copyright (c) 2001,2007  
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel).  All rights reserved. 
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s)     : Geert-Jan Giezeman,
//                 Michael Hemmer <hemmer@mpi-inf.mpg.de>

#ifndef CGAL_COUNTED_NUMBER_H
#define CGAL_COUNTED_NUMBER_H

#include <CGAL/number_type_basic.h>
#include <boost/iterator/transform_iterator.hpp> // for Root_of_selector
#include <iostream>

namespace CGAL {

template <class NT>
class Counted_number {
    static unsigned long s_neg_count, s_add_count, s_sub_count,
                         s_mul_count, s_div_count,
                  			 s_eq_count, s_comp_count,
                         s_simplify_count,
                         s_unit_part_count,
                         s_is_zero_count,
                         s_is_one_count,
                         s_square_count,
                         s_integral_division_count,
                         s_is_square_count,
                         s_sqrt_count,
                         s_kth_root_count,
                         s_root_of_count,
                         s_gcd_count,
                         s_div_mod_count,
                         s_mod_count;
    NT m_rep;
  public:
    typedef NT Rep_type;
    static void reset()
            { s_neg_count=0; s_add_count=0; s_sub_count=0;
              s_mul_count=0; s_div_count=0;
      	      s_eq_count=0; s_comp_count = 0;
              s_simplify_count = 0; s_unit_part_count = 0; s_is_zero_count = 0;
              s_is_one_count = 0; s_square_count = 0;
              s_integral_division_count = 0; s_is_square_count = 0;
              s_sqrt_count = 0; s_kth_root_count = 0; s_root_of_count = 0;
              s_gcd_count = 0; s_div_mod_count = 0; s_mod_count = 0;
            }
    static void inc_neg_count() {++s_neg_count;}
    static void inc_add_count() {++s_add_count;}
    static void inc_sub_count() {++s_sub_count;}
    static void inc_mul_count() {++s_mul_count;}
    static void inc_div_count() {++s_div_count;}
    static void inc_eq_count() {++s_eq_count;}
    static void inc_comp_count() {++s_comp_count;}
    static void inc_simplify_count() {++s_simplify_count;}
    static void inc_unit_part_count() {++s_unit_part_count;}
    static void inc_is_zero_count() {++s_is_zero_count;}
    static void inc_is_one_count() {++s_is_one_count;}
    static void inc_square_count() {++s_square_count;}
    static void inc_integral_division_count() {++s_integral_division_count;}
    static void inc_is_square_count() {++s_is_square_count;}
    static void inc_sqrt_count() {++s_sqrt_count;}
    static void inc_kth_root_count() {++s_kth_root_count;}
    static void inc_root_of_count() {++s_root_of_count;}
    static void inc_gcd_count() {++s_gcd_count;}
    static void inc_div_mod_count() {++s_div_mod_count;}
    static void inc_mod_count() {++s_mod_count;}

    static unsigned long neg_count() {return s_neg_count;}
    static unsigned long add_count() {return s_add_count;}
    static unsigned long sub_count() {return s_sub_count;}
    static unsigned long mul_count() {return s_mul_count;}
    static unsigned long div_count() {return s_div_count;}
    static unsigned long eq_count() {return s_eq_count;}
    static unsigned long comp_count() {return s_comp_count;}
    static unsigned long simplify_count() {return s_simplify_count;}
    static unsigned long unit_part_count() {return s_unit_part_count;}
    static unsigned long is_zero_count() {return s_is_zero_count;}
    static unsigned long is_one_count() {return s_is_one_count;}
    static unsigned long square_count() {return s_square_count;}
    static unsigned long integral_division_count() {
      return s_integral_division_count;
    }
    static unsigned long is_square_count() {return s_is_square_count;}
    static unsigned long sqrt_count() {return s_sqrt_count;}
    static unsigned long kth_root_count() {return s_kth_root_count;}
    static unsigned long root_of_count() {return s_root_of_count;}
    static unsigned long gcd_count() {return s_gcd_count;}
    static unsigned long div_mod_count() {return s_div_mod_count;}
    static unsigned long mod_count() {return s_mod_count;}

    static unsigned long count()
            { return s_neg_count + s_add_count + s_sub_count +
                     s_mul_count + s_div_count +
      	             s_eq_count + s_comp_count +
                     s_simplify_count + s_unit_part_count + s_is_zero_count +
                     s_is_one_count + s_square_count +
                     s_integral_division_count + s_is_square_count +
                     s_sqrt_count + s_kth_root_count + s_root_of_count +
                     s_gcd_count + s_div_mod_count + s_mod_count;
            }

    static void report(std::ostream &os);
    NT rep() const {return m_rep;}
    Counted_number() {}
    //explicit Counted_number(int n) :m_rep(n){}
    explicit Counted_number(NT n) :m_rep(n){}
    Counted_number operator-() const
            {inc_neg_count();return Counted_number(-m_rep);}
    Counted_number const & operator+=(Counted_number const &n)
            {
		inc_add_count();
		m_rep += n.m_rep;
		return *this;}
    Counted_number const & operator-=(Counted_number const &n)
            {inc_sub_count(); m_rep -= n.m_rep; return *this;}
    Counted_number const & operator*=(Counted_number const &n)
            {inc_mul_count(); m_rep *= n.m_rep; return *this;}
    Counted_number const & operator/=(Counted_number const &n)
            {inc_div_count(); m_rep /= n.m_rep; return *this;}

    // Counted operations
    void simplify() {
      inc_simplify_count();
      CGAL_NTS simplify( m_rep );
    }

    Counted_number unit_part() const {
      inc_unit_part_count();
      return Counted_number( CGAL_NTS unit_part( rep() ) );
    }

    bool is_zero() const {
      inc_is_zero_count();
      return CGAL_NTS is_zero( rep() );
    }

    bool is_one() const {
      inc_is_one_count();
      return CGAL_NTS is_one( rep() );
    }

    Counted_number square() const {
      inc_square_count();
      return Counted_number( CGAL_NTS square( rep() ) );
    }

    Counted_number integral_division( const Counted_number& n ) const {
      inc_integral_division_count();
      return Counted_number( CGAL_NTS integral_division( rep(), n.rep() ) );
    }

    bool is_square( Counted_number& result ) const {
      inc_is_square_count();
      NT result_as_nt;
      bool is_integral = CGAL_NTS is_square( rep(), result_as_nt );
      result = Counted_number( result_as_nt );
      return is_integral;
    }

    Counted_number sqrt() const {
      inc_sqrt_count();
      return Counted_number( CGAL_NTS sqrt( rep() ) );
    }

    Counted_number kth_root( int k ) const {
      inc_kth_root_count();
      return Counted_number( CGAL_NTS kth_root( k, rep() ) );
    }

    Counted_number gcd( const Counted_number& n ) const {
      inc_gcd_count();
      return Counted_number( CGAL_NTS gcd( rep(), n.rep() ) );
    }

    Counted_number div( const Counted_number& n ) const {
      inc_div_count();
      return Counted_number( CGAL_NTS div( rep(), n.rep() ) );
    }

    Counted_number mod( const Counted_number& n ) const {
      inc_mod_count();
      return Counted_number( CGAL_NTS mod( rep(), n.rep() ) );
    }

    void div_mod( const Counted_number& n, Counted_number& q,
                  Counted_number& r ) const {
      inc_div_mod_count();
      NT q_as_nt, r_as_nt;
      CGAL_NTS div_mod( rep(), n.rep(), q_as_nt, r_as_nt );
      q = Counted_number( q_as_nt );
      r = Counted_number( r_as_nt );
    }

    // Other operations
    inline double to_double() const {
      return CGAL_NTS to_double( rep() );
    }

    inline std::pair<double, double> to_interval() const {
      return CGAL_NTS to_interval( rep() );
    }
};

template <class NT>
unsigned long Counted_number<NT>::s_neg_count=0;

template <class NT>
unsigned long Counted_number<NT>::s_add_count=0;

template <class NT>
unsigned long Counted_number<NT>::s_sub_count=0;

template <class NT>
unsigned long Counted_number<NT>::s_mul_count=0;

template <class NT>
unsigned long Counted_number<NT>::s_div_count=0;

template <class NT>
unsigned long Counted_number<NT>::s_eq_count=0;

template <class NT>
unsigned long Counted_number<NT>::s_comp_count=0;

template< class NT >
unsigned long Counted_number<NT>::s_simplify_count = 0;

template< class NT >
unsigned long Counted_number<NT>::s_unit_part_count = 0;

template< class NT >
unsigned long Counted_number<NT>::s_is_zero_count = 0;

template< class NT >
unsigned long Counted_number<NT>::s_is_one_count = 0;

template< class NT >
unsigned long Counted_number<NT>::s_square_count = 0;

template< class NT >
unsigned long Counted_number<NT>::s_integral_division_count = 0;

template< class NT >
unsigned long Counted_number<NT>::s_is_square_count = 0;

template< class NT >
unsigned long Counted_number<NT>::s_sqrt_count = 0;

template< class NT >
unsigned long Counted_number<NT>::s_kth_root_count = 0;

template< class NT >
unsigned long Counted_number<NT>::s_root_of_count = 0;

template< class NT >
unsigned long Counted_number<NT>::s_gcd_count = 0;

template< class NT >
unsigned long Counted_number<NT>::s_div_mod_count = 0;

template< class NT >
unsigned long Counted_number<NT>::s_mod_count = 0;

//unary +
template <class NT> Counted_number<NT>
operator + (const Counted_number<NT>& n1){
    return n1;
}

template <class NT>
Counted_number<NT>
operator+(Counted_number<NT> const &n1, Counted_number<NT> const &n2)
{
    Counted_number<NT>::inc_add_count();
    return Counted_number<NT>(n1.rep() + n2.rep());
}

template <class NT>
Counted_number<NT>
operator-(Counted_number<NT> const &n1, Counted_number<NT> const &n2)
{
    Counted_number<NT>::inc_sub_count();
    return Counted_number<NT>(n1.rep() - n2.rep());
}

template <class NT>
Counted_number<NT>
operator*(Counted_number<NT> const &n1, Counted_number<NT> const &n2)
{
    Counted_number<NT>::inc_mul_count();
    return Counted_number<NT>(n1.rep() * n2.rep());
}

template <class NT>
Counted_number<NT>
operator/(Counted_number<NT> const &n1, Counted_number<NT> const &n2)
{
    Counted_number<NT>::inc_div_count();
    return Counted_number<NT>(n1.rep() / n2.rep());
}

template< class NT >
Counted_number<NT>
operator%( const Counted_number<NT>& x, const Counted_number<NT>& y ) {
  Counted_number<NT>::inc_mod_count();
  return Counted_number<NT>( x.rep() % y.rep() );
}

template <class NT>
bool
operator==(Counted_number<NT> const &n1, Counted_number<NT> const &n2)
{
    Counted_number<NT>::inc_eq_count();
    return (n1.rep() == n2.rep());
}

template <class NT>
bool
operator!=(Counted_number<NT> const &n1, Counted_number<NT> const &n2)
{
    Counted_number<NT>::inc_eq_count();
    return (n1.rep() != n2.rep());
}

template <class NT>
bool
operator<(Counted_number<NT> const &n1, Counted_number<NT> const &n2)
{
    Counted_number<NT>::inc_comp_count();
    return (n1.rep() < n2.rep());
}

template <class NT>
bool
operator>(Counted_number<NT> const &n1, Counted_number<NT> const &n2)
{
    Counted_number<NT>::inc_comp_count();
    return (n1.rep() > n2.rep());
}

template <class NT>
bool
operator<=(Counted_number<NT> const &n1, Counted_number<NT> const &n2)
{
    Counted_number<NT>::inc_comp_count();
    return (n1.rep() <= n2.rep());
}

template <class NT>
bool
operator>=(Counted_number<NT> const &n1, Counted_number<NT> const &n2)
{
    Counted_number<NT>::inc_comp_count();
    return (n1.rep() >= n2.rep());
}

template <class NT>
class Is_valid< Counted_number<NT> >
  : public std::unary_function< Counted_number<NT>, bool > {
  public:
    bool operator()( const Counted_number<NT>& x ) {
      return is_valid( x.rep() );
    }
};

template <class NT>
void Counted_number<NT>::report(std::ostream &os)
{
    os << count() << " operations\n";
    if (neg_count() > 0)
        os << "  " << neg_count() << " negations\n";
    if (add_count() > 0)
        os << "  " << add_count() << " additions\n";
    if (sub_count() > 0)
        os << "  " << sub_count() << " subtractions\n";
    if (mul_count() > 0)
        os << "  " << mul_count() << " multiplications\n";
    if (div_count() > 0)
        os << "  " << div_count() << " divisions\n";
    if (eq_count() > 0)
        os << "  " << eq_count() << " equality tests\n";
    if (comp_count() > 0)
        os << "  " << comp_count() << " comparisons\n";
    if (simplify_count() > 0)
        os << "  " << simplify_count() << " simplify-calls\n";
    if (unit_part_count() > 0)
        os << "  " << unit_part_count() << " unit_part-calls\n";
    if (is_zero_count() > 0)
        os << "  " << is_zero_count() << " is_zero-calls\n";
    if (is_one_count() > 0)
        os << "  " << is_one_count() << " is_one-calls\n";
    if (square_count() > 0)
        os << "  " << square_count() << " square-calls\n";
    if (integral_division_count() > 0)
        os << "  " << integral_division_count() << " integral_division-calls\n";
    if (is_square_count() > 0)
        os << "  " << is_square_count() << " is_square-calls\n";
    if (kth_root_count() > 0)
        os << "  " << kth_root_count() << " kth_root-calls\n";
    if (root_of_count() > 0)
        os << "  " << root_of_count() << " root_of-calls\n";
    if (gcd_count() > 0)
        os << "  " << gcd_count() << " gcd-calls\n";
    if (div_mod_count() > 0)
        os << "  " << div_mod_count() << " div_mod-calls\n";
    if (mod_count() > 0)
        os << "  " << mod_count() << " mod-calls\n";
}

template <class NT>
std::ostream& operator<<(std::ostream &os, Counted_number<NT> const &n)
{
    return os << ::CGAL::oformat( n.rep() )<< std::endl;
}

template <class NT>
std::istream& operator>>(std::istream &is, Counted_number<NT> &n)
{
    NT num;
    is >> ::CGAL::iformat(num);
    if (is) n = Counted_number<NT>(num);
    return is;
}

namespace INTERN_COUNTED_NUMBER{

template< class NT, class Functor >
struct Simplify_selector {
  struct Simplify : public std::unary_function<NT&, void> {
    void operator()( NT& x ) const {
      x.simplify();
    }
  };
};

template< class NT >
struct Simplify_selector< NT, Null_functor > {
  typedef Null_functor Simplify;
};

template< class NT, class Functor >
struct Unit_part_selector {
  struct Unit_part : public std::unary_function<NT, NT > {
    NT operator()( const NT& x ) const {
      return x.unit_part();
    }
  };
};

template< class NT >
struct Unit_part_selector< NT, Null_functor > {
  typedef Null_functor Unit_part;
};

template< class NT, class Functor >
struct Is_zero_selector {
  struct Is_zero : public std::unary_function<NT, bool > {
    bool operator()( const NT& x ) const {
      return x.is_zero();
    }
  };
};

template< class NT >
struct Is_zero_selector< NT, Null_functor > {
  typedef Null_functor Is_zero;
};

template< class NT, class Functor >
struct Is_one_selector {
  struct Is_one : public std::unary_function<NT, bool > {
    bool operator()( const NT& x ) const {
      return x.is_one();
    }
  };
};

template< class NT >
struct Is_one_selector< NT, Null_functor > {
  typedef Null_functor Is_one;
};

template< class NT, class Functor >
struct Square_selector {
  struct Square : public std::unary_function<NT, NT > {
    NT operator()( const NT& x ) const {
      return x.square();
    }
  };
};

template< class NT >
struct Square_selector< NT, Null_functor > {
  typedef Null_functor Square;
};

template< class NT, class Functor >
struct Integral_division_selector {
  struct Integral_division : public std::binary_function<NT, NT, NT > {
    NT operator()( const NT& x, const NT& y ) const {
      return x.integral_division( y );
    }
  };
};

template< class NT >
struct Integral_division_selector< NT, Null_functor > {
  typedef Null_functor Integral_division;
};

template< class NT, class Functor >
struct Is_square_selector {
  struct Is_square : public std::binary_function<NT, NT&, bool > {
      bool operator()( const NT& x, NT& y ) const {
          return x.is_square( y );
      }
      bool operator()( const NT& x) const {
          NT y;
          return x.is_square( y );
      }
  };
};

template< class NT >
struct Is_square_selector< NT, Null_functor > {
  typedef Null_functor Is_square;
};


template <class NT, class AlgebraicStructureTag>
struct Sqrt_selector{
    struct Sqrt : public std::unary_function<NT,NT> {
        NT operator ()(const NT& x) const {
            return x.sqrt();
        }
    };
};
template <class NT>
struct Sqrt_selector<NT,Null_functor> {
    typedef Null_functor Sqrt;
};

template< class NT, class Functor >
struct Kth_root_selector {
  struct Kth_root : public std::binary_function<int, NT, NT > {
    NT operator()( int k, const NT& x ) const {
      return x.kth_root( k );
    }
  };
};

template< class NT >
struct Kth_root_selector< NT, Null_functor > {
  typedef Null_functor Kth_root;
};

template< class NT, class Functor >
struct Root_of_selector {
  private:
    typedef typename NT::Rep_type Rep_type;
    struct Cast{
      typedef Rep_type result_type;
      result_type operator()(const NT& counted_number) const {
        return counted_number.rep();
      }
    };

  public:
    struct Root_of {
//      typedef typename Functor::Boundary Boundary;
      typedef NT result_type;
      template< class Input_iterator >
      NT operator()( int k, Input_iterator begin, Input_iterator end ) const {
        NT::inc_root_of_count();
        Cast cast;
        return NT( Functor()( k,
                              ::boost::make_transform_iterator( begin, cast ),
                              ::boost::make_transform_iterator( end, cast ) ) );
      }

      // TODO: Why are the arguments not const-ref?
/*      template< class Input_iterator >
      NT operator()( Boundary lower, Boundary upper,
                     Input_iterator begin, Input_iterator end ) const {
        NT::inc_root_of_count();
        Cast cast;
        return NT( Functor()( lower, upper,
                             ::boost::make_transform_iterator( begin, cast ),
                             ::boost::make_transform_iterator( end, cast ) ) );
      }*/
    };
};

template< class NT >
struct Root_of_selector< NT, Null_functor > {
  typedef Null_functor Root_of;
};

template< class NT, class Functor >
struct Gcd_selector {
  struct Gcd : public std::binary_function<NT, NT, NT > {
    NT operator()( const NT& x, const NT& y ) const {
      return x.gcd( y );
    }
  };
};

template< class NT >
struct Gcd_selector< NT, Null_functor > {
  typedef Null_functor Gcd;
};

template< class NT, class Functor >
struct Div_selector {
  struct Div : public std::binary_function<NT, NT, NT > {
    NT operator()( const NT& x, const NT& y ) const {
      return x.div( y );
    }
  };
};

template< class NT >
struct Div_selector< NT, Null_functor > {
  typedef Null_functor Div;
};

template< class NT, class Functor >
struct Mod_selector {
  struct Mod : public std::binary_function<NT, NT, NT > {
    NT operator()( const NT& x, const NT& y ) const {
      return x.mod( y );
    }
  };
};

template< class NT >
struct Mod_selector< NT, Null_functor > {
  typedef Null_functor Mod;
};

template< class NT, class Functor >
struct Div_mod_selector {
  struct Div_mod {
    typedef void result_type;
    typedef NT   first_argument_type;
    typedef NT   second_argument_type;
    typedef NT&  third_argument_type;
    typedef NT&  fourth_argument_type;

    void operator()( const NT& x, const NT& y, NT& q, NT& r ) const {
      x.div_mod( y, q, r );
    }
  };
};

template< class NT >
struct Div_mod_selector< NT, Null_functor >{
  typedef Null_functor Div_mod;
};

} // end namespace INTERN_COUNTED_NUMBER

template <class NT>
class Algebraic_structure_traits<Counted_number<NT> >
    :public Algebraic_structure_traits_base
      <Counted_number<NT>,
       typename Algebraic_structure_traits<NT>::Algebraic_category >
{
private:
    typedef Algebraic_structure_traits<NT> AST_NT;
    typedef typename AST_NT::Algebraic_category NT_as_tag;

public:
    typedef typename Algebraic_structure_traits<NT>::Is_exact Is_exact;
    typedef typename AST_NT::Is_numerical_sensitive Is_numerical_sensitive;

    typedef typename INTERN_COUNTED_NUMBER::Simplify_selector
    <Counted_number<NT>, typename AST_NT::Simplify > ::Simplify Simplify;

    typedef typename INTERN_COUNTED_NUMBER::Unit_part_selector
    <Counted_number<NT>, typename AST_NT::Unit_part > ::Unit_part Unit_part;

    typedef typename INTERN_COUNTED_NUMBER::Is_zero_selector
    <Counted_number<NT>, typename AST_NT::Is_zero > ::Is_zero Is_zero;

    typedef typename INTERN_COUNTED_NUMBER::Is_one_selector
    <Counted_number<NT>, typename AST_NT::Is_one > ::Is_one Is_one;

    typedef typename INTERN_COUNTED_NUMBER::Square_selector
    <Counted_number<NT>, typename AST_NT::Square > ::Square Square;

    typedef typename INTERN_COUNTED_NUMBER::Integral_division_selector
    <Counted_number<NT>, typename AST_NT::Integral_division> ::Integral_division Integral_division;

    typedef typename INTERN_COUNTED_NUMBER::Is_square_selector
    <Counted_number<NT>, typename AST_NT::Is_square > ::Is_square Is_square;

    typedef typename INTERN_COUNTED_NUMBER::Sqrt_selector
    <Counted_number<NT>, typename AST_NT::Sqrt> ::Sqrt Sqrt;

    typedef typename INTERN_COUNTED_NUMBER::Kth_root_selector
    <Counted_number<NT>, typename AST_NT::Kth_root > ::Kth_root Kth_root;

    typedef typename INTERN_COUNTED_NUMBER::Root_of_selector
    <Counted_number<NT>, typename AST_NT::Root_of > ::Root_of Root_of;

    typedef typename INTERN_COUNTED_NUMBER::Gcd_selector
    <Counted_number<NT>, typename AST_NT::Gcd > ::Gcd Gcd;

    typedef typename INTERN_COUNTED_NUMBER::Div_selector
    <Counted_number<NT>, typename AST_NT::Div > ::Div Div;

    typedef typename INTERN_COUNTED_NUMBER::Mod_selector
    <Counted_number<NT>, typename AST_NT::Mod > ::Mod Mod;

    typedef typename INTERN_COUNTED_NUMBER::Div_mod_selector
    <Counted_number<NT>, typename AST_NT::Div_mod > ::Div_mod Div_mod;
};

template <class NT>
class Real_embeddable_traits<Counted_number<NT> >
  : public INTERN_RET::Real_embeddable_traits_base <Counted_number<NT> , 
   typename Real_embeddable_traits<NT>::Is_real_embeddable > 
{
    typedef Real_embeddable_traits<NT> RET_NT;

public:
    typedef typename INTERN_COUNTED_NUMBER::Is_zero_selector
    <Counted_number<NT>, typename RET_NT::Is_zero > ::Is_zero Is_zero;

    class Is_finite
      : public std::unary_function< Counted_number<NT>, bool > {
      public:
        bool operator()( const Counted_number<NT>& x ) const {
          return CGAL_NTS is_finite( x.rep() );
        }
    };

    struct To_double : public std::unary_function< Counted_number<NT>, double > {
        double operator()(const Counted_number<NT>& x) const {
            return x.to_double();
        }
    };

    struct To_interval: public std::unary_function< Counted_number<NT>, std::pair<double,double> > {
        std::pair<double,double>
        operator()(const Counted_number<NT>& x) const {
            return x.to_interval();
        }
    };
};

template<typename NT> inline 
Counted_number<NT> min BOOST_PREVENT_MACRO_SUBSTITUTION(
const Counted_number<NT> & x,
const Counted_number<NT> & y){
  return CGAL::Min<Counted_number<NT> > ()(x,y);
}
template<typename NT> inline 
Counted_number<NT> max BOOST_PREVENT_MACRO_SUBSTITUTION(
const Counted_number<NT> & x,
const Counted_number<NT> & y){
  return CGAL::Max<Counted_number<NT> > ()(x,y);
}

} //namespace CGAL

#endif